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1. Introduction

Recently, many results appeared related to fixed point theorem in complete metric
spaces endowed with a partial ordering in literature. Ran and Reurings [24] proved
an analogue of Banach’s fixed point theorem in metric space endowed with a partial
order and gave applications to matrix equations. In this way, they weakened the usual
contractive condition. Subsequently, Nieto et al. [21] extended this result in [24] for
nondecreasing mappings and applied it to obtain a unique solution for a 1st order
ordinary differential equation with periodic boundary conditions. Thereafter, many
work related to fixed point problems have also been considered in partially ordered
metric spaces (see [4, 8, 9, 10, 11, 13, 20]).

On the other hand notion of a partial metric space was introduced by Matthews
[19]. To generalize partial metric, Hitzler and Seda [15] introduce the concept of a dis-
located topology and its corresponding generalized metric named as dislocated metric
(metric-like space [3]). The notion of dislocated topology has useful applications in
the context of logic programming semantics (see [14, 16]). Further useful results can
be seen in [1, 3, 17, 26, 27]. Zeyada et. al. [28] introduced the concept of dislocated
quasi metric space.
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From the application point of view the situation is not yet completely satisfactory
because it frequently happens that a mapping T is a contraction not on the entire
space X but merely on a subset Y of X. However, if Y is closed and a Picard iterative
sequence {xn} in X converges to some x in X, then, by imposing a subtle restriction
on the choice of x0, one may force Picard iterative sequence to stay eventually in
Y. In this case, closedness of Y coupled with some suitable contractive condition
establish the existence of a fixed point of T. Arshad et al. [5] obtained a significant
result concerning the existence of fixed points of a mapping satisfying a contractive
conditions on a closed ball of a complete dislocated metric space. Other results can
also be seen in [6, 7]. The dominated mapping [2], which satisfies the condition
fx � x occurs very naturally in several practical problems. For example if x denotes
the total quantity of food produced over a certain period of time and f(x) gives the
quantity of food consumed over the same period in a certain town, then we must
have fx � x. In this paper, we have obtained fixed point theorems on a closed ball
for a contractive dominated self-mapping in an ordered left K-sequentially as well as
right K-sequentially complete dislocated quasi metric space. Our results generalize,
extend and improve a classical fixed point result on a closed ball (see [18]). We have
used weaker contractive conditions and weaker restrictions to obtain a unique fixed
point. We have given examples which show how these results can be used for some
mappings, when the corresponding results in quasi-metric spaces can not hold .

We give the following definitions and results which will be needed in the sequel.
Definition 1.1. [28] Let X be a nonempty set and let dq : X × X → [0,∞) be
a function, called a dislocated quasi metric (or simply dq-metric) if the following
conditions hold for any x, y, z ∈ X :

(i) If dq(x, y) = dq(y, x) = 0, then x = y,
(ii) dq(x, y) ≤ dq(x, z) + dq(z, y).
The pair (X, dq) is called a dislocated quasi metric space.
It is clear that if dq(x, y) = dq(y, x) = 0, then from (i), x = y. But if x = y,

dq(x, y) may not be 0. It is observed that if dq(x, y) = dq(y, x) for all x, y ∈ X, then
(X, dq) becomes a dislocated metric space (metric-like space). We will denote (X, dl)
a dislocated metric space. For x ∈ X and ε > 0, B(x, ε) = {y ∈ X : dq(x, y) ≤ ε} is
a closed ball in X.
Example 1.2. If X = R+ ∪ {0} then dq(x, y) = x + max{x, y} defines a dislocated
quasi metric dq on X.

Reilly et al. [25] introduced the notion of left (right) K-Cauchy sequence and
left (right) K-sequentially complete spaces( see also [7, 12]). We use this concept to
introduce the following definition.
Definition 1.3. Let (X, dq) be a dislocated quasi metric space. A sequence {xn} in
(X, dq) is called

(a) left (right) K-Cauchy if ∀ ε > 0, ∃ n0 ∈ N such that ∀ n > m ≥ n0,
dq(xm, xn) < ε (respectively dq(xn, xm) < ε);

(b) dislocated quasi-convergent (for short dq-convergent) [28] to x if

lim
n→∞

dq(xn, x) = lim
n→∞

dq(x, xn) = 0.

