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1. Introduction

Picard and weakly Picard operators methods have been a powerful tool to study
the nonlinear differential equations. For more details on this novel methods to discuss
existence and uniqueness and the data dependence on data of the solutions for some
differential equations and integral equations, one can see Rus et al. [1, 2, 3, 4, 5, 6, 7],
Şerban et al. [8], Muresan [9, 10] and Olaru [11]. It is remarkable that Wang et al.
[12] apply this interesting methods to study nonlocal Cauchy problems and impulsive
Cauchy problems for nonlinear differential equations.

On the other hand, a strong motivation for studying fractional differential equations
comes from the fact they have been proved to be valuable tools in the modeling of
many phenomena in various fields of engineering, physics and economics. It draws a
great application in nonlinear oscillations of earthquakes, many physical phenomena
such as seepage flow in porous media and in fluid dynamic traffic model. For more
details on basic theory of fractional differential equations, one can see the monographs
of Diethelm [13], Kilbas et al. [14], Miller and Ross [15], Podlubny [16] and Tarasov
[17], and the references [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30].

297



298 JINRONG WANG, MICHAL FEC̆KAN AND YONG ZHOU

However, functional differential equations with fractional derivative have not been
studied extensively. In particular, weakly Picard operators methods have not been
used to study such problems. Motivated by [7, 12, 31, 32], we offer to study boundary
value problems for the following modified fractional iterative functional differential
equations

cDq
a,tx(t) = f(t, x(t), x(xv(t))), t ∈ [a, b], v ∈ R \ {0}, q ∈ (1, 2),

x(t) = ϕ(t), t ∈ [a1, a],
x(t) = ψ(t), t ∈ [b, b1],

(1.1)

where cDq
a,t is the Caputo fractional derivative of order q with the lower limit a (see

Definition 2.3) and
(C1) a, b, a1, b1 ∈ R, a1 ≤ a < b ≤ b1, a function Υ(z) = zv satisfies Υ ∈
C([a1, b1], [a1, b1]);
(C2) f ∈ C([a, b]× [a1, b1]2, R);
(C3) ϕ ∈ C([a1, a], [a1, b1]) and ψ ∈ C([b, b1], [a1, b1]);
(C4) there exists Lf > 0 such that |f(t, u1, w1)−f(t, u2, w2)| ≤ Lf (|u1−u2|+|w1−w2|)
for all t ∈ [a, b], ui, wi ∈ [a1, b1], i = 1, 2.

A function x ∈ C([a1, b1], [a1, b1]) is said to be a solution of the problem (1.1) if
x satisfies the equation cDq

a,tx(t) = f(t, x(t), x(xv(t))) on [a, b], and the conditions
x(t) = ϕ(t), t ∈ [a1, a], x(t) = ψ(t), t ∈ [b, b1].

It is easy to verify that the problem (1.1) is equivalent with the following fixed
point equation

x(t) =


ϕ(t), for t ∈ [a1, a],

w(ϕ,ψ)(t) + 1
Γ(q)

∫ b
a
G(t, s)f(s, x(s), x(xv(s)))ds, for t ∈ [a, b],

ψ(t), for t ∈ [b, b1],

(1.2)

and x ∈ C([a1, b1], [a1, b1]), where w(ϕ,ψ)(t) := ϕ(a) + ψ(b)−ϕ(a)
b−a (t − a), G is the

Green function defined by

G(t, s) :=

{
(t− s)q−1 − t−a

b−a (b− s)q−1, for a ≤ s ≤ t ≤ b,
− t−a
b−a (b− s)q−1, for a ≤ t ≤ s ≤ b,

and∫ b

a

G(t, s)f(s, x(s), x(xv(s)))ds = − t− a
b− a

∫ b

a

(b− s)q−1f(s, x(s), x(xv(s)))ds

+

∫ t

a

(t− s)q−1f(s, x(s), x(xv(s)))ds.

