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Abstract. The aim of this paper is to present a general overview concerning the Rolewicz-Zabzczyk

type techniques in the stability theory of dynamical systems. We discuss the main methods based on

trajectories that may be used in order to characterize the uniform exponential stability of variational
discrete systems and their applications to the case of skew-product flows. Beside our techniques

used in the past decade on this topic, we also point out several new issues and analyze both their
connections with previous results as well as some new characterizations for uniform exponential

stability. Finally, motivated by the potential extension of the framework to dichotomy, we propose

several open problems in the case of the exponential instability.
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1. Introduction

We consider the difference equation

xk+1 = Akxk, k ∈ N.

The equilibrium solutions of this equation are defined by the common fixed points of
the operators Ak (see [30], [31]). The stability of these solutions is a topic of large
interest and was intensively studied in the passed decades. An important problem in
this framework is the study of the exponential stability of difference equations and
therefore our paper is devoted to the analysis of a class of techniques which led to
several interesting characterizations for this property.

Some of the most popular techniques in the stability theory of difference and dif-
ferential equations are those introduced by Przylusky and Rolewicz in the eighties
(see [24]–[29]). Mainly, the idea was to express an asymptotic property of a system in
terms of the convergence of certain associated series or integrals of scalar trajectories.
A remarkable result for stability of systems of difference equations has been obtained
in [24], where Przyluski and Rolewicz proved that a system of difference equations

xk+1 = Akxk, k ≥ k0
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on a Banach space X is uniformly exponentially stable if and only if there is p ∈ [1,∞)
such that for every x ∈ X

sup
k≥k0

∞∑
n=k

||(
n−1∏
i=k

Ai)x||p < ∞.

This result may be regarded as the discrete-time version of the famous stability theo-
rem of Datko (see [7], Theorem 1 and Remark 3). These methods have a history that
goes back to the work of Zabzcyk, since the autonomous case was treated for the first
time by Zabczyk in [46] (see Theorem 5.1):

Theorem 1.1. (Zabczyk) Let X be a Banach space and let T ∈ L(X). If N :
[0,∞) → [0,∞) is a continuous strictly increasing convex function with N(0) = 0
such that for every x ∈ X there is α(x) > 0 such that

∞∑
n=0

N(α(x)||Tnx||) < ∞

then the spectral radius r(T ) < 1.

The author presented in [46] a reasoning based on the Banach-Steinhaus Theorem
and on the construction of an auxiliary sequence space associated with the function
N . This result led to the formulation of an inedit characterization for the uniform
exponential stability of semigroups given by:

Theorem 1.2. (Zabczyk) A C0-semigroup {T (t)}t≥0 on a Banach space X is uni-
formly exponentially stable if and only if there is a continuous strictly increasing
convex function N : [0,∞) → [0,∞) with N(0) = 0 such that for every x ∈ X there
is α(x) > 0 such that

∞∑
n=0

N(α(x)||T (n)x||) < ∞.

At that time it was clear that an asymptotic property, like stability, may be deduced
from the convergence of a series of nonlinear trajectories, but the development of these
techniques was only at the very beginning. A remarkable step was done by Rolewicz
in [28], where the methods were diversified and the condition obtained by the author
was one of the most general in the topic:

Theorem 1.3. (Rolewicz) Let N : R∗
+×R+ → R+ be a function such that for every

t > 0, s 7→ N(t, s) is continuous and non-decreasing with N(t, 0) = 0, N(t, s) > 0,
for all s > 0 and for every s ≥ 0, t 7→ N(t, s) is non-decreasing. If U = {U(t, s)}t≥s≥0

is a strongly continuous evolution family on the Banach space X such that for every
x ∈ X, there is α(x) > 0 with

sup
s≥0

∫ ∞

s

N(α(x), ||U(t, s)x||) dt < ∞ (1.1)

then U is uniformly exponentially stable.
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The approach proposed by Rolewicz was completely distinct compared with the
previous ones, being based on category arguments. The author noted that if (1.1)
holds then the Banach space X, which is in particular a set of the second category,
can be decomposed in a countable reunion of some auxiliary sets. Not only the
proof but also the conclusions were starting points for the study of new classes of
evolutionary processes as well as of new asymptotic properties, extending considerably
the applicability area (see [12]–[16], [19]–[21], [29], [32], [34], [35], [37], [39], [41], [45],
[47]). The Rolewicz type methods extended the framework developed by Datko and
Pazy for linear differential equations (see [6], [7], [22], [23] and the references therein).
It should be noted that the Datko-Pazy approach was generalized to the case of
nonlinear operators by Ichikawa in [9], using a direct construction. We also refer here
the work of Reghiş, where several interesting applications were pointed out (see [26],
[27]).

A notable intervention on this subject is that of Neerven (see [19]) where he ob-
served that the p-integrability of some associated trajectories of a semigroup, which
became so familiar in the Datko-Pazy approach, can be generalized to a more advanced
level, by replacing the classical Lp-spaces with arbitrary Banach function spaces:

Theorem 1.4. (Neerven) A C0-semigroup {T (t)}t≥0 is uniformly exponentially stable
if and only if there is a Banach function space B with lim

t→∞
FB(t) = ∞ such that for

every x ∈ X, the mapping t 7→ ||T (t)x|| lies in B.

The next chronological notable intervention was due to Neerven as well. More
precisely, in [21] the author managed to connect the property of uniform exponential
stability of a semigroup with a topological property of an associated subset defined
by means of a functional:

Theorem 1.5. (Neerven) Let {T (t)}t≥0 be a C0-semigroup on a Banach space X and
let J : C+[0,∞) → [0,∞] be a lower semi-continuous and nondecreasing functional
on C+[0,∞) (the positive cone of C[0,∞)), satisfying J(cχR+) = ∞, for all c > 0.
If T is not uniformly exponentially stable, then the set {x ∈ X : J(||T (·)x||) = ∞} is
residual in X.

The increasing interest in this subject directed the attention on the variational
case. First attempts in characterizing the stability of skew-products flows in terms
of the membership of some associated orbits to certain Banach sequence spaces and
Banach function spaces, respectively, were done in [12], where we proposed a unified
treatment for these problems both in discrete and continuous time for the general
case of dynamical systems modeled by skew-product flows. After that, the techniques
were gradually improved and extended: from stability to instability (see [14], [15]),
from Datko-type methods to Zabczyk and Przyluski-Rolewicz type characterizations
(see [11], [13], [16], [32], [34]– [37]), from stability investigations to extensive studies
on dichotomy or trichotomy (see [39], [41]).

In this paper we bring together conclusions on stability issues published over the
past decade. We point out those methods which are specific for the variational case
and deduce several interesting new conclusions that facilitate the future development
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of the subject to the more general setting of dichotomy or trichotomy. The sur-
vey will present the most useful technical requirements in this topic, proposing an
overview in the framework of Banach sequence spaces and their applications in the
asymptotic theory of variational equations. Beside recalling already known results
and techniques, our aim is to present a step-by-step construction and to draw out
those ideas that lead to results with the widest range of application. The central
ideas will be pointed out in three main stages: variational difference equations with
arbitrary coefficients, variational difference equations with bounded coefficients and
skew-product flows, with detailed comments on each case and pointing out several
new interesting situations. Finally we will present open problems and motivate their
connections with previous results in this topic.

2. Banach sequence spaces

The theory of sequence spaces was intensively used in our papers in the last few
years in order to investigate the asymptotic properties of dynamical systems (see [33],
[35], [38], [40], [42] and the references therein). In this section, for the sake of clarity,
we present several basic definitions and properties of Banach sequences spaces. We
will recall here only those properties that are indeed necessary for the presentation
that follows in the next sections and we briefly discuss only the proofs which bring into
the attention some technical aspects that make the difference between the methods
used in previous works and those on which we will insist in this paper. For more
examples we refer to [2] and[18].

Let Z denote the set of the integers, let N denote the set of all non negative
integers, let R denote the set of all real numbers and let S(N, R) be the linear space
of all sequences s : N → R. We denote N∗ = N \ {0}. For every set A ⊂ N let χA

denote the characteristic function of the set A.