In this case x is called a dq-limit of {xn}.
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A dislocated quasi metric space (X, dq) is called left (right) K-sequentially complete
if every left (right) K-Cauchy sequence in it is dq -convergent.
Definition 1.4. [23] Let (X,�) be a partially ordered set. Then x, y ∈ X are called
comparable if x � y or y � x holds.
Definition 1.5. [5] Let (X,�) be a partially ordered set. A self mapping f on X is
called dominated if fx � x for each x in X.
Example 1.6. [5] Let X = [0, 1] be endowed with the usual ordering and f : X → X
be defined by fx = xn for some n ∈ N. Since fx = xn ≤ x for all x ∈ X, therefore f
is a dominated map.
Definition 1.7. Let X be a nonempty set, then (X,�, dq) is called an ordered
dislocated quasi metric space if:

(i) dq is a dislocated quasi metric on X , and
(ii) � is a partial order on X.

2. Main results

Theorem 2.1. Let (X,�, dq) be an ordered left K-sequentially complete dislocated
quasi metric space, S : X → X be a dominated map and x0 be an arbitrary point in
X. Suppose there exists k ∈ [0, 1) such that

dq(Sx, Sy) ≤ kdq(x, y), for all comparable elements x, y in B(x0, r), (2.1)

and
dq(x0, Sx0) ≤ (1− k)r . (2.2)

If, for every nonincreasing sequence {xn} → u implies that u � xn. Then there exists
a point x∗ in B(x0, r) such that x∗ = Sx∗ and dq(x∗, x∗) = 0.

Moreover, if for any two points x, y in B(x0, r) there exists a point z ∈ B(x0, r)
such that z � x and z � y, that is, every pair of elements in B(x0, r) has a lower
bound, then, the point x∗ is the unique fixed point of S.
Proof. Consider a Picard sequence xn+1 = Sxn with initial guess x0 satisfying (2.2).
Then xn+1 = Sxn � xn for all n ∈ {0} ∪N. Now by the inequality (2.2),

dq(x0, Sx0) ≤ (1− k)r ≤ r,

so that x1 ∈ B(x0, r). Let x2, · · · , xj ∈ B(x0, r) for some j ∈ N . Using the inequality
(2.1), we obtain,

dq(xj , xj+1) = dq(Sxj−1, Sxj) ≤ kdq(xj−1, xj)

≤ k2dq(xj−2, xj−1) ≤ · · · ≤ kjdq(x0, x1). (2.3)

Now by using the inequalities (2.2) and (2.3) we obtain,

dq(x0, xj+1) ≤ dq(x0, x1) + dq(x1, x2) + · · ·+ dq(xj , xj+1)

≤ (1− k)r
(1− kj+1)

1− k
≤ r.

Thus xj+1 ∈ B(x0, r). Hence, xn ∈ B(x0, r), for all n ∈ N . Now the inequality (2.3)
can be written as,

dq(xn, xn+1) ≤ kndq(x0, x1), for all n ∈ N. (2.4)
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By the inequality (2.4) we get,

dq(xn, xn+i) ≤ dq(xn, xn+1) + ... + dq(xn+i−1, xn+i)

≤ kn(1− ki)
1− k

dq(x0, x1) −→ 0 as n →∞.

Therefore the sequence {xn} is a left K-Cauchy sequence in (B(x0, r), dq). As B(x0, r)
is closed, it is left K-sequentially complete. Therefore, there exists a point x∗ ∈
B(x0, r) with

lim
n→∞

dq(xn, x∗) = lim
n→∞

dq(x∗, xn) = 0. (2.5)

Now,

dq(x∗, Sx∗) ≤ dq(x∗, xn) + dq(xn, Sx∗).

By assumptions x∗ � xn � xn−1, therefore,

dq(x∗, Sx∗) ≤ lim
n→∞

[dq(x∗, xn) + kdq(xn−1, x
∗)].

Thus,

dq(x∗, Sx∗) ≤ 0.

Similarly, dq(Sx∗, x∗) ≤ 0. Hence x∗ = Sx∗. Now,

dq(x∗, x∗) = dq(Sx∗, Sx∗) ≤ kdq(x∗, x∗).

This implies that

dq(x∗, x∗) = 0.

Uniqueness: Let y be another point in B(x0, r) such that, y = Sy. If x∗ and y are
comparable then,

dq(x∗, y) = dq(Sx∗, Sy) ≤ kdq(x∗, y).