Remark 1.1. Note G(t, s) ≤ 0 for a ≤ t ≤ s ≤ b, while G(t, t) = − t−a
b−a (b− t)q−1 < 0

and G(t, a) = (t − a)
(
(t− a)q−2 − (b− a)q−2

)
> 0 for a < t < b. Next ∂

∂sG(t, s) =

(q − 1) (b−s)q−2(t−a)−(t−s)q−2(b−a)
b−a < 0 for a < s < t < b. So for any t ∈ (a, b) there

is a unique s(t) ∈ (a, t) such that G(t, s(t)) = 0, G(t, s) < 0 for s(t) < s < b and
G(t, s) > 0 for s(t) > s ≥ a. Note G(t, b) = 0 and

s(t) = b+
(b− a)

1
q−1 (b− t)

(t− a)
1
q−1 − (b− a)

1
q−1

.
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Furthermore, s(t) = a for q = 2, and this is a great difference for the Green function
when q ∈ (1, 2). Since we cannot expect monotonicity of the integral operator Bf
defined in (3.1) below.

On the other hand, we derive∫ b

a

G(t, s)ds =
t− a
q

(
(t− a)q−1 − (b− a)q−1

)
.

Hence
∫ b
a
G(t, s)ds ≤ 0 for t ∈ [a, b] and

∫ b
a
G(t, s)ds < 0 for t ∈ (a, b], which holds

also for q = 2. So G(t, ·) is nonpositive in average on [a, b].

On the other hand, the first equation of the problem (1.1) is equivalent with

x(t) :=


x(t), for t ∈ [a1, a],
w(x|[a1,a], x|[b,b1])(t)

+ 1
Γ(q)

∫ b
a
G(t, s)f(s, x(s), x(xv(s)))ds, for t ∈ [a, b],

x(t), for t ∈ [b, b1],

(1.3)

and x ∈ C([a1, b1], [a1, b1]).
We will apply a new method to study the equations (1.2) and (1.3). More pre-

cisely, we will use the weakly Picard operator technique to obtain some new existence,
uniqueness and data dependence results for the solution of the problem (1.1).

2. Notation, definitions and auxiliary facts

To end this section, we recall some basic definitions of the fractional calculus theory
which are used further in this paper. For more details, see Kilbas et al. [14].

Definition 2.1. The fractional order integral of the function h ∈ L1([a, b], R) of order
q ∈ R+ is defined by

Iqa,th(t) =

∫ t

a

(t− s)q−1

Γ(q)
h(s)ds

where Γ is the Gamma function.

Definition 2.2. For a function h given on the interval [a, b], the qth Riemann-
Liouville fractional order derivative of h, is defined by

L(Dq
a,th)(t) =

1

Γ(n− q)

(
d

dt

)n ∫ t

a

(t− s)n−q−1h(s)ds,

here n = [q] + 1 and [q] denotes the integer part of q.

Definition 2.3. The Caputo derivative of order q for a function f : [a, b] → R can
be written as

cDq
a,th(t) = LDq

a,t

(
h(t)−

n−1∑
k=0

tk

k!
h(k)(a)

)
, t > 0, n− 1 < q < n.

We need some notions and results from the weakly Picard operator theory (for
more details see Rus [5, 6]).

Let (X, d) be a metric space and A : X → X an operator. We shall use the
following notations:
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FA = {x ∈ X | A(x) = x}−the fixed point set of A;
I(A) = {Y ∈ P (X) | A(Y ) ⊆ Y, Y 6= ∅};
An+1 = An ◦A, A1 = A, A0 = I, n ∈ N
P (X) = {Y ⊆ X | Y 6= ∅};
OA(x) = {x,A(x), A2(x), · · · , An(x), · · · }−the A−orbit of x ∈ X;
H : P (X)× P (X)→ R+ ∪ {+∞};
H(Y,Z) = max

{
supy∈Y infz∈Z d(y, z), supz∈Z infy∈Y d(y, z)

}
−the Pompeiu-

Hausdorff functional on P (X)× P (X).

Definition 2.4. Let (X, d) be a metric space. An operator A : X → X is a Picard
operator if there exists x∗ ∈ X such that FA = {x∗} and the sequence (An(x0))n∈N
converges to x∗ for all x0 ∈ X.

Theorem 2.5. (Contraction principle) Let (X, d) be a complete metric space and
A : X → X a γ−contraction. Then

(i) FA = {x∗};
(ii) (An(x0))n∈N converges to x∗ for all x0 ∈ X;

(iii) d(x∗, An(x0)) ≤ γn

1−γ d(x0, A(x0)), for all n ∈ N .