For every s ∈ S(N, R) we define the sequence

s+ : N → R, s+(n) =
{

0, n = 0
s(n− 1), n ∈ N∗.

Definition 2.1. A linear space B ⊂ S(N, R) is called a normed sequence space if there
is a norm | · |B : B → R+ with the property that if s, γ ∈ S(N, R), |s(j)| ≤ |γ(j)|, for
all j ∈ N and γ ∈ B, then s ∈ B and |s|B ≤ |γ|B .

If, moreover, (B, | · |B) is complete, then B is called Banach sequence space.

Definition 2.2. A Banach sequence space (B, | · |B) is said to be invariant under
translations if for every s ∈ B, s+ ∈ B and |s+|B = |s|B .

Notation We denote by Q(N) the class of all Banach sequence spaces B which are
invariant under translations and have the following properties:
(i) χ{0} ∈ B;
(ii) if s ∈ S(N, R) and there is M > 0 such that |s · χ{0,...,n}|B ≤ M , for all n ∈ N,
then s ∈ B and |s|B ≤ M .
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Example 2.1. (i) For every p ∈ [1,∞), `p(N, R) with ||s||p = (
∑∞

k=0 ||s(k)||p)1/p is
a Banach sequence space which belongs to Q(N);

(ii) `∞(N, R) with ||s||∞ = supn∈N |s(n)| is also a Banach sequence space in the class
Q(N).

(iii) c0(N, R) := {s ∈ S(N, R) : lim
n→∞

s(n) = 0} with respect to the norm || · ||∞ is a

Banach sequence space which belongs to class Q(N) as well. �

Example 2.2. (Orlicz sequence spaces) Let ϕ : R+ → [0,∞] be a nondecreasing
left continuous function which is not identically 0 or ∞ on (0,∞). We consider the
associated Young function:

Yϕ : R+ → [0,∞], Yϕ(t) :=
∫ t

0

ϕ(s) ds.

Then Yϕ is a nondecreasing convex function. For every s ∈ S(N, R), let Mϕ(s) :=∑∞
k=0 Yϕ(|s(k)|). Then `ϕ(N, R) := {s ∈ S(N, R) : ∃ c > 0 such that Mϕ(cs) < ∞}

is a Banach space with respect to the norm |s|ϕ := inf{c > 0 : Mϕ(s/c) ≤ 1}. The
space `ϕ(N, R) is called the Orlicz sequence space associated to ϕ. �

Lemma 2.1. If `ϕ(N, R) is an Orlicz sequence space, then `ϕ(N, R) ∈ Q(N).

Proof. Let s ∈ S(N, R). We observe that

Mϕ(s/c) = Mϕ(s+/c), ∀c > 0,

which yields that `ϕ(N, R) is invariant under translations. Since ϕ is not indentically
0 or ∞ on (0,∞) there exists δ > 0 with Yϕ(δ) < ∞. Then, taking into account that
Mϕ(δχ{0}) = Yϕ(δ) we deduce that χ{0} ∈ `ϕ(N, R).

Let s ∈ S(N, R) and let M > 0 be such that

|s · χ{0,...,n}|ϕ ≤ M, ∀n ∈ N. (2.1)

Let ε > 0. From relation (2.1) it follows that

Mϕ

(
s · χ{0,...,n}

M + ε

)
≤ 1, ∀n ∈ N

which means that
n∑

k=0

Yϕ

(
|s(k)|
M + ε

)
≤ 1, ∀n ∈ N. (2.2)

From relation (2.2) we deduce that
∞∑

k=0

Yϕ

(
|s(k)|
M + ε

)
≤ 1.

This implies that s ∈ `ϕ(N, R) and |s|ϕ ≤ M + ε. Since ε > 0 was arbitrary it follows
that |s|ϕ ≤ M .

In conclusion, `ϕ(N, R) belongs to the class Q(N). �
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Remark 2.1. For every p ∈ [1,∞], the space `p(N, R) is a particular Orlicz sequence
space (see e.g. [33]).

Remark 2.2. If B ∈ Q(N), then the following properties hold:
(i) for every A ⊂ N, χA ∈ B;
(ii) `1(N, R) ⊂ B ⊂ `∞(N, R) (see e.g. [33], Lemma 2.1).

Definition 2.3. If (B, | · |B) is a Banach sequence space with B ∈ Q(N) then FB :
N∗ → R+, FB(n) = |χ{0,...,n−1}|B is called the fundamental function of B.

Notation We denote by V(N) the class of all Banach sequence spaces B ∈ Q(N) with
the property that supn∈N FB(n) = ∞.

Lemma 2.2. If B ∈ Q(N), then B ∈ Q(N) \ V(N) if and only if c0(N, R) ⊂ B.

Proof. See Lemma 2.8 in [40]. �

Remark 2.3. According to Remark 2.2 and Lemma 2.2 we deduce that B ∈ Q(N) \
V(N) if and only if c0(N, R) ⊂ B ⊂ `∞(N, R).

A technical property of the class V(N) is the following (see also [40]):

Lemma 2.3. Let `ϕ(N, R) be an Orlicz space. Then either `ϕ(N, R) ∈ V(N) or
`ϕ(N, R) = `∞(N, R).

Proof. If `ϕ(N, R) 6∈ V(N) then aϕ := supn∈N F`ϕ(n) < ∞. Since (n + 1)Yϕ(1/aϕ) =
Mϕ(χ{0,...,n}/aϕ) ≤ 1, for all n ∈ N, we deduce that Yϕ(1/aϕ) = 0.

Let s ∈ `∞(N, R) and let s̃ := s/[aϕ(1+ ||s||∞)]. Since |s̃(k)| < 1/aϕ, it follows that
Yϕ(|s̃(k)|) = 0, for every k ∈ N. Then Mϕ(s̃) = 0, so s̃ ∈ `ϕ(N, R) which implies that
s ∈ `ϕ(N, R). Hence, by applying Remark 2.2 (ii) we obtain that `ϕ(N, R) = `∞(N, R),
which completes the proof. �

Remark 2.4. If ϕ : R+ → R+ is a left-continuous nondecreasing function with
ϕ(t) > 0, for all t > 0, then, from Lemma 2.3 it follows that `ϕ(N, R) belongs to the
class V(N).

3. Stability of variational difference equations

Let X be a real or complex Banach space and let Id denote the identity operator
on X. The norm on X and on L(X) - the Banach algebra of all bounded linear
operators on X will be denoted by || · ||. For every x ∈ X and every r > 0 let
D(x, r) := {y ∈ X : ||y − x|| ≤ r}.

Let (Θ, d) be a metric space, let J ∈ {N, Z} and let σ : Θ × J → Θ be a discrete
flow on Θ, i.e. σ(θ, 0) = θ and σ(θ, m + n) = σ(σ(θ, m), n), for all (θ, m, n) ∈ Θ× J2.

Let {A(θ)}θ∈Θ ⊂ L(X). We consider the variational discrete dynamical system

(A) x(θ)(n + 1) = A(σ(θ, n))x(θ)(n), ∀(θ, n) ∈ Θ× N.

The discrete cocycle associated with the system (A) is Φ : Θ× N → L(X) where

Φ(θ, n) =
{

A(σ(θ, n− 1)) . . . A(θ) , n ∈ N∗
Id , n = 0 , ∀(θ, n) ∈ Θ× N.
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Remark 3.1. The discrete cocycle associated with the system (A) has the property
that Φ(θ, m + n) = Φ(σ(θ, m), n)Φ(θ, m), for all (θ, m, n) ∈ Θ× N2.

Example 3.1. Let Θ ∈ {N, Z}, J = N and let σ(θ, n) = θ + n be the translation
flow. Then

Φ(θ, n) =
{

A(θ + n− 1) . . . A(θ) , n ∈ N∗
Id , n = 0 , ∀(θ, n) ∈ Θ× N,

which shows that there exists a discrete evolution family {U(m,n)}m≥n,m,n∈Θ such
that

Φ(θ, n) = U(θ + n, θ), ∀(θ, n) ∈ Θ× N.