Similarly, dq(y, x∗) ≤ 0. This shows that x∗ = y. Now if x∗ and y are not comparable
then there exists a point z ∈ B(x0, r) which is lower bound of both x∗ and y that
is z � x∗ and z � y. Moreover by assumptions x∗ � xn as xn → x∗. Therefore
z � x∗ � xn � ... � x0.

dq(x0, Sz) ≤ dq(x0, x1) + dq(x1, Sz)
≤ (1− k)r + kdq(x0, z), (by (2.1) and (2.2))

dq(x0, Sz) ≤ (1− k)r + kr ≤ r.

It follows that Sz ∈ B(x0, r). Now we will prove that Snz ∈ B(x0, r), by using math-
ematical induction. Let S2z, ..., Sjz ∈ B(x0, r) for some j ∈ N. As Sjz � Sj−1z �
... � z � x∗ � xn... � x0, then,

dq(xj+1, S
j+1z) = dq(Sxj , S(Sjz)) ≤ kdq(xj , S

jz)

≤ . . . ≤ kj+1dq(x0, z0). (2.6)
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Now,

dq(x0, S
j+1z) ≤ dq(x0, x1) + dq(x1, x2) + ... + dq(xj , xj+1) + dq(xj+1, S

j+1z)

≤ dq(x0, x1) + kdq(x0, x1) + ... + kj+1dq(x0, z0), (by (2.6) )

dq(x0, S
j+1z) ≤ dq(x0, x1)[1 + k + ...kj ] + kj+1r, (as z0 ∈ B(x0, r))

dq(x0, S
j+1z) ≤ (1− k)r

(1− kj+1)
1− k

+ kj+1r = r.

It follows that Sj+1z ∈ B(x0, r) and thus Snz ∈ B(x0, r) for all n. Now,

dq(x∗, y) = dq(Snx∗, Sny)

≤ dq(Snx∗, Sn−1z) + dq(Sn−1z, Sny).

As Sn−1z � Sn−2z � ... � z � x∗ and Sn−1z � y for all n ∈ N. It further implies
that Sn−1z � Snx∗ and Sn−1z � Sny for all n ∈ N as Snx∗ = x∗ and Sny = y for
all n ∈ N. Thus,

dq(x∗, y) ≤ kdq(Sn−1x∗, Sn−2z) + kdq(Sn−2z, Sn−1y) (by (2.1))
...

≤ kn−2dq(x∗, Sz) + kn−2dq(Sz, y) −→ 0 as n →∞
Similarly dq(y, x∗) ≤ 0. Hence x∗ = y.
Example 2.2. Let X = [0,+∞) ∩ Q with the dislocated quasi-metric dq given by
dq(x, y) = 2x + y and the order x � y iff dq(x, x) ≤ dq(y, y). Then (X,�, dq) be an
ordered complete dislocated quasi metric space. Let S : X → X be defined by

Sx =

{ x

7
if x ∈ [0, 1] ∩X

x− 1
3 if x ∈ (1,∞) ∩X

Clearly, S is a dominated mapping. Then, if x0 = 1, r = 3, we have B(x0, r) =
[0, 1] ∩X and for k = 1

5 ,

(1− k)r = (1− 1
5
)3 =

12
5

.

Also
dq(x0, Sx0) = dq(1, S1) = dq(1,

1
7
) = 2 +

1
7

=
15
7

<
12
5

Now if x, y ∈ (1,∞) ∩X, then,

dq(Sx, Sy) = 2x− 2
3

+ y − 1
3

≥ 1
5
{2x + y}

dq(Sx, Sy) ≥ kdq(x, y).

So the contractive condition does not hold on X. Now if x, y ∈ B(x0, r), then

dq(Sx, Sy) =
2x

7
+

y

7
=

1
7
{2x + y}

≤ 1
5
{2x + y} = kdq(x, y).
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Therefore, all the conditions of Theorem 2.1 are satisfied. Moreover, 0 is the unique
fixed point of S.

In Theorem 2.1, the condition (2.2) is imposed to restrict the condition (2.1) only
for x, y in B(x0, r) . Example 2.2 explains the utility of this restriction. The following
result relax the conditions (2.2) but impose the condition (2.1) for all comparable
elements in the whole space X.
Corollary 2.3. Let (X,�, dq) be an ordered left K-sequentially complete dislocated
quasi metric space, S : X → X be a dominated map and x0 be an arbitrary point in
X. Suppose there exists k ∈ [0, 1) with

dq(Sx, Sy) ≤ kdq(x, y), for all comparable elements x, y in X

If, for every nonincreasing sequence {xn}in X, {xn} → u implies that u � xn and
every pair of elements in X has a lower bound, then there exists a unique point x∗ in
X such that x∗ = Sx∗. Further dq(x∗, x∗) = 0.