Remark 2.6. Accordingly to the Definition 2.4, the contraction principle insures
that, if A : X → X is a γ−contraction on the complete metric space X, then it is a
Picard operator.

Theorem 2.7. Let (X, d) be a complete metric space and A,B : X → X two opera-
tors. We suppose the following:

(i) A is a contraction with contraction constant γ and FA = {x∗A}.
(ii) B has fixed points and x∗B ∈ FB .
(iii) There exists η > 0 such that d(A(x), B(x)) ≤ η, for all x ∈ X.

Then d(x∗A, x
∗
B) ≤ η

1−γ .

Definition 2.8. Let (X, d) be a metric space. An operator A : X → X is a weakly
Picard operator if the sequence (An(x0))n∈N converges for all x0 ∈ X and its limit
(which may depend on x0) is a fixed point of A.

Theorem 2.9. Let (X, d) be a metric space. Then A : X → X is a weakly Picard
operator if and only if there exists a partition X =

⋃
λ∈ΛXλ of X such that

(i) Xλ ∈ I(A), for all λ ∈ Λ;
(ii) A |Xλ : Xλ → Xλ is a Picard operator, for all λ ∈ Λ.

Definition 2.10. If A is a weakly Picard operator, then we consider the operator A∞

defined by A∞ : X → X, A∞(x) = limn→∞An(x).

It is clear that A∞(X) = FA and ωA(x) = {A∞(x)} where ωA(x) is the ω−limit
point set of mapping A for point x.

Definition 2.11. Let A be a weakly Picard operator and c > 0. The operator A is
c−weakly Picard operator if d(x,A∞(x)) ≤ cd(x,A(x)), ∀ x ∈ X.
Remark 2.12. Let (X, d) be a complete metric space and A : X → X a continuous
operator. We suppose that there exists γ ∈ [0, 1) such that

d(A2(x), A(x)) ≤ γd(x,Ax), ∀ x ∈ X.
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Then A is c−weakly Picard operator with c = 1
1−γ .

Theorem 2.13. Let (X, d) be a complete metric space and Ai : X → X, i = 1, 2.
We suppose that

(i) Ai is ci−weakly Picard operator, i = 1, 2;
(ii) There exists α > 0 such that d(A1(x), A2(x)) ≤ α, ∀ x ∈ X.

Then H(FA1
, FA2

) ≤ αmax(c1, c2).

3. Existence

In what follows we consider the fixed point equation (1.2). Consider the operator

Bf : C([a1, b1], [a1, b1])→ C([a1, b1], [a1, b1])

where

Bf (x)(t) :=


ϕ(t), for t ∈ [a1, a],

w(ϕ,ψ)(t) +
∫ b
a
G(t, s)f(s, x(s), x(xv(s)))ds, for t ∈ [a, b],

ψ(t), for t ∈ [b, b1].

(3.1)

It is clear that x is a solution of the problem (1.1) if and only if x is a fixed point
of the operator Bf . So, the problem is to study the fixed point equation x = Bf (x).

Let L > 0 and introduce the following notation:

CL([a1, b1], [a1, b1]) = {x ∈ C([a1, b1], [a1, b1]) : |x(t1)− x(t2)| ≤ L|t1 − t2|} ,
for all t1, t2 ∈ [a1, b1]. Remark that CL([a1, b1], [a1, b1]) ⊆ C([a1, b1], R) is also a
complete metric space with respect to the metric,

d(x1, x2) := max
a1≤t≤b1

|x1(t)− x2(t)|.

Theorem 3.1. We suppose that
(i) the conditions (C1)–(C4) are satisfied but in addition v ≥ 1;
(ii) ϕ ∈ CL([a1, a], [a1, b1]), ψ ∈ CL([b, b1], [a1, b1]);
(iii) there are mf , Mf ∈ R such that

mf ≤ f(t, u, w) ≤Mf , ∀ t ∈ [a, b], u, w ∈ [a1, b1],

and moreover,

a1 ≤ min(ϕ(a), ψ(b))−max

(
0,
Mf (b− a)q

Γ(q + 1)

)
+ min

(
0,
mf (b− a)q

Γ(q + 1)

)
,

max(ϕ(a), ψ(b))−min

(
0,
mf (b− a)q

Γ(q + 1)

)
+ max

(
0,
Mf (b− a)q

Γ(q + 1)

)
≤ b1;

(iv)
|ψ(b)− ϕ(a)|

b− a
+

(b− a)q−1(1 + q) max{|mf |, |Mf |}
Γ(q + 1)

< L;

(v)
2(b− a)qLf (Lvmax{|a1|, |b1|}v−1 + 2)

Γ(q + 1)
< 1.

