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1. Introduction

Throughout most of this paper, by a linear metric space we mean a topological
linear space X which is metrizable. By Kakutani’s theorem (see [11]) there is an
invariant metric ρ on X. We denote ‖x − y‖ = ρ(x, y). Observe that ‖.‖ is not a
norm, in particular ‖λx‖ 6= |λ|‖x‖.

However we assume that ‖.‖ is monotonous, that is ‖λx‖ 6 ‖x‖ for every x ∈ X
and λ ∈ R with |λ| 6 1.

A topological space X is called to have the fixed point property if for every con-
tinuous map f : X → X, there exists a point x0 ∈ X such that f(x0) = x0.
In 1935 Schauder proved that (see [3])
Theorem 1.1. In a locally convex linear metric space every compact convex set has
the fixed point property.

Schauder conjectured that his theorem holds true for non-locally convex spaces as
well.

In 1977 Roberts constructed the compact convex sets without any extreme points.
Roberts’ example setted a long standing open problem in mathematics and has also
revealed a new class of linear metric spaces, called needle point spaces. Using his
needle point spaces Roberts established a general method for constructing compact
convex sets with no extreme point, see [5, 8, 9]. We call all the compact convex
sets with no extreme points constructed by Roberts’s method of needle point spaces
Roberts spaces. We know that a compact convex set which can be affinely embedded
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in a locally convex linear space has the fixed point property. Roberts in [10] has
proved that
Theorem 1.2. If K is a compact convex set then K is affinely embeddable in a locally
convex linear space iff K is locally convex.

And Roberts spaces are the first known examples of compact convex sets which
are not locally convex. Because of Roberts spaces are not locally convex, every one
thinks that Roberts spaces could yeild a counter example to Schauder’s conjecture.
But N.T. Nhu and L.H.Tri proved that
Theorem 1.3. (see [6]) All Roberts spaces have the fixed point property.

It is not certain that the Cartesian product of fixed point spaces is a fixed point
space. So we will consider the fixed point property of the Cartesian product of Roberts
spaces in this note.

Now we’re going to construct Roberts spaces following Roberts’ method.
Let X be a linear metric space. We say that X is a needle point space if and only

if X is a complete linear metric space and for every a ∈ X\{0}, for every ε > 0 there
exists a finite set A(a, ε) = {a1, a2, . . . , am} satisfying the following conditions

(1) ‖ai‖ < ε for every i = 1, . . . ,m;
(2) For each b ∈ A+(a, ε) there is an α ∈ [0, 1] such that ‖b− αa‖ < ε;
(3) a = 1

m (a1 + a2 + . . . + am),
where A+ = conv(A ∪ {0}).

Some of examples of needle point spaces were given in [5, 6, 9].
Let a0 be a non-zero point of a needle point space X. We choose by induction a

sequence {An} of finite subsets of X where A0 = {a0} with the following properties
(4) ‖a‖ < εn for every a ∈ An;
(5) εn = [m(n− 1)]−12−n, where m(n) = cardAn ;
(6) If An = {an

1 , . . . , an
m(n)} then An+1 defined by the formula:

An+1 =
m(n)⋃
i=1

A(an
i , εn+1),

where A(an
i , εn+1), i = 1, . . . ,m(n), satisfy conditions (1), (2), (3) with a = an

i and
εn+1 = (m(n))−12−n−1.

Denote that Â = conv(A+ ∪ (−A+)). From (6) it follows that
(7) Ân ⊂ Ân+1 for every n ∈ N.

We define

C =
∞⋃

n=1

Ân ⊂ X.

Roberts show in [9] that C is a compact convex subset with no extreme points. We
call C a Roberts space.

2. Main results

In this section we extend the result of N.T.Nhu and L.H.Tri in [6] for the Cartesian
product of Roberts spaces. First, we have the following lemmas



CARTESIAN PRODUCT OF ROBERTS SPACES 269

Lemma 2.1. (Lemma 2 in [6]) Let X be an infinite dimensional needle point space and
let A = {a1, . . . , an} be a finite subset of X and ε > 0. Then for every i = 1, 2, . . . , 2n
there exists bi = b(ai) ∈ X, where an+i = −ai for i = 1, 2, . . . , n, with the following
properties:

(i) ‖ai − bi‖ < (2n)−1ε for every i = 1, 2, . . . , 2n;
(ii) B = {b1, b2, . . . , b2n} is a linearly independent subset of X;
(iii) There exists a continuous map p : B+ → Â such that ‖x− p(x)‖ 6 ε for every

x ∈ B+;
(iv) ‖x−B+‖ 6 ε for every x ∈ Â,

where ‖x−B+‖ = inf{‖x− y‖ | y ∈ B+}.