Moreover, it follows that difference equations (see [1], [8]) are particular cases of
variational discrete dynamical systems. �

Example 3.2. Let X be a Banach space and let L > 0. Let

Θ := {T = {Tn}n∈N ⊂ L(X) : sup
n∈N

||Tn|| ≤ L}

endowed with the metric

d(T, S) =
∞∑

n=0

1
2n

·
sup
k≤n

||Tk − Sk||

1 + sup
k≤n

||Tk − Sk||
.

We define

σ : Θ× N → Θ, σ(T,m0) := {Tn+m0}n∈N, ∀T = {Tn}n∈N,∀m0 ∈ N

and it is easy to see that σ is a discrete flow. Moreover

Φ(T, n0) :=
{

Tn0−1 . . . T1T0, n0 ∈ N∗
Id, n0 = 0 , ∀T = {Tn}n∈N

is a discrete cocycle over the flow σ. �

Definition 3.1. The system (A) is said to be uniformly exponentially stable if there
are K, ν > 0 such that

||Φ(θ, n)|| ≤ Ke−νn, ∀(θ, n) ∈ Θ× N.

For every (x, θ) ∈ X ×Θ we consider the trajectory

sx,θ : N → R+, sx,θ(n) = ||Φ(θ, n)x||.

In what follows we shall see that the class of Banach function spaces V(N) introduced
in the previous section has a significant role in the characterization of the uniform
exponential stability of variational difference equations in terms of the associated
trajectories.

Theorem 3.1. Let B ∈ V(N). Then the system (A) is uniformly exponentially stable
if and only if there exist x0 ∈ X and L, r > 0 such that

sup
θ∈Θ

|sx,θ|B ≤ L, ∀x ∈ D(x0, r). (3.1)
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Proof. Necessity. Let K, ν > 0 be two constants given by Definition 3.1. We consider
the sequence

eν : N → R+, eν(n) = e−νn

and obviously eν ∈ `1(N, R). From Remark 2.2 (ii) it follows that eν ∈ B.

Let x0 = 0 and let r > 0. Then

||sx,θ(n)|| ≤ Keν(n)||x|| ≤ Kreν(n), ∀n ∈ N,∀x ∈ D(0, r). (3.2)

From (3.2) it follows that sx,θ ∈ B and

|sx,θ|B ≤ Kr|eν |B , ∀x ∈ D(0, r)

which completes the proof.

Sufficiency. Let q = |χ{0}|B . Let x0 ∈ X and L, r > 0 be such that relation (3.1)
holds.

Let θ ∈ Θ and let (n, x) ∈ N×D(x0, r). From

χ{n}(j)||Φ(θ, n)x|| ≤ sx,θ(j), ∀j ∈ N

we have that
q ||Φ(θ, n)x|| ≤ |sx,θ|B ≤ L.

This shows that

||Φ(θ, n)x|| ≤ L

q
, ∀n ∈ N,∀x ∈ D(x0, r),∀θ ∈ Θ. (3.3)

Let θ ∈ Θ and let x ∈ X \ {0}. Then using (3.3) we successively deduce that

||Φ(θ, n)
rx

||x||
|| ≤ ||Φ(θ, n)(x0 +

rx

||x||
)||+ ||Φ(θ, n)x0|| ≤

2L

q
.

This implies that

||Φ(θ, n)x|| ≤ 2L

qr
||x||, ∀x ∈ X,∀n ∈ N,∀θ ∈ Θ. (3.4)

Setting M = (2L)/(qr) from (3.4) it follows that

||Φ(θ, n)|| ≤ M, ∀(θ, n) ∈ Θ× N. (3.5)

Since B ∈ V(N) there is p ∈ N∗ such that

FB(p + 1) ≥ 2MLe

r
. (3.6)

Let θ ∈ Θ and let x ∈ D(x0, r). Taking into account that

||Φ(θ, p)x|| ≤ M ||Φ(θ, n)x||, ∀n ∈ {0, . . . , p}

we deduce that

χ{0,...,p}(n)||Φ(θ, p)x|| ≤ Msx,θ(n), ∀n ∈ N.

This implies that
FB(p + 1) ||Φ(θ, p)x|| ≤ ML. (3.7)
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From (3.6) and (3.7) it follows that

||Φ(θ, p)x|| ≤ r

2e
, ∀x ∈ D(x0, r),∀θ ∈ Θ. (3.8)

Let θ ∈ Θ and let x ∈ X \ {0}. Using relation (3.8) we successively have that

||Φ(θ, p)
rx

||x||
|| ≤ ||Φ(θ, p)(x0 +

rx

||x||
)||+ ||Φ(θ, p)x0|| ≤

r

e

which shows that
||Φ(θ, p)x|| ≤ 1

e
||x||, ∀(x, θ) ∈ X ×Θ.

This implies that

||Φ(θ, p)|| ≤ 1
e
, ∀θ ∈ Θ. (3.9)

Let ν = 1/p and K = Me. Let θ ∈ Θ and let n ∈ N. Then there are k ∈ N and
j ∈ {0, . . . , p−1} such that n = kp+ j. Using relations (3.5) and (3.9) we obtain that

||Φ(θ, n)|| ≤ M ||Φ(θ, kp)|| ≤ Me−k ≤ Ke−νn.

So, the system (A) is uniformly exponentially stable. �

Remark 3.2. The above result shows that in the stability theory of variational dis-
crete systems it is sufficient to analyze the behavior of the trajectories corresponding
to vectors from a closed disk.

Next, we point out an inedit property of the Banach sequence spaces in the general
class Q(N) with respect to the trajectories of a discrete dynamical system.

Proposition 3.1. If B ∈ Q(N), then for every r > 0 the set

Ar = {x ∈ X : sup
θ∈Θ

|sx,θ|B ≤ r}

is closed.

Proof. Let r > 0. If Ar 6= ∅, then for every θ ∈ Θ and every h ∈ N we consider the
set

F θ,h
r = {x ∈ X : |sx,θ · χ{0,...,h}|B ≤ r}.

Since B ∈ Q(N) we deduce that

Ar =
⋂
θ∈Θ

⋂
h∈N

F θ,h
r . (3.10)

Let (θ, h) ∈ Θ× N. From Ar 6= ∅ and (3.10) we have that F θ,h
r 6= ∅. Let x ∈ F θ,h

r .
Then there is a sequence (xn) ⊂ F θ,h

r with xn → x as n →∞.

Let Mθ,h := max{||Φ(θ, j)|| : j ∈ {0, . . . , h}}. From

||Φ(θ, j)x|| ≤ ||Φ(θ, j)xn||+ Mθ,h||x− xn||, ∀j ∈ {0, . . . , h},∀n ∈ N
we deduce that

sx,θ(j)χ{0,...,h}(j) ≤ sxn,θ(j)χ{0,...,h}(j)+
+Mθ,h||x− xn||χ{0,...,h}(j), ∀j ∈ N,∀n ∈ N. (3.11)



214 ADINA LUMINIŢA SASU, MIHAIL MEGAN AND BOGDAN SASU

Relation (3.11) implies

|sx,θχ{0,...,h}|B ≤ |sxn,θχ{0,...,h}|B + Mθ,hFB(h + 1)||x− xn||, ∀n ∈ N. (3.12)

For n → ∞ in (3.12) it follows that |sx,θχ{0,...,h}|B ≤ r, so x ∈ F θ,h
r . This shows

that F θ,h
r is closed, for all (θ, h) ∈ Θ × N. Then, from relation (3.10) we obtain the

conclusion. �

Remark 3.3. It is interesting to point out that the above proposition may be proved
for any family {Φ(θ, n)}θ∈Θ,n∈N of bounded linear operators. In the proof, we didn’t
use any other property of the cocycle, excepting the fact that each Φ(θ, n) is a bounded
linear operator.

As a consequence of the above property we deduce the following main result:

Theorem 3.2. Let B ∈ V(N). Then the system (A) is uniformly exponentially stable
if and only if the set

S = {x ∈ X : sup
θ∈Θ

|sx,θ|B < ∞}

is of the second category.

Proof. Necessity. If the system (A) is uniformly exponentially stable, then from
Theorem 3.1 we have that there are x0 ∈ X and r > 0 such that D(x0, r) ⊂ S. This
implies that the set S is of the second category.