Then the problem (1.1) has in CL([a1, b1], [a1, b1]) a unique solution.
Moreover, the operator Bf ,

Bf : CL([a1, b1], [a1, b1])→ CL([a, b], [a1, b1])
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is a c−Picard operator with

c :=
Γ(q + 1)

Γ(q + 1)− 2(b− a)qLf (Lvmax{|a1|, |b1|}v−1 + 2)
.

Proof. First of all we remark that the condition (iii) and (iv) imply that
CL([a1, b1], [a1, b1]) is an invariant subset for Bf . Indeed, for t ∈ [a1, a] ∪ [b, b1],
we have Bf (x)(t) ∈ [a1, b1]. Furthermore, we obtain a1 ≤ Bf (x)(t) ≤ b1, ∀ t ∈ [a, b],
if and only if

a1 ≤ min
t∈[a,b]

Bf (x)(t) (3.2)

and
max
t∈[a,b]

Bf (x)(t) ≤ b1 (3.3)

hold.
Since

min
t∈[a,b]

Bf (x)(t) ≥ min(ϕ(a), ψ(b))

−max

(
0,
Mf (b− a)q

Γ(q + 1)

)
+ min

(
0,
mf (b− a)q

Γ(q + 1)

)
,

respectively

max
t∈[a,b]

Bf (x)(t) ≤ max(ϕ(a), ψ(b))

−min

(
0,
mf (b− a)q

Γ(q + 1)

)
+ max

(
0,
Mf (b− a)q

Γ(q + 1)

)
,

the requirements (3.2) and (3.3) are equivalent with the conditions appearing in (iii).
Now, consider a1 ≤ t1 < t2 ≤ a. Then,

|Bf (x)(t2)−Bf (x)(t1)| = |ϕ(t2)− ϕ(t1)|
≤ L|t1 − t2|

as ϕ ∈ CL([a1, a], [a1, b1]), due to (ii).
Similarly, for b ≤ t1 < t2 ≤ b1,

|Bf (x)(t2)−Bf (x)(t1)| = |ψ(t2)− ψ(t1)|
≤ L|t1 − t2|

that follows from (ii), too.
On the other hand, for a ≤ t1 < t2 ≤ b,

|Bf (x)(t2)−Bf (x)(t1)| ≤ |w(ϕ,ψ)(t2)− w(ϕ,ψ)(t1)|

+
1

Γ(q)

∫ b

a

|G(t2, s)−G(t1, s)||f(s, x(s), x(xv(s))))|ds

≤ |ψ(b)− ϕ(a)|
b− a

|t2 − t1|+
|t2 − t1|

(b− a)Γ(q)

∫ b

a

(b− s)q−1|f(s, x(s), x(xv(s)))|ds

+
1

Γ(q)

∫ t1

a

[(t2 − s)q−1 − (t1 − s)q−1]|f(s, x(s), x(xv(s)))|ds
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+
1

Γ(q)

∫ t2

t1

(t2 − s)q−1|f(s, x(s), x(xv(s)))|ds

≤ |ψ(b)− ϕ(a)|
b− a

|t2 − t1|+
(b− a)q−1 max{|mf |, |Mf |}|t2 − t1|

Γ(q + 1)

+
max{|mf |, |Mf |}

Γ(q + 1)
((t2 − a)q − (t1 − a)q − (t2 − t1)q) +

max{|mf |, |Mf |}
Γ(q + 1)

(t2 − t1)q

≤
(
|ψ(b)− ϕ(a)|

b− a
+

(b− a)q−1(1 + q) max{|mf |, |Mf |}
Γ(q + 1)

)
|t1 − t2|.

where we use the inequality

rq − sq ≤ qrq−1(r − s)
for all r ≥ s ≥ 0. Therefore, due to (iv), the function Bf (x) is L–Lipschitz in t. Thus,
according to the above, we have CL([a1, a], [a1, b1]) ∈ I(Bf ).