Lemma 2.2. (Corollary 1 in [6]) Let An = {an
1 , . . . , an

m(n)},m(n) = cardAn, see (6).
Then there exists a sequence {Bn} of finite subsets of X with the following properties:

(i) Bn = {bn
1 , . . . , bn

2m(n)} where bn
i = b(an

i ), i = 1, . . . , 2m(n) and an
m(n)+i = −an

i

for i = 1, . . . ,m(n);
(ii) ‖an

i − bn
i ‖ 6 (2m(n− 1)2m(n))−12−n−1 for every i = 1, . . . , 2m(n);

(iii) Bn is a linearly independent finite subset of X;

(iv) Bn+1 can be written in the form Bn+1 =
2m(n)⋃
i=1

Bn+1(bn
i ), where bn

i = b(an
i ),

and
a) Bn+1(bn

i ) = {b ∈ Bn+1 | b = b(a) for some a ∈ A(an
i , εn+1)};

b) Bn+1(bn
i ) ∩Bn+1(bn

j ) = ∅ for every i 6= j;
(v) For every n ∈ N there exists a continuous map pn : B+

n → Ân such that
‖pn(x)− x‖ < 2−n−1 for every x ∈ B+

n ;
(vi) ‖x−B+

n ‖ < 2−n−1 for every x ∈ Ân.

Lemma 2.3. (Corollary 2 in [6]) For every n ∈ N, k ∈ N there exists a continuous
map rk,n : B+

n+k → B+
n such that ‖x− rk,n(x)‖ < 2−n+5 for every x ∈ B+

n+k.

Lemma 2.4. (Lemma 4 in [6]) Let P be a finite dimensional compact convex polyhe-
dron in X and let f : P → C be a continuous map. Then for every ε > 0 there exist
n ∈ N and an affine map g : P → B+

n such that ‖f(x)− g(x)‖ < ε for every x ∈ P .

Lemma 2.5. Let K be a compact convex subset of X. K1,K2, . . . ,Kn are finite
dimensional compact convex subsets of X such that Kn ⊂ Kn+1 for every n ∈ N and
∞⋃

n=1
Kn = K. Suppose that for each ε > 0 there exists n ∈ N satisfying the condition:

for every p ∈ N there exists a continuous map r : Kn+p → Kn such that ‖x−r(x)‖ < ε
for every x ∈ Kn+p. Then K has the fixed point property.
Proof. Suppose the assertion of the the lemma is false. Then there exists a continuous
map f : K → K such that f(x) 6= x for every x ∈ K. Because of the compactness of
K there exists ε0 > 0 such that

‖f(x)− x‖ > ε0 for every x ∈ K(∗)
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Choose ε = ε0 > 0 then there exists n ∈ N sastifying the condition: for every p ∈ N
there exist a continuous map sn,p : Kn+p → Kn such that ‖sn,p(x) − x‖ < ε0

4 for
every x ∈ Kn+p.

As the map f |Kn
: Kn → K is continuous and Kn is a finite dimensional compact

convex subset in X, there exist p0 ∈ N and a continuous map g : Kn → Kn+p0 such
that ‖f(x)− g(x)‖ < ε0

4 .
Consider the continuous map sn,p◦g : Kn → Kn. Because Kn is a finite dimensional

compact convex subset in X, there exists x0 ∈ Kn such that sn,p0 ◦ g(x0) = x0.
Since x0 ∈ Kn, g(x0) ∈ Kn+p0 we have ‖f(x0)− g(x0)‖ < ε0

4 and ‖sn,p0 ◦ g(x0)−
g(x0)‖ < ε0

4 . Therefore ‖f(x0)− x0‖ < ε0
2 . This contradicts (∗). So K has the fixed

point property. �

Lemma 2.6. For every n ∈ N, p ∈ N there exists a continuous map hp,n : Ân+p → Ân

such that ‖x− hp,n(x)‖ < 2−n+7 for every x ∈ Ân+p.
Proof. For every n, p ∈ N, by Lemma 2.4 there exist q ∈ N and a continuous map
g : Ân+p → B+

n+q such that ‖x− g(x)‖ < 2−n+5 for every x ∈ Ân+p.
For every n ∈ N, by Lemma 2.3 there exist a continuous map rq,n : B+

n+q → B+
n

such that ‖x− rq,n(x)‖ < 2−n+5 for every x ∈ B+
n+q.