Sufficiency. For every n ∈ N∗ we consider the set

An = {x ∈ X : sup
θ∈Θ

|sx,θ|B ≤ n}

and we have that

S =
∞⋃

n=1

An. (3.13)

From Proposition 3.1 we obtain that An is closed, for all n ∈ N∗. Since S is a set
of the second category, from relation (3.13) it follows that there is h ∈ N∗ such that
the interior of the set Ah is not empty, so there are x0 ∈ X and r > 0 such that
D(x0, r) ⊂ Ah. Then, we have that

sup
θ∈Θ

|sx,θ|B ≤ h, ∀x ∈ D(x0, r). (3.14)

From relation (3.14), by applying Theorem 3.1 we deduce that (A) is uniformly ex-
ponentially stable. �

Remark 3.4. The result given by the above theorem was obtained for the first time
in [35] (see Theorem 2.1 in [35]).

Notation We denote by F the set of all nondecreasing functions N : R+ → R+ with
N(0) = 0 and N(t) > 0, for all t > 0.
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Theorem 3.3. The system (A) is uniformly exponentially stable if and only if there
are an unbounded function N ∈ F, x0 ∈ X and L, r > 0 such that

sup
θ∈Θ

∞∑
n=0

N(||Φ(θ, n)x||) ≤ L, ∀x ∈ D(x0, r).

Proof. Necessity. This is immediate for N(t) = t, for all t ≥ 0, x0 = 0 and r > 0.

Sufficiency. Let N ∈ F with lim
t→∞

N(t) = ∞, x0 ∈ X and L, r > 0 be such that

sup
θ∈Θ

∞∑
n=0

N(||Φ(θ, n)x||) ≤ L, ∀x ∈ D(x0, r). (3.15)

Since N is unbounded there is q > 0 such that N(q) > L. Then from (3.15) we deduce
that

||Φ(θ, n)x|| ≤ q, ∀x ∈ D(x0, r), ∀(θ, n) ∈ Θ× N. (3.16)
Let (θ, n) ∈ Θ× N and let x ∈ X \ {0}. Then, using (3.16) we have that

||Φ(θ, n)
rx

||x||
|| ≤ ||Φ(θ, n)(x0 +

rx

||x||
)||+ ||Φ(θ, n)x0|| ≤ 2q.

This shows that
||Φ(θ, n)|| ≤ 2q

r
, ∀(θ, n) ∈ Θ× N. (3.17)

We consider the function

ϕ : R+ → R+, ϕ(t) =

{
0, t = 0

lim
s↗t

N(s), t > 0

and we have that ϕ ∈ F and ϕ is also left-continuous. Since N is nondecreasing we
have that ϕ(t) ≤ N(t), for all t ≥ 0. This implies that

sup
θ∈Θ

∞∑
n=0

ϕ(||Φ(θ, n)x||) ≤ L, ∀x ∈ D(x0, r). (3.18)

Let `ϕ(N, R) be the Orlicz space associated with ϕ and let Yϕ be the corresponding
Young function. For every (x, θ) ∈ X ×Θ, we consider the sequence

sx,θ : N → R+, sx,θ(n) = ||Φ(θ, n)x||.
Let K := max{1, (2qL/r)(||x0|| + r)}. Then, for every x ∈ D(x0, r) and θ ∈ Θ we
have that

Yϕ(
1
K

sx,θ(n)) ≤ 1
K

||Φ(θ, n)x||ϕ(
1
K

sx,θ(n)) ≤

≤ 1
L

ϕ(||Φ(θ, n)x||), ∀n ∈ N. (3.19)

From relations (3.18) and (3.19) it follows that

Mϕ(
1
K

sx,θ) ≤
1
L

∞∑
n=0

ϕ(||Φ(θ, n)x||) ≤ 1. (3.20)

From (3.20) we deduce that sx,θ ∈ `ϕ(N, R) and

|sx,θ|ϕ ≤ K, ∀θ ∈ Θ,∀x ∈ D(x0, r)
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which means that
sup
θ∈Θ

|sx,θ|ϕ ≤ K, ∀x ∈ D(x0, r). (3.21)

According to Remark 2.4 we deduce that `ϕ(N, R) ∈ V(N). Then, using relation (3.21)
and Theorem 3.1 we obtain that the system (A) is uniformly exponentially stable. �

A version of Proposition 3.1 for the special class of continuous functions is given
by the following:

Proposition 3.2. If N : R+ → R+ is a continuous function, then for every r > 0
the set

Br = {x ∈ X : sup
θ∈Θ

∞∑
n=0

N(||Φ(θ, n)x||) ≤ r}

is closed.

Proof. Let r > 0. If Br 6= ∅, for every θ ∈ Θ and n ∈ N we consider the set

Gθ,n
r = {x ∈ X :

n∑
j=0

N(||Φ(θ, j)x||) ≤ r}.

Let (θ, n) ∈ Θ× N. Let (xk) ⊂ Gθ,n
r with xk → x.

Let αθ,n := max{||Φ(θ, j)|| : j ∈ {0, . . . , n}} and let m := supk∈N ||xk||. Since N is
continuous on [0,mαθ,n], N is uniformly continuous. Let ε > 0. Then there is δ > 0
such that for every t, s ∈ [0,mαθ,n] with |t− s| < δ we have

|N(t)−N(s)| < ε

n + 1
. (3.22)

Since xk → x as k →∞ there is h ∈ N∗ such that

||xh − x|| < δ

αθ,n
. (3.23)

Then, using (3.23) we deduce that

| ||Φ(θ, j)x|| − ||Φ(θ, j)xh|| | ≤ ||Φ(θ, j)(x− xh)|| < δ, ∀j ∈ {0, . . . , n}. (3.24)

From (3.22) and (3.24) we obtain that

N(||Φ(θ, j)x||) ≤ N(||Φ(θ, j)xh||) +
ε

n + 1
, ∀j ∈ {0, . . . , n}

which implies that
n∑

j=0

N(||Φ(θ, j)x||) ≤
n∑

j=0

N(||Φ(θ, j)xh||) + ε. (3.25)

Since xh ∈ Gθ,n
r from (3.25) it follows that

n∑
j=0

N(||Φ(θ, j)x||) ≤ r + ε, ∀ε > 0.
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This implies that x ∈ Gθ,n
r , so the set Gθ,n

r is closed. Hence, observing that

Br =
⋂
θ∈Θ

⋂
n∈N

Gθ,n
r

we deduce the conclusion. �

Notation We denote by C the set of all continuous functions N ∈ F.

Corollary 3.1. The system (A) is uniformly exponentially stable if and only if there
is an unbounded function N ∈ C such that the set

Γ = {x ∈ X : sup
θ∈Θ

∞∑
n=0

N(||Φ(θ, n)x||) < ∞}

is of the second category.

Proof. Necessity. Taking N(t) = t, for all t ≥ 0 we obtain that Γ = X.

Sufficiency. For every j ∈ N∗ we consider the set

Bj = {x ∈ X : sup
θ∈Θ

∞∑
n=0

N(||Φ(θ, n)x||) ≤ j}

and we have that

Γ =
∞⋃

j=1

Bj . (3.26)

From Proposition 3.2 we have that Bj is closed, for all j ∈ N∗. Since Γ is a set of the
second category, from (3.26) it follows that there are p ∈ N∗, x0 ∈ X and r > 0 such
that D(x0, r) ⊂ Bp. Then by applying Theorem 3.3 we obtain that (A) is uniformly
exponentially stable. �

Remark 3.5. The result given by Corollary 3.1 was proved for the first time in [37]
(see Theorem 3.4 in [37]).

An interesting consequence in the nonlinear setting is the following:

Corollary 3.2. The system (A) is uniformly exponentially stable if and only if there
is a function f : N × R+ → R+ with f(n, ·) ∈ C and lim

t→∞
f(n, t) = ∞, for all n ∈ N

such that the set

∆ = {x ∈ X : (∃)α(x) ∈ N such that sup
θ∈Θ

∞∑
n=0

f(α(x), ||Φ(θ, n)x||) < ∞}

is of the second category.