From the condition (v) it follows that Bf is an LBf –contraction with

LBf :=
2(b− a)qLf (Lvmax{|a1|, |b1|}v−1 + 2)

Γ(q + 1)

Indeed, for all t ∈ [a1, a] ∪ [b, b1], we have

|Bf (x1)(t)−Bf (x2)(t)| = 0.

Moreover, for t ∈ [a, b] we get

|Bf (x1)(t)−Bf (x2)(t)|

≤ 1

Γ(q)

∫ b

a

|G(t, s)f(s, x1(s))−G(t, s)f(s, x2(s))|ds

≤ t− a
(b− a)Γ(q)

∫ b

a

(b− s)q−1 |f(s, x1(s), x1(xv1(s)))− f(s, x2(s), x2(xv2(s)))| ds

+
1

Γ(q)

∫ t

a

(t− s)q−1 |f(s, x1(s), x1(xv1(s)))− f(s, x2(s), x2(xv2(s)))| ds

≤ Lf
Γ(q)

∫ b

a

(b− s)q−1 [|x1(s)− x2(s)|+ |x1(xv1(s))− x2(xv2(s))|] ds

+
Lf

Γ(q)

∫ t

a

(t− s)q−1 [|x1(s)− x2(s)|+ |x1(xv1(s))− x2(xv2(s))|] ds

≤ Lf
Γ(q)

∫ b

a

(b− s)q−1

[
|x1(s)− x2(s)|+ |x1(xv1(s))− x1(xv2(s))|

+ |x1(xv2(s))− x2(xv2(s))|
]
ds

+
Lf

Γ(q)

∫ t

a

(t− s)q−1

[
|x1(s)− x2(s)|+ |x1(xv1(s))− x1(xv2(s))|

+ |x1(xv2(s))− x2(xv2(s))|
]
ds
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≤ Lf
Γ(q)

∫ b

a

(b− s)q−1

[
2‖x1 − x2‖C + L |xv1(s)− xv2(s)|

]
ds

+
Lf

Γ(q)

∫ t

a

(t− s)q−1

[
2‖x1 − x2‖C + L |xv1(s)− xv2(s)|

]
ds

≤ Lf
Γ(q)

∫ b

a

(b− s)q−1

[
2‖x1 − x2‖C + Lvmax{|a1|, |b1|}v−1 |x1(s)− x2(s)|

]
ds

+
Lf

Γ(q)

∫ t

a

(t− s)q−1

[
2‖x1 − x2‖C + Lvmax{|a1|, |b1|}v−1 |x1(s)− x2(s)|

]
ds

≤ Lf
Γ(q)

∫ b

a

(b− s)q−1

[
2‖x1 − x2‖C + Lvmax{|a1|, |b1|}v−1‖x1 − x2‖C

]
ds

+
Lf

Γ(q)

∫ t

a

(t− s)q−1

[
2‖x1 − x2‖C + Lvmax{|a1|, |b1|}v−1‖x1 − x2‖C

]
ds

≤ 2(b− a)qLf (Lvmax{|a1|, |b1|}v−1 + 2)

Γ(q + 1)
‖x1 − x2‖C .

So, Bf is a c−Picard operator, with

c =
1

1− 2(b−a)qLf (Lvmax{|a1|,|b1|}v−1+2)
Γ(q+1)

.

This completes the proof. �
In what follows, consider the following operator

Ef : CL([a1, b1], [a1, b1])→ CL([a1, b1], [a1, b1])

where

(Efx)(t) :=


x(t), for t ∈ [a1, a],
w(x|[a1,a], x|[b,b1])(t)

+ 1
Γ(q)

∫ b
a
G(t, s)f(s, x(s), x(xv(s))))ds, for t ∈ [a, b],

x(t), for t ∈ [b, b1].

Theorem 3.2. Under the conditions of Theorem 3.1, the operator Ef :
CL([a1, b1], [a1, b1])→ CL([a1, b1], [a1, b1]) is a weakly Picard operator.