For every n ∈ N, by Lemma 2.2 there exist a continuous map pn : B+
n → Ân such

that ‖pn(x)− x‖ < 2−n−1 for every x ∈ B+
n .

For every n ∈ N, denote that hp,n = pn ◦ rq,n ◦ g : Ân+p → Ân. We have

‖hp,n(x)− x‖ = ‖pn(rq,n(g(x)))− x‖ 6 ‖pn(rq,n(g(x)))− rq,n(g(x))‖

+‖rq,n(g(x))− g(x)‖+ ‖g(x)− x‖ < 2−n+5 + 2−n+5 + 2−n−1 < 2−n+7

for every x ∈ Ân+p. �

Theorem 2.7. Let X, X ′ be needle point spaces. C ⊂ X, C ′ ⊂ X ′ are Roberts spaces.
Then C × C ′ has the fixed point property.
Proof. Suppose {An} is a sequence of finite subset of X constructed by Roberts’

method such that C =
∞⋃

n=1
Ân and {A′

n} is a sequence of finite subset of X constructed

by Roberts’ method such that C ′ =
∞⋃

n=1
Â′

n.

It’s easy to verify that C × C ′ =
∞⋃

n=1
(Ân × Â′

n).

By lemma 2.6, let hp,n : Ân+p → Ân, h′p,n : Â′
n+p → Â′

n be continuous maps such
that

‖hp,n(x)− x‖ < 2−n+7 for every x ∈ Ân+p and

‖h′p,n(x)− x‖ < 2−n+7 for every x ∈ Â′
n+p.

Let Hp,n : Ân+p × Â′
n+p → Ân × Â′

n be a map defined by

Hp,n(x, y) = (hp,n(x), h′p,n(y)) for every (x, y) ∈ Ân+p × Â′
n+p.
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We have

‖Hp,n(x, y)− (x, y)‖ = ‖hp,n(x)− x‖+ ‖h′p,n(y)− y‖ < 2−n+7 + 2−n+7 = 2−n+8

for every (x, y) ∈ Ân+p × Â′
n+p.

By lemma 2.5 we have C × C ′ has the fixed point property. �

Similarly, we have
Theorem 2.8. Let X1, X2, . . . , Xn be needle point spaces. C1 ⊂ X1, C

′
2 ⊂ X2, . . . , Xn

are Roberts spaces. Then C1 × C2 × . . .× Cn has the fixed point property.
Theorem 2.9. Suppose that {Cα}α∈Λ be a family of Roberts spaces. Then

∏
α∈Λ

Cα

has the fixed point property.
Proof. Denote that C =

∏
α∈Λ

Cα

For every α ∈ Λ, let Pα : C → Cα be a projection from C to Cα. By theorem of
Tykhonov about the compactness of the product, C is a compact set.

Suppose that f : C → C is a continuous map, ℘ is a family of all the finite nonempty
subset of Λ. For each P ∈ ℘, set FP = {x ∈ C|Pα(x) = Pα(f(x)) for each α ∈ P}.
We have FP is a closed subset of C.

For every P ∈ ℘, set P = {α1, α2, . . . , αn}. For each α ∈ Λ\P choose x0
α ∈ Cα.

We define fP : Cα1 × Cα2 × . . .× Cαn → Cα1 × Cα2 × . . .× Cαn by

fP (xα1 , xα2 , . . . , xαn
) = (Pα1(f(x)), Pα2(f(x)), . . . , Pαn

(f(x)))

where x = (xα)α∈Λ,

xα =

{
xαi α = αi for every i ∈ {1, 2, . . . , n}
x0

α for every α ∈ Λ\P

By Theorem 2.8, let (x0
α1

, . . . , x0
αn

) be a fixed point of fP . We have (x0
α)α∈Λ ∈ FP

and FP 6= ∅.
For every m ∈ N, for every P1, P2, . . . , Pm ∈ ℘, F m⋃

i=1
Pi

6= ∅ and F m⋃
i=1

Pi

⊂
m⋂

i=1

FPi .

Because of the compactness of C,
⋂

P∈℘

FP 6= ∅. Choose x1 = (x1
α)α∈Λ ∈

⋂
P∈℘

FP . For

every α ∈ Λ, x1 ∈ F{α}. So Pα(x1) = Pα(f(x1)) for every α ∈ Λ. It implies that
f(x1) = x1. �
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