Proof. Necessity. Taking f(n, t) = t, for all (n, t) ∈ N× R+ it follows that ∆ = X.

Sufficiency. This immediately follows from Corollary 3.1 using the same idea like
in the proof of Theorem 3.5 in [37]. �



218 ADINA LUMINIŢA SASU, MIHAIL MEGAN AND BOGDAN SASU

Remark 3.6. It worth mentioning that all the results presented above are obtained
without any assumption concerning the cocycle Φ excepting the fact that this satisfies
the cocycle identity (see Remark 3.1). In fact, it is interesting to observe that the
cocycle was not supposed to have a uniform or nonuniform exponential growth. But,
for all that, the conditions considered in our study imply the existence of a uniform
concept of exponential stability.

4. Exponential stability of variational difference equations with
bounded coefficients

As we have already mentioned, the results presented in the previous section were
obtained for the most general case of variational difference equations without any
requirement concerning the coefficients. But, many natural phenomenons are modeled
by systems with uniformly bounded coefficients and often, for difference equations,
this working hypothesis appears as a natural one (see [8]). In what follows we shall
consider this case and discuss several notable situations.

Let {A(θ)}θ∈Θ ⊂ L(X). We consider the linear system of variational difference
equations

(A) x(θ)(n + 1) = A(σ(θ, n))x(θ)(n), ∀(θ, n) ∈ Θ× N.

In what follows we will work in the hypotheses that

sup
θ∈Θ

||A(θ)|| < ∞ (4.1)

i.e. the system (A) has uniformly bounded coefficients.

Remark 4.1. Relation (4.1) is equivalent with the existence of two constants M,ω >
0 such that

||Φ(θ, n)|| ≤ Meωn, ∀(θ, n) ∈ Θ× N.

Theorem 4.1. Let B ∈ V(N) be a Banach sequence space. Then the following asser-
tions are equivalent:

(i) the system (A) is uniformly exponentially stable;

(ii) there is a sequence (kn) ⊂ N with supn∈N |kn+1 − kn| < ∞, x0 ∈ X and L, r > 0
such that

sup
θ∈Θ

|ux,θ|B ≤ L, ∀x ∈ D(x0, r),

where for every (x, θ) ∈ X ×Θ

ux,θ : N → R+, ux,θ(n) = ||Φ(θ, kn)x||.

Proof. (i) =⇒ (ii) This follows from Theorem 3.1 for kn = n, for all n ∈ N.

(ii) =⇒ (i) Let M,ω > 0 be given by Remark 4.1. Then

||Φ(θ, n)|| ≤ Meωn, ∀(θ, n) ∈ Θ× N.

Case 1. If (kn) is bounded we set h = supn∈N kn.
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Let θ ∈ Θ and x ∈ D(x0, r). Since

||Φ(θ, h)x|| ≤ Meωh||Φ(θ, kj)x||, ∀j ∈ N

we deduce that
χ{0,...,n}(j)||Φ(θ, h)

x

λ
|| ≤ ux,θ(j), ∀j ∈ N (4.2)

where λ = Meωh. From relation (4.2) we obtain that

FB(n + 1)||Φ(θ, h)
x

λ
|| ≤ |ux,θ|B ≤ L, ∀n ∈ N.

Taking into account that B ∈ V(N), this implies that

Φ(θ, h)x = 0, ∀x ∈ D(x0, r),∀θ ∈ Θ. (4.3)

Let θ ∈ Θ and let x ∈ X \ {0}. Using relation (4.3) we deduce that

Φ(θ, h)
rx

||x||
= Φ(θ, h)

(
x0 +

rx

||x||

)
− Φ(θ, h)x0 = 0.

It follows that Φ(θ, h) = 0, for all θ ∈ Θ. This shows that the system (A) is uniformly
exponentially stable.

Case 2. If (kn) is unbounded then without loss of generality we may assume that
(kn) is a nondecreasing sequence (if not, we consider a subsequence with this property
and the proof is analogous).

Let q = |χ{0}|B and let l = supn∈N(kn+1 − kn). Using the hypothesis and similar
arguments as in the proof of Theorem 3.1 we obtain that

||Φ(θ, kn)|| ≤ 2L

qr
, ∀(θ, n) ∈ Θ× N. (4.4)

Let n ∈ N. If n ∈ {0, . . . , k0} then using relation (4.1) we have that

||Φ(θ, n)|| ≤ Meωn ≤ Meωk0 . (4.5)

If n ≥ k0 then there is j ∈ N such that kj ≤ n ≤ kj+1. Then

||Φ(θ, n)|| ≤ Meω(n−kj)||Φ(θ, kj)|| ≤ Meωl 2L

qr
. (4.6)

Setting γ := max{Meωk0 ,Meωl(2L/qr)}, from relations (4.5) and (4.6) it follows that

||Φ(θ, n)|| ≤ γ, ∀(θ, n) ∈ Θ× N. (4.7)

Using relation (4.7) and similar arguments as in the proof of Theorem 3.1 we obtain
that there is p ∈ N such that

||Φ(θ, kp)|| ≤
1
e
, ∀θ ∈ Θ. (4.8)

From relations (4.7) and (4.8) and using analogous arguments with those in the proof
of Theorem 3.1 we deduce that (A) is uniformly exponentially stable.

�
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Proposition 4.1. Let B ∈ Q(N) and let (kn) ⊂ N. For every (x, θ) ∈ X × Θ, we
consider the sequence

ux,θ : N → R+, ux,θ(n) = ||Φ(θ, kn)x||.
Then for every r > 0 the set

Dr = {x ∈ X : sup
θ∈Θ

|ux,θ|B ≤ r}

is closed.

Proof. This follows using similar arguments with those in the proof of Proposition
3.1. �

Corollary 4.1. Let B ∈ V(N) be a Banach sequence space. The system (A) is
uniformly exponentially stable if and only if there is a sequence (kn) ⊂ N with
supn∈N |kn+1 − kn| < ∞ such that

U = {x ∈ X : sup
θ∈Θ

|ux,θ|B < ∞}

is a set of the second category, where for every (x, θ) ∈ X ×Θ

ux,θ : N → R+, ux,θ(n) = ||Φ(θ, kn)x||.

Proof. Necessity is immediate from Theorem 3.2, taking kn = n, for all n ∈ N.

Sufficiency follows from Theorem 4.1 and Proposition 4.1, using similar arguments
with those used in the proof of Theorem 3.2. �

Remark 4.2. A distinct proof of Corollary 4.1 was presented in [35] (see Corollary
2.1 in [35]).

Let F be the set of all non-decreasing functions N : R+ → R+ with N(0) = 0 and
N(t) > 0, for all t > 0.

Theorem 4.2. The system (A) is uniformly exponentially stable if and only if there
are (kn) ⊂ N with supn∈N |kn+1 − kn| < ∞, a function N ∈ F, x0 ∈ X and L, r > 0
such that

sup
θ∈Θ

∞∑
n=0

N(||Φ(θ, kn)x||) ≤ L, ∀x ∈ D(x0, r).

Proof. Necessity is immediate for x0 = 0, r > 0, N(t) = t, for all t ≥ 0 and kn = n,
for all n ∈ N.

Sufficiency. Let M,ω > 0 be given by Remark 4.1. Then

||Φ(θ, n)|| ≤ Meωn, ∀(θ, n) ∈ Θ× N.

Case 1. If (kn) is bounded, let h = supn∈N kn and let q = Meωh. Then, for every
x ∈ D(x0, r) we have that

(n + 1)N(||Φ(θ, h)
x

q
||) ≤

n∑
k=0

N(||Φ(θ, kn)x||) ≤ L, ∀(θ, n) ∈ Θ× N. (4.9)

From (4.9) it follows that Φ(θ, h)x = 0, for all x ∈ D(x0, r).
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Let x ∈ X \ {0} and let x1 = rx/||x||. Then Φ(θ, h)x1 = Φ(θ, h)(x0 + x1) −
Φ(θ, h)x0 = 0. This implies that Φ(θ, h) = 0, for all θ ∈ Θ, so (A) is uniformly
exponentially stable.