Proof. The operator Ef is a continuous operator but it is not a contraction operator.
Let us take the following notation:

Xϕ,ψ := {x ∈ CL([a1, b1], [a1, b1]) : x|[a1,a] = ϕ, x|[b,b1] = ψ}.
Then we can write

CL([a1, b1], [a1, b1]) =
⋃

ϕ∈CL([a1,a],[a1,b1]);ψ∈CL([a1,a],[a1,b1])

Xϕ,ψ.

We have that Xϕ,ψ ∈ I(Ef ) and Ef |Xϕ,ψ is a Picard operator, because it is the
operator which appears in the proof of Theorem 3.1. By applying Theorem 2.9, we
obtain that Ef is weakly Picard operator. This completes the proof. �

Finally, in general, we have immediately from the proof of Theorem 3.1 and
Schauder fixed point theorem the following existence result.
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Theorem 3.3. Suppose that the conditions (C1)–(C4) are satisfied together with
assumptions (ii)–(iv) of Theorem 3.1. Then the problem (1.1) has a solution in
CL([a1, b1], [a1, b1]).

We do not know about uniqueness. But this is not so surprising, since Bf is
not Lipschitzian in general. So we cannot apply metric fixed point theorems, only
topological one. This can be simply illustrated on the problems

x′(t) = Ax(x2(t)), x(0) = 0, (3.4)

and

x′(t) = Ax( 4
√
x(t)), x(0) = 0, (3.5)

for A > 0. Rewriting (3.4) as x(t) = B1(x)(t) = A
∫ t

0
x(x2(s))ds, and applying the

above procedure to B1, it follows that B1 : CAb1([0, b1], [0, b1])→ CAb1([0, b1], [0, b1]),
Ab1 ≤ 1 0 < b1 ≤ 1 is Ab1(1 + 2Ab21)–Lipschitzian, so its only solution is x(t) = 0
in that space when Ab1(1 + 2Ab21) < 1. On the other hand, rewriting (3.5) as

x(t) = B2(x)(t) = A
∫ t

0
x( 4
√
x(s))ds, it follows that B2 : CAb1([0, b1], [0, b1]) →

CAb1([0, b1], [0, b1]), b1 ≥ 1, Ab1 ≤ 1 satisfies

‖B2(x1)−B2(x2)‖C ≤ Ab1
(
‖x1 − x2‖C +Ab1

4
√
‖x1 − x2‖C

)
,

so it is not Lipschitzian. Hence (3.5) should have a nonzero solution, and it does have
x(t) = 4

A t
2.

4. Data dependence

In this section, we consider the problem (1.1) and suppose the conditions of The-
orem 3.1 are satisfied. Denote by x(·;ϕ,ψ, f) the solution of this problem.

Theorem 4.1. Let ϕi, ψi, fi, i = 1, 2, be as in Theorem 3.1. Furthermore, we suppose
that

(i) there exists η1 > 0, such that

|ϕ1(t)− ϕ2(t)| ≤ η1, t ∈ [a1, a],

and

|ψ1(t)− ψ2(t)| ≤ η1, t ∈ [b, b1];

(ii) there exists η2 > 0 such that

|f1(t, u, w)− f2(t, u, w)| ≤ η2, ∀ t ∈ [a, b], u, w ∈ [a1, b1].

Then

|x(t;ϕ1, ψ1, f1)− x(t;ϕ2, ψ2, f2)| ≤
3η1 + 2(b−a)q

Γ(q+1) η2

1− 2(b−a)qLf (Lvmax{|a1|,|b1|}v−1+2)
Γ(q+1)

,

where Lf = min{Lf1 , Lf2}.
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Proof. Consider the operators Bϕi,ψi,fi , i = 1, 2. From Theorem 3.1 these operators
are contractions. Additionally,

‖Bϕ1,ψ1,f1(x)−Bϕ2,ψ2,f2(x)‖C
≤ |w(ϕ1, ψ1)(t)− w(ϕ2, ψ2)(t)|

+
1

Γ(q)

∫ b

a

G(t, s)|f1(s, x(s), x(xv(s))))− f2(s, x(s), x(xv(s))))|ds

≤ 3η1 +
2(b− a)q

Γ(q + 1)
η2.