In Theorem 2.1, the existence of a lower bound and for every nonincreasing se-
quence {xn}in X, {xn} → u implies that u � xn are imposed to restrict the condition
(2.1) only for comparable elements. However, the following result relaxes these con-
ditions but imposes the condition (2.1) for all elements in B(x0, r).
Corollary 2.4. Let (X, dq) be a left K-sequentially complete dislocated quasi metric
space, S : X → X be a map and x0 be an arbitrary point in X. Suppose there exists
k ∈ [0, 1) with

dq(Sx, Sy) ≤ kdq(x, y), for all elements x, y in B(x0, r)

and
dq(x0, Sx0) ≤ (1− k)r .

then there exists a unique point x∗ in B(x0, r) such that x∗ = Sx∗. Further
dq(x∗, x∗) = 0.

In the following we present some results for the Kannan mappings and obtain a
unique fixed point on a closed ball in an ordered dislocated quasi metric space.
Theorem 2.5. Let (X,�, dq) be an ordered left K-sequentially complete dislocated
quasi metric space, S : X → X be a dominated map and x0 be an arbitrary point in
X. Suppose there exists k ∈ [0, 1

2 ) with

dq(Sx, Sy) ≤ k[dq(x, Sx) + dq(y, Sy)], (2.7)

for all comparable elements x, y in B(x0, r) and

dq(x0, Sx0) ≤ (1− θ)r, (2.8)

where θ = k
1−k . If for every nonincreasing sequence {xn} → u implies that u �

xn. Then there exists a point x∗ in B(x0, r) such that x∗ = Sx∗ and dq(x∗, x∗) = 0.

Moreover, if for any two points x, y in B(x0, r) there exists a point z ∈ B(x0, r) such
that z � x and z � y,and

dq(x0, Sx0) + dq(z, Sz) ≤ dq(x0, z) + dq(Sx0, Sz) for all z � x0. (2.9)

then, the point x∗ is unique.
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Proof. Consider a Picard sequence xn+1 = Sxn with initial guess x0 satisfying (2.8).
Then xn+1 = Sxn � xn for all n ∈ {0} ∪N and by the inequality (2.8), we have

dq(x0, Sx0) ≤ (1− θ)r ≤ r.

Therefore, x1 ∈ B(x0, r). Let x2, · · · , xj ∈ B(x0, r) for some j ∈ N . Thus, by the
inequality (2.7), we have

dq(xj , xj+1) = dq(Sxj−1, Sxj) ≤ k[dq(xj−1, Sxj−1) + dq(xj , Sxj)].

It implies that

dq(xj , xj+1) ≤ θdq(xj−1, xj)

≤ θ2dq(xj−2, xj−1) ≤ ... ≤ θjdq(x0, x1). (2.10)

Now by the inequalities (2.8) and (2.10) we get,

dq(x0, xj+1) ≤ dq(x0, x1) + dq(x1, x2) + · · ·+ dq(xj , xj+1)

≤ (1− θ)r
(1− θj+1)

(1− θ)
≤ r.

It gives that xj+1 ∈ B(x0, r). Hence xn ∈ B(x0, r) for all n ∈ N . It further implies
that the inequality (2.10) can be written as,

dq(xn, xn+1) ≤ θndq(x0, x1), for all n ∈ N. (2.11)

By the inequality (2.11), we have,

dq(xn, xn+i) ≤ dq(xn, xn+1) + ... + dq(xn+i−1, xn+i)

≤ θn(1− θi)
1− θ

dq(x0, x1) −→ 0 as n →∞.

Thus the sequence {xn} is a left K-Cauchy sequence in (B(x0, r), dq). Therefore there
exists a point x∗ ∈ B(x0, r) with lim

n→∞
xn = x∗. Also,

lim
n→∞

dq(xn, x∗) = lim
n→∞

dq(x∗, xn) = 0. (2.12)

Now,
dq(x∗, Sx∗) ≤ dq(x∗, xn) + dq(xn, Sx∗),

by assumptions, x∗ � xn � xn−1, therefore,

dq(x∗, Sx∗) ≤ lim
n→∞

[dq(x∗, xn) + k{dq(xn−1, Sxn−1) + dq(x∗, Sx∗)}].