Case 2. If supn∈N kn = ∞ without loss of generality, we may assume that (kn) is
nondecreasing (if not we consider a subsequence with this property and the proof is
analogous).

Let l = supn∈N(kn+1 − kn) and let n0 ∈ N∗ be such that L < n0N(1). Let
λ = Meωn0l.

Let θ ∈ Θ and let x ∈ D(x0, r). For every n ≥ n0 we have that

||Φ(θ, kn)
x

λ
|| ≤ 1

λ
Meω(kn−kj)||Φ(θ, kj)x|| ≤

≤ ||Φ(θ, kj)x||, ∀j ∈ {n− n0 + 1, . . . , n}.
This implies that

n0N(||Φ(θ, kn)
x

λ
||) ≤

n∑
j=n−n0+1

N(||Φ(θ, kj)x||) ≤ L. (4.10)

From relation (4.10) it follows that

||Φ(θ, kn)x|| ≤ λ, ∀x ∈ D(x0, r),∀θ ∈ Θ,∀n ≥ n0. (4.11)

Let θ ∈ Θ and let n ≥ n0. Let x ∈ X \ {0}. Then using (4.11) we deduce that

||Φ(θ, kn)
rx

||x||
|| ≤ ||Φ(θ, kn)(x0 +

rx

||x||
)||+ ||Φ(θ, kn)x0|| ≤ 2λ.

This implies that

||Φ(θ, kn)|| ≤ 2λ

r
, ∀n ≥ n0,∀θ ∈ Θ. (4.12)

Let j ∈ N. If j ≥ kn0 , then there is n ≥ n0 such that kn ≤ j ≤ kn+1. Using (4.12) we
have that

||Φ(θ, j)|| ≤ Meω(j−kn)||Φ(θ, kn)|| ≤ Meωl 2λ

r
. (4.13)

If j ∈ {0, . . . , kn0} then

||Φ(θ, j)|| ≤ Meωj ≤ Meωkn0 . (4.14)

From (4.17) and (4.18) it follows that there is γ > 0 such that

||Φ(θ, n)|| ≤ γ, ∀(θ, n) ∈ Θ× N.

Let

ϕ : R+ → R+, ϕ(t) =

{
0, t = 0

lim
s↗t

N(s), t > 0 .

Then we have that ϕ ∈ F, ϕ is left-continuous and

sup
θ∈Θ

∞∑
n=0

ϕ(||Φ(θ, kn)x||) ≤ L, ∀x ∈ D(x0, r).



222 ADINA LUMINIŢA SASU, MIHAIL MEGAN AND BOGDAN SASU

For every (x, θ) ∈ X ×Θ let

ux,θ : N → R+, ux,θ(n) = ||Φ(θ, kn)x||.

Let `ϕ(N, R) be the Orlicz space associated to ϕ. Using similar arguments with those
in the proof of Theorem 3.3 we deduce that there is α > 0 such that

sup
θ∈Θ

|ux,θ|ϕ ≤ α, ∀x ∈ D(x0, r). (4.15)

Since ϕ ∈ F using Remark 2.4 we have that `ϕ(N, R) ∈ V(N). Then from (4.15) and
by applying Theorem 4.1 it follows that the system (A) is uniformly exponentially
stable. �

Remark 4.3. We note that the proof line of the above theorem develops for the case
of discrete dynamical systems the method used in [32] for a real-time characterization
of the exponential stability of skew-product flows.

In what follows we denote by C the set of all continuous functions N ∈ F.

Theorem 4.3. The system (A) is uniformly exponentially stable if and only if there
are a sequence (kn) ⊂ N with supn∈N |kn+1 − kn| < ∞ and a function N ∈ C such
that the set

Λ = {x ∈ X : sup
θ∈Θ

∞∑
j=0

N(||Φ(θ, kj)x||) < ∞}

is of the second category.

Proof. Necessity is immediate.

Sufficiency. Using the continuity of N and similar arguments with those used in
the proof of Proposition 3.2 we have that the set

Kr = {x ∈ X : sup
θ∈Θ

∞∑
j=0

N(||Φ(θ, kj)x||) ≤ r}

is closed. Using this fact, similar arguments like in the proof of Corollary 3.1 and by
applying Theorem 4.2 we obtain the conclusion. �

Remark 4.4. Theorem 4.3 extends Theorem 3.6 in [37]. Moreover, as an immediate
consequence of Theorem 4.3 we may deduce Theorem 3.7 in [37].

5. Applications: exponential stability of skew-product flows

In this section we will present several consequences of the main results to the case
of skew-product flows. On the one hand we will point out some new methods in order
to deduce previously obtained results and on the other hand we deduce some new and
interesting conclusions.

Let X be a real or complex Banach space, let (Θ, d) be a metric space, let J ∈
{R+, R}. We denote by Id the identity operator on X.
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Definition 5.1. A continuous mapping σ : Θ × J → Θ is called a flow on Θ if
σ(θ, 0) = θ and σ(θ, s + t) = σ(σ(θ, s), t), for all (θ, s, t) ∈ Θ× J2.

Definition 5.2. A dynamical system π = (Φ, σ) is called a skew-product flow on
E = X × Θ if σ is a flow on Θ and the mapping Φ : Θ × R+ → L(X) satisfies the
following conditions:

(i) Φ(θ, 0) = I, the identity operator on X, for all θ ∈ Θ;

(ii) Φ(θ, t + s) = Φ(σ(θ, s), t)Φ(θ, s), for all (θ, t, s) ∈ Θ×R2
+ (the cocycle identity);

(iii) there are M ≥ 1 and ω > 0 such that ||Φ(θ, t)|| ≤ Meωt, for all (θ, t) ∈ Θ× R+.

The mapping Φ is called a cocycle over the flow σ.

Example 5.1. Let J ∈ {R+, R} and let Θ = J . We consider the translation flow
σ : Θ× J → Θ, σ(θ, t) = θ + t. If X is a Banach space and U = {U(t, s)}t≥s,t,s∈J is a
strongly continuous evolution family on X, then

Φ : R× R+ → L(X), ΦU (θ, t) = U(θ + t, θ)

is a cocycle over the flow σ. Usually, πU = (ΦU , σ) is called the skew-product flow
associated to U . �

Example 5.2. (The variational equation) Let Θ be a locally compact metric space,
let σ be a flow on Θ and let {A(θ)}θ∈Θ be a family of densely defined closed operators
on a Banach space X. We consider the variational equation

(A) ẋ(t) = A(σ(θ, t))x(t), (θ, t) ∈ Θ× R+.

A cocycle Φ : Θ×R+ → L(X) over the flow σ is a solution of the equation (A) if for
every θ ∈ Θ, there is a dense subset Dθ ⊂ D(A(θ)) such that for every xθ ∈ Dθ the
function t 7→ x(t) := Φ(θ, t)xθ is differentiable on R+, x(t) ∈ D(A(σ(θ, t))), for every
t ∈ R+, and the mapping t 7→ x(t) satisfies the equation (A). �

For other examples of skew-product flows we refer to [3]–[5] and [43].

Definition 5.3. A skew-product flow is said to be uniformly exponentially stable if
there are K ≥ 1 and ν > 0 such that

||Φ(θ, t)|| ≤ Ke−νt, ∀t ≥ 0,∀θ ∈ Θ.

Example 5.3. Let β > α > 0 and let a : R → [α, β] be a continuous function and
for every s ∈ R, let as : R → [α, β], as(t) = a(t + s). Let Θ := {as : s ∈ R}. On Θ we
consider the metric

d(θ, θ̃) = sup
s∈R

|θ(s)− θ̃(s)|.

Then the mapping

σ : Θ× R → Θ, σ(θ, t)(s) := θ(t + s)

is a flow on Θ.
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Let X be a Banach space and let T = {T (t)}t≥0 be a C0-semigroup on X with the
infinitesimal generator A : D(A) ⊂ X → X. For every θ ∈ Θ let A(θ) := θ(0)A. We
consider the variational equation

(A;x0)
{

ẋ(t) = A(σ(θ, t))x(t), t ≥ 0
x(0) = x0

with x0 ∈ D(A). Let

Φ : Θ× R+ → L(X), Φ(θ, t)x = T (
∫ t

0

θ(s) ds)x

which is a cocycle over the flow σ. It is easy to see that for every x0 ∈ D(A), the
function x(t) := Φ(θ, t)x0, for all t ≥ 0, is the strong solution of the equation (A;x0).