Now, the proof follows from Theorem 2.7, with

A := Bϕ1,ψ1,f1 , B := Bϕ2,ψ2,f2 , η := 3η1 +
2(b− a)q

Γ(q + 1)
η2,

and

γ := LA =
2(b− a)qLf (Lvmax{|a1|, |b1|}v−1 + 2)

Γ(q + 1)
,

where we can suppose that Lf = Lf1 = min{Lf1 , Lf2}.

Remark 4.2. Let ϕi, ψi, fi, i ∈ N , and ϕ,ψ, f be as in Theorem 3.1. We suppose
that

ϕi
unif.−→ ϕ, ψi

unif.−→ ψ, fi
unif.−→ f.

Then

x(·;ϕi, ψi, fi)
unif.−→ x(·;ϕ,ψ, f), as i→∞.

Theorem 4.3. Let f1 and f2 be as in Theorem 3.1. Let FEfi be the solution set of

the first equation of the problem (1.1) corresponding to fi, i = 1, 2. Suppose that there
exists η > 0 such that

|f1(t, u1, w1)− f2(t, u2, w2)| ≤ η, ∀ t ∈ [a, b], ui, wi ∈ [a1, b1], i = 1, 2.

Then

H‖·‖C (FEf1 , FEf2 ) ≤ η2(b− a)q

Γ(q + 1)− 2(b− a)qLf (Lvmax{|a1|, |b1|}v−1 + 2)
,

where Lf = max{Lf1 , Lf2} and H‖·‖C denotes the Pompeiu-Hausdorff functional with
respect to ‖ · ‖C on CL([a1, b1], [a1, b1]).

Proof. We will look for those ci, for which in condition of Theorem 3.1 the operators
Efi , i = 1, 2, are ci−weakly Picard operators.

Set

Xϕ,ψ := {x ∈ CL([a1, b1], [a1, b1]) : x|[a1,a] = ϕ, x|[b,b1] = ψ}.
It is clear that Efi |Xϕ,ψ = Bfi . So, from Theorem 2.9 and Theorem 3.1 we have

‖E2
fi(x)− Efi(x)‖C ≤

2(b− a)qLfi(Lvmax{|a1|, |b1|}v−1 + 2)

Γ(q + 1)
‖Efi(x)− x‖C

for all x ∈ CL([a1, b1], [a1, b1]) and i = 1, 2.
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Now, choosing

λi =
2(b− a)qLfi(Lvmax{|a1|, |b1|}v−1 + 2)

Γ(q + 1)
,

we get that Efi are ci−weakly Picard operators, with ci = 1
1−λi , i = 1, 2.

Next, we obtain

‖Ef1(x)− Ef2(x)‖C ≤ η
2(b− a)q

Γ(q + 1)
,

for all x ∈ CL([a1, b1], [a1, b1]).
Applying Theorem 2.13 we have that

H‖·‖C (FEf1 , FEf2 ) ≤ η2(b− a)q

Γ(q + 1)− 2(b− a)qLf (Lvmax{|a1|, |b1|}v−1 + 2)
.

The proof is completed. �

5. Examples

Consider the following problem:
cD

3
2
2
5 ,t
x(t) = µx(x(t)), t ∈ [ 2

5 ,
3
5 ], µ > 0,

x(t) = 1
2 , t ∈ [ 1

5 ,
2
5 ],

x(t) = 1
2 , t ∈ [ 3

5 ,
4
5 ],

(5.1)

where x ∈ CL([ 1
5 ,

4
5 ], [ 1

5 ,
4
5 ]).

Proposition 5.1. Consider the problem (5.1). We suppose that

µ < 3L
√

5π
8 for 0 < L ≤

√
6− 1,

µ < 15
√

5π
8(L+2) for

√
6− 1 ≥ L.

(5.2)

Then the problem (5.1) has in CL([ 1
5 ,

4
5 ], [ 1

5 ,
4
5 ]) a unique solution.