By the inequality (2.12) we obtain

(1− k)dq(x∗, Sx∗) ≤ k lim
n→∞

dq(xn−1, xn),

and by the inequality (2.11)

(1− k)dq(x∗, Sx∗) ≤ 0.

Similarly, dq(Sx∗, x∗) ≤ 0 and hence, x∗ = Sx∗. Now,

dq(x∗, x∗) = dq(Sx∗, Sx∗)
≤ k{dq(x∗, Sx∗) + dq(x∗, Sx∗)}.
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Thus
(1− 2k)dq(x∗, x∗) ≤ 0,

which implies
dq(x∗, x∗) = 0. (2.13)

Uniqueness: Now we show that x∗ is unique. Let y be another point in B(x0, r)
such that y = Sy. Then following similar arguments as we have used to prove the
inequality (2.12), we obtain,

dq(y, y) = 0. (2.14)
Now if x∗ and y are comparable, then,

dq(x∗, y) = dq(Sx∗, Sy)
≤ k[dq(x∗, Sx∗) + dq(y, Sy)]
= 0. (by (2.13) and (2.14))

Similarly,
dq(y, x∗) = 0.

Hence we have x∗ = y. Now if x∗ and y are not comparable then there exists a
point z ∈ B(x0, r) which is a lower bound of both x∗ and y. Now we will prove that
Snz ∈ B(x0, r). Moreover by assumptions z � x∗ � xn... � x0. Now by the inequality
(2.7) , we have,

dq(Sx0, Sz) ≤ k[dq(x0, x1) + dq(z, Sz)]
≤ k[dq(x0, z) + dq(x1, Sz)], by using (2.9)

dq(x1, Sz) ≤ θdq(x0, z). (2.15)

Now,

dq(x0, Sz) ≤ dq(x0, x1) + dq(x1, Sz)
≤ dq(x0, x1) + θdq(x0, z), by using (2.15)

dq(x0, Sz) ≤ (1− θ)r + θr = r.

It follows that Sz ∈ B(x0, r). Next, we show that Snz ∈ B(x0, r), by using mathe-
matical induction to apply the inequality (2.7). Let S2z, ..., Sjz ∈ B(x0, r) for some
j ∈ N. As Sjz � Sj−1z � ... � z � x∗ � xn... � x0, then,

dq(Sjz, Sj+1z) = dq(S(Sj−1z), S(Sjz)) ≤ k[dq(Sj−1z, Sjz) + dq(Sjz, Sj+1z)].

It further implies that,

dq(Sjz, Sj+1z) ≤ θdq(Sj−1z, Sjz)

≤ θ2dq(Sj−2z, Sj−1z) ≤ ... ≤ θjdq(z, Sz). (2.16)

Now,

dq(xj+1, S
j+1z) = dq(Sxj , S(Sjz)) ≤ k[dq(xj , Sxj) + dq(Sjz, Sj+1z)]

≤ k[θjdq(x0, x1) + θjdq(z, Sz)] (by 2.11 and 2.16)

≤ kθj [dq(x0, z) + dq(x1, Sz)] (by 2.9)

≤ kθj [dq(x0, z) + θdq(x0, z)] = θj+1dq(x0, z0). (2.17)
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Thus,

dq(x0, S
j+1z) ≤ dq(x0, x1) + dq(x1, x2) + ... + dq(xj , xj+1) + dq(xj+1, S

j+1z)

≤ dq(x0, x1) + θdq(x0, x1) + ... + θj+1dq(x0, z), (by (2.11) and (2.17))

dq(x0, S
j+1z) ≤ dq(x0, x1)[1 + θ + ...θj ] + θj+1r, (as z ∈ B(x0, r))

dq(x0, S
j+1z) ≤ (1− θ)r

(1− θj+1)
1− θ

+ θj+1r = r.