Then π = (Φ, σ) is a skew-product flow on E = X×Θ. Moreover, if T is uniformly
exponentially stable, then π is uniformly exponentially stable. �

Let π = (Φ, σ) be a skew-product flow on X ×Θ. For every θ ∈ Θ we consider the
operator A(θ) = Φ(θ, 1). If M,ω > 0 are given by Definition 5.2 (iii), then we have
that

sup
θ∈Θ

||A(θ)|| ≤ Meω.

We consider the variational discrete dynamical system

(Aπ) x(θ)(n + 1) = A(σ(θ, n))x(θ)(n), ∀(θ, n) ∈ Θ× N.

If {ΦAπ
(θ, n)}(θ,n)∈Θ×N is the discrete cocycle associated with (Aπ) we observe that

ΦAπ
(θ, n) = Φ(θ, n), ∀(θ, n).

Remark 5.1. A skew-product π = (Φ, σ) is uniformly exponentially stable if and
only if the system (Aπ) is uniformly exponentially stable.

Using this remark and the results obtained in the previous section, we deduce the
following characterizations for the exponential stability of skew-product flows:

Theorem 5.1. Let B be a Banach sequence space with B ∈ V(N) and let π = (Φ, σ)
be a skew-product flow on E = X × Θ. Then π is uniformly exponentially stable if
and only if there are a sequence (tn) ⊂ R+ with supn∈N |tn+1 − tn| < ∞, x0 ∈ X and
L, r > 0 such that

sup
θ∈Θ

|vx,θ|B ≤ L, ∀x ∈ D(x0, r),

where for every (x, θ) ∈ X ×Θ

vx,θ : N → R, vx,θ(n) = ||Φ(θ, tn)x||.

Proof. Necessity is immediate.

Sufficiency. Let kn = [tn]+1, for all n ∈ N. By applying Theorem 4.1 and Remark
5.1 we obtain that π is uniformly exponentially stable. �
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Theorem 5.2. Let B be a Banach sequence space with B ∈ V(N) and let π = (Φ, σ)
be a skew-product flow on E = X×Θ. Then π is uniformly exponentially stable if and
only if there is a sequence (tn) ⊂ R+ with supn∈N |tn+1 − tn| < ∞ such that the set

V = {x ∈ X : sup
θ∈Θ

|vx,θ|B < ∞}

is of the second category, where for every (x, θ) ∈ X ×Θ

vx,θ : N → R, vx,θ(n) = ||Φ(θ, tn)x||.

Proof. Necessity is immediate.

Sufficiency. Let kn = [tn]+1, for all n ∈ N. By applying Corollary 4.1 and Remark
5.1 we obtain the conclusion. �

Remark 5.2. A distinct approach for Theorem 5.2 was given in [35] (see Theorem
3.1 in [35]).

Let F denote the set of all non-decreasing functions N : R+ → R+ with N(0) = 0
and N(t) > 0, for all t > 0.

Theorem 5.3. A skew-product flow π = (Φ, σ) is uniformly exponentially stable if
and only if there are a sequence (tn) ⊂ R+ with supn∈N |tn+1 − tn| < ∞, a function
N ∈ F, x0 ∈ X and L, r > 0 such that

sup
θ∈Θ

∞∑
n=0

N(||Φ(θ, tn)x||) ≤ L, ∀x ∈ D(x0, r).

Proof. Necessity is immediate.

Sufficiency. Let M,ω > 0 be given by Definition 5.2 (iii). For every n ∈ N, let
kn = [tn] + 1. Then

||Φ(θ, kn)x|| ≤ Meω||Φ(θ, tn)x||, ∀(x, θ) ∈ X ×Θ,∀n ∈ N. (5.1)

We consider the function

Ñ : R+ → R+, Ñ(t) = N(
t

Meω
).

Then Ñ ∈ F and using relation (5.1) we deduce that

sup
θ∈Θ

∞∑
n=0

Ñ(||Φ(θ, kn)x||) ≤ L, ∀x ∈ D(x0, r).

By applying Theorem 4.2 and Remark 5.1 it follows that π is uniformly exponentially
stable. �

Remark 5.3. A direct proof of Theorem 5.3 was presented in [32] (see Theorem 3.1
in [32]).

We denote by C the set of all continuous functions N ∈ F.
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Theorem 5.4. A skew-product flow π = (Φ, σ) is uniformly exponentially stable if
and only if there are a sequence (tn) ⊂ R+ with supn∈N |tn+1−tn| < ∞ and a function
N ∈ C such that the set

Z = {x ∈ X : sup
θ∈Θ

∞∑
j=0

N(||Φ(θ, tj)x||) < ∞}

is of the second category.

Proof. Necessity is immediate.

Sufficiency. This follows from Theorem 4.3 and Remark 5.1, using similar argu-
ments with those in the proof of Theorem 5.3. �

Remark 5.4. Theorem 5.4 extends the main idea from Theorem 4.3 in [37].

Theorem 5.5. Let N : R∗
+ × R+ → R+ be a function such that for every t >

0, N(t, ·) ∈ C and for every s ≥ 0, N(·, s) is nondecreasing. For every m ∈ N∗ let
(tmn )n∈N be a sequence such that

sup
n∈N

|tmn+1 − tmn | < ∞.

Let π = (Φ, σ) be a skew-product flow. If for every x ∈ X there is α(x) > 0 and
mx ∈ N∗ such that

sup
θ∈Θ

∞∑
n=0

N(α(x), ||Φ(θ, tmx
n )x||) < ∞

then π is uniformly exponentially stable.

Proof. This follows from Theorem 5.3 using similar arguments with those in the proof
of Theorem 3.3 in [32]. �

Corollary 5.1. Let N : R∗
+ × R+ → R+ be a function such that for every t >

0, N(t, ·) ∈ C and for every s ≥ 0, N(·, s) is nondecreasing. Let π = (Φ, σ) be a
skew-product flow on E. If for every x ∈ X there is α(x) > 0 such that

sup
θ∈Θ

∞∑
n=0

N(α(x), ||Φ(θ, n)x||) < ∞

then π is uniformly exponentially stable.

Proof. This immediately follows from Theorem 5.5 for tmn = n, for all (m,n) ∈ N∗×N.
�

Definition 5.4. A skew-product flow is said to be strongly continuous if for every
(θ, x) ∈ Θ×X, the mapping t 7→ Φ(θ, t)x is continuous.

Corollary 5.2. Let N : R∗
+ × R+ → R+ be a function such that for every t >

0, N(t, ·) ∈ C and for every s ≥ 0, N(·, s) is nondecreasing. Let π = (Φ, σ) be a
strongly continuous skew-product flow. If for every x ∈ X there is α(x) > 0 such that

sup
θ∈Θ

∫ ∞

0

N(α(x), ||Φ(θ, t)x||)dt < ∞

then π is uniformly exponentially stable.
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Proof. This follows a relatively standard idea of passing from a discrete-time charac-
terization to a continuous-type one (see also [32], [35], [37]). We present here the idea
from [32]. Indeed, let M,ω > 0 be given by Definition 5.2 (iii) and let

Ñ : R∗+ × R+ → R+, Ñ(t, τ) = N(t,
τ

Meω
).

Then Ñ preserves the qualitative properties of the function N . Let x ∈ X. Then it
is easy to see that

Ñ(α(x), ||Φ(θ, n)x||) ≤ N(α(x), ||Φ(θ, s)x||), ∀s ∈ [n− 1, n],∀n ∈ N∗,∀θ ∈ Θ.

which yields

Ñ(α(x), ||Φ(θ, n)x||) ≤
∫ n

n−1

N(α(x), ||Φ(θ, s)x||)ds, ∀n ∈ N∗,∀θ ∈ Θ.