Proof. First of all notice that accordingly to Theorem 3.1 we have v = 1, q = 3
2 ,

a = 2
5 , b = 3

5 , ψ( 3
5 ) = 1

2 , ϕ( 2
5 ) = 1

2 , a1 = 1
5 , b1 = 4

5 . Observe that the Lipschitz
constant for the function f(t, u1, u2) = µu2 is Lf = µ and |f(t, u1, u2)−f(t, w1, w2)| ≤
µ|u2 −w2|, ui, wi ∈ [ 1

5 ,
4
5 ]. So we choose mf = µ

5 and Mf = 4µ
5 . By a common check

in the conditions of Theorem 3.1 we can make sure that

µ ≤ 45
√

5π

32

⇐⇒

 a1 ≤ min(ϕ(a), ψ(b))−max
(

0,
Mf (b−a)q

Γ(q+1)

)
+ min

(
0,

mf (b−a)q

Γ(q+1)

)
,

max(ϕ(a), ψ(b))−min
(

0,
mf (b−a)q

Γ(q+1)

)
+ max

(
0,

Mf (b−a)q

Γ(q+1)

)
≤ b1;

8

3
√

5π
µ < L⇐⇒ |ψ(b)− ϕ(a)|

b
+

(b− a)q−1(1 + q) max{|mf |, |Mf |}
Γ(q + 1)

< L,

and
8

15
√

5π
µ <

1

L+ 2
⇐⇒ 2(b− a)qLf (Lvmax{|a1|, |b1|}v−1 + 2)

Γ(q + 1)
< 1.
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Note
8

15
√

5π
µ <

1

L+ 2
=⇒ µ ≤ 45

√
5π

32
.

Hence we consider

µ < min

{
3L
√

5π

8
,

15
√

5π

8(L+ 2)

}
=

3
√

5π

8
min

{
L,

5

L+ 2

}
.

Note L = min
{
L, 5

L+2

}
for 0 < L ≤

√
6−1, and 5

L+2 = min
{
L, 5

L+2

}
for L ≥

√
6−1.

This gives (5.2) and therefore, by Theorem 3.1 we have the proof. �
Now take the following problems

cD
3
2
2
5 ,t
x(t) = µ1x(x(t)), t ∈ [ 2

5 ,
3
5 ], µ1 > 0,

x(t) = ϕ1, [ 1
5 ,

2
5 ],

x(t) = ψ1, [ 3
5 ,

4
5 ],

(5.3)

and 
cD

3
2
2
5 ,t
x(t) = µ2x(x(t)), t ∈ [ 2

5 ,
3
5 ], µ2 > 0,

x(t) = ϕ2, [ 1
5 ,

2
5 ],

x(t) = ψ2, [ 3
5 ,

4
5 ].

(5.4)

Suppose that we have satisfied the following assumptions
(H1) ϕi ∈ CL([ 1

5 ,
2
5 ], [ 1

5 ,
4
5 ]), ψi ∈ CL([ 3

5 ,
4
5 ], [ 1

5 ,
4
5 ]) such that ϕi(

2
5 ) = 1

2 , ψi(
3
5 ) = 1

2 ,
i = 1, 2;
(H2) we are in the conditions (5.2) of Proposition 5.1 for both of the problems (5.3)
and (5.4).

Let x∗1, be the unique solution of the problem (5.3) and x∗2 be the unique solution
of the problem (5.4). We are looking for an estimation for ‖x∗1 − x∗2‖C .

Then, build upon Theorem 4.1 and Theorem 4.3, by a common substitution one
can make sure that we have

Proposition 5.2. Consider the problems (5.3), (5.4) and suppose the requirements
(H1)–(H2) hold. Additionally,
(i) there exists η1 > 0 such that

|ϕ1(t)− ϕ2(t)| ≤ η1, ∀ t ∈ [
1

5
,

2

5
],

and

|ψ1(t)− ψ2(t)| ≤ η1, ∀ t ∈ [
3

5
,

4

5
].

(ii) there exists η2 > 0 such that

|µ1 − µ2| ≤
5

4
η2.

Then

|x∗1(·;ψ1, ψ1, f1)− x∗2(·;ψ2, ψ2, f2)| ≤ 45
√

5πη1 + 8η2

15
√

5π − 8(L+ 2) min{µ1, µ2}
.
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Further, let FEf1 be the solution set of the first equation of the problem (5.3) and FEf2
be the solution set of the first equation of the problem (5.4). Then,

H‖·‖C (FEf1 , FEf2 ) ≤ 15
√

5πη2

15
√

5π − 8(L+ 2) max{µ1, µ2}
,

where H‖·‖C denotes the Pompeiu-Hausdorff functional with respect to

CL([ 1
5 ,

4
5 ], [ 1

5 ,
4
5 ]).
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