It follows that Sj+1z ∈ B(x0, r) and hence Snz ∈ B(x0, r). Now the inequality (2.16)
can be written as,

dq(Snz, Sn+1z) ≤ θndq(z, Sz) −→ 0 as n →∞. (2.18)

Therefore,

dq(x∗, y) = dq(Sx∗, Sy)

≤ dq(Sx∗, Sn+1z) + dq(Sn+1z, Sy)

≤ k[dq(x∗, Sx∗) + dq(Snz, Sn+1z)] + k[dq(Snz, Sn+1z) + dq(y, Sy)]

≤ kdq(x∗, x∗) + 2kdq(Snz, Sn+1z) + kdq(y, y)
≤ 0 (by 2.13,2.14 and 2.18)

Similarly, dq(y, x∗) = 0. Hence x∗ = y.
Example 2.6. Let X = R+∪{0} be endowed with usual order and let dq : X×X → X

be defined by dq(x, y) =
x

2
+ y. Let S : X → X be defined by

Sx =

{ x

7
if x ∈ [0, 1]

x− 1
2 if x ∈ (1,∞)

Clearly, S is a dominated mapping. Then for x0 = 1, r = 3
2 , θ = 3

7 , B(x0, r) =
[0, 1] and for k = 3

10 ,

(1− θ)r =
(

1− 3
7

)
3
2

=
6
7
,

and

dq(x0, Sx0) = dq(1, S1) = dq(1,
1
7
) =

1
2

+
1
7

=
9
14

<
6
7
.

Also if x, y ∈ (1,∞), then

5x + 10y ≥ 9
2
x +

9
2
y +

9
2

⇒ 5x− 5
2

+ 10y − 5 ≥ 3
[
3
2
x +

3
2
y − 1

]
⇒ 10(

x

2
− 1

4
+ y − 1

2
) ≥ 3

[
x

2
+ x− 1

2
+

y

2
+ y − 1

2

]
⇒ dq(Sx, Sy) ≥ k[dq(x, Sx) + dq(y, Sy)].
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So the contractive condition does not hold on X. Now if x, y ∈ B(x0, r), then

dq(Sx, Sy) =
x

14
+

y

7
=

1
7

{x

2
+ y

}
≤ 3

10

{x

2
+

y

2

}
≤ 3

10

{x

2
+

x

7
+

y

2
+

y

7

}
= k[dq(x, Sx) + dq(y, Sy)].

Also,

dq(x0, Sx0) + dq(z, Sz) = dq(x0, z) + dq(Sx0, Sz) for all z � x0.

Therefore, all the conditions of Theorem 2.5 are satisfied. Moreover, 0 is the fixed
point of S.

In Theorem 2.5, the conditions (2.8) and (2.9) are imposed to restrict the condition
(2.7) only for x, y in B(x0, r). Example 2.6 explains the utility of these restrictions.
The following result relax the conditions (2.8) and (2.9) but impose the condition
(2.7) for all comparable elements in the whole space X.
Theorem 2.7. Let (X,�, dq) be an ordered left K-sequentially complete dislocated
quasi metric space, S : X → X be a dominated map and x0 be an arbitrary point in
X. Suppose there exists k ∈ [0, 1

2 ) with

dq(Sx, Sy) ≤ k[dq(x, Sx) + dq(y, Sy)],

for all comparable elements x, y in X. If, for every nonincreasing sequence {xn} in
X, {xn} → u implies that u � xn and every pair of elements in X has a lower bound,
then there exists a unique point x∗ in X such that x∗ = Sx∗ and dq(x∗, x∗) = 0.

In Theorem 2.5, the condition (2.9), the existence of a lower bound and for every
nonincreasing sequence {xn}in X, {xn} → u implies that u � xn are imposed to
restrict the condition (2.7) only for comparable elements. However, the following
result relaxes these conditions but imposes the condition (2.7) for all elements in
B(x0, r).
Theorem 2.8. Let (X, dq) be a complete left K-sequentially dislocated quasi metric
space, S : X → X be a map and x0 be an arbitrary point in X. Suppose there exists
k ∈ [0, 1

2 ) such that

dq(Sx, Sy) ≤ k[dq(x, Sx) + dq(y, Sy)],

for all x, y ∈ B(x0, r) ; where x0 is a point in X satisfying the condition

dq(x0, Sx0) ≤ (1− θ)r

with θ = k
1−k . Then there exists a unique point x∗ in B(x0, r) such that x∗ = Sx∗

and dq(x∗, x∗) = 0.
Remark 2.9. The above results can easily be proved in right K-sequentially dislo-
cated quasi metric space.
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[12] S. Cobzaş, Functional Analysis in Asymmetric Normed Spaces, Frontiers in Mathematics, Basel,
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