It follows that

sup
θ∈Θ

∞∑
n=0

Ñ(α(x), ||Φ(θ, n)x||) ≤ Ñ(α(x), ||x||) + sup
θ∈Θ

∫ ∞

0

N(α(x), ||Φ(θ, t)x||)dt.

Hence according to our hypothesis and by applying Corollary 5.1 we deduce the
conclusion. �

Remark 5.5. A different proof of Corollary 5.2 was given in [34] (see Theorem 3.3
in [34]). The results given by Corollaries 5.1 and 5.2 were obtained for the first time
in [32] (see Corollary 3.1 and Theorem 3.4 in [32]). A version of Corollary 5.2 was
deduced in [37] (see Theorem 4.5 in [37]). It worth mentioning that Corollary 5.1
generalizes Theorem 3.2 in [12] and Corollary 5.2 extends to a more general situation
the result obtained in Theorem 3.4 in [12].

Remark 5.6. Corollary 5.2 represents the generalization of the theorem of Rolewicz
(Theorem 1.3) to the more general case of skew-product flows. In fact, by applying
Corollary 5.2 for the skew-product flow πU = (ΦU , σ) introduced in Example 5.1, we
obtain as particular case the theorem of Rolewicz.

6. A direct proof for the Rolewicz type theorem on the stability of
skew-product flows

In contrast with the directions promoted in the papers [11], [12] and [32], [34], [35],
where exponential stability was characterized in terms of various classes of Banach
function spaces and consequently the Rolewicz type theorems were deduced by adapt-
ing the conclusions of the main results to the case of Orlicz spaces or, respectively,
by employing discrete-time arguments, in the present section we propose a direct
procedure for the study of the exponential stability of skew-product flows, without
requiring additional properties of the associated trajectories. In fact, we do not even
work with trajectories or with function spaces, our aim being to provide a construc-
tive and elegant method for the stability theorems of Rolewicz type in the variational
case. We present a natural approach for this type of theorems in the continuous-time
setting, improving and clarifying the proof lines from our previous works. We discuss
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the technical tools involved with the advantages of each method as well as possible
directions of generalization to other classes of systems.

Let X be a real or complex Banach space and let (Θ, d) be a metric space. Denote
by E = X × Θ. In what follows we will formulate characterizations for uniform
exponential stability of skew-product flows on E .

Theorem 6.1. A strongly continuous skew-product flow π = (Φ, σ) is uniformly
exponentially stable if and only if there exist a function N ∈ F , x0 ∈ X and r > 0
such that

sup
θ∈ Θ x∈D(x0,r)

∫ ∞

0

N(||Φ(θ, t)x||) dt < ∞.

Proof. Necessity. This follows for N(t) = t, for all t ≥ 0, x0 = 0 and r > 0.

Sufficiency. Let N ∈ F , x0 ∈ X and r > 0 be given by our hypothesis and let
K > 0 be such that∫ ∞

0

N(||Φ(θ, t)x||) dt ≤ K, ∀(x, θ) ∈ D(x0, r)×Θ. (6.1)

Step 1. Let M,ω > 0 be given by Definition 5.2 (iii). Let h > 0 be such that
h > (K/N(1)) and let γ = Meωh. Let θ ∈ Θ and let t ≥ h. Let x ∈ D(x0, r). Taking
into account that

||Φ(θ, t)x|| ≤ γ ||Φ(θ, s)x||, ∀s ∈ [t− h, t] (6.2)

and that N is nondecreasing, from relations (6.2) and respectively (6.1) we obtain
that

N(
||Φ(θ, t)x||

γ
) ≤ 1

h

∫ t

t−h

N(||Φ(θ, s)x||) ds ≤ K

h
< N(1). (6.3)

Since N is nondecreasing from (6.3) we have that

||Φ(θ, t)x|| ≤ γ, ∀x ∈ D(x0, r). (6.4)

Let x ∈ X \ {0}. Then, using (6.4) we deduce that

||Φ(θ, t)
rx

||x||
|| ≤ ||Φ(θ, t)(x0 +

rx

||x||
)||+ ||Φ(θ, t)x0|| ≤ 2γ.

This implies that

||Φ(θ, t)x|| ≤ 2γ

r
||x||, ∀x ∈ X,∀t ≥ h,∀θ ∈ Θ

which yields

||Φ(θ, t)|| ≤ 2γ

r
, ∀t ≥ h,∀θ ∈ Θ. (6.5)

Since
||Φ(θ, t)|| ≤ γ, ∀t ∈ [0, h],∀θ ∈ Θ

setting L := max{γ, (2γ/r)}, from relation (6.5) and the above estimation it follows
that

||Φ(θ, t)|| ≤ L, ∀t ≥ 0,∀θ ∈ Θ. (6.6)
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Step 2. Let p > 0 be such that p > K/N(r/2eL). Let θ ∈ Θ and let x ∈ D(x0
L , r

L ).
Using relation (6.6) we have that

||Φ(θ, p)x|| ≤ ||Φ(θ, t)Lx||, ∀t ∈ [0, p]

which implies that

pN(||Φ(θ, p)x||) ≤
∫ p

0

N(||Φ(θ, t)Lx||) dt ≤ K. (6.7)

Using relation (6.7) and the fact that N is nondecreasing we obtain that

||Φ(θ, p)x|| ≤ r

2eL
, ∀x ∈ D(

x0

L
,
r

L
). (6.8)

Let x ∈ X \ {0}. Then using (6.8) we have that

||Φ(θ, p)
rx

L||x||
|| ≤ ||Φ(θ, p)(

x0

L
+

rx

L||x||
)||+ ||Φ(θ, p)

x0

L
|| ≤ r

eL
. (6.9)

From relation (6.9) it follows that

||Φ(θ, p)x|| ≤ 1
e
||x||, ∀x ∈ X,∀θ ∈ Θ. (6.10)

Let ν = 1/p and let K = Le. Let θ ∈ Θ and let t ≥ 0. Then there are k ∈ N and
s ∈ [0, p) such that t = kp + s. Using relations (6.6) and (6.10) we obtain that

||Φ(θ, t)|| ≤ L ||Φ(θ, kp)|| ≤ Le−k ≤ Ke−νt. �

Remark 6.1. The above result was obtained for the first time in [34] using the
theory of Banach function spaces and the method of the membership of the associated
trajectories to certain function spaces. The arguments used in [34] strongly relayed
on the main result in [12] and required a more complicated mathematical structure,
involving both the characterization of the stability in terms of Banach function spaces
and also the properties of the Orlicz space associated to the function N .

Remark 6.2. We recall that the Rolewicz type theorem was deduced in [34] based
on an intermediary main result expressed in terms of a sequence of functions from
the class C. In what follows we shall see that this step may be also avoided using
an elegant proof line, which on the one side will clarify the minimal set of properties
required by a Rolewicz type method for stability and on the other side may be adapted
to other more general dynamical systems like those described in [17] and [44].

In order to support a first step in the direction of a possible study concerning the
individual or pointwise stability we establish the following:

Proposition 6.1. If π = (Φ, σ) is a strongly continuous skew-product flow and N :
R+ → R+ is a continuous function, then the set

Ar = {x ∈ X : sup
θ∈Θ

∫ ∞

0

N(||Φ(θ, t)x||) dt ≤ r}

is closed, for each r > 0.
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Proof. Let r > 0. For every θ ∈ Θ and h > 0 we consider the set

Bθ,h = {x ∈ X :
∫ h

0

N(||Φ(θ, t)x||) dt ≤ r}.

We prove that Bθ,h is closed, for each (θ, h) ∈ Θ× (0,∞).

Indeed, let θ ∈ Θ and let h > 0. Let M,ω > 0 such that ||Φ(θ, t)|| ≤ Meωt, for all
t ≥ 0.

Let (xn) ⊂ Bθ,h with xn → x as n →∞. We set q := supn∈N ||xn||. Then

||Φ(θ, t)xn|| ≤ qMeωh, ∀n ∈ N,∀t ∈ [0, h] (6.11)

which implies also that

||Φ(θ, t)x|| ≤ qMeωh, ∀t ∈ [0, h]. (6.12)

Let ε > 0. Since N is continuous on [0, qMeωh] there is δ > 0 such that for every
s, s′ ∈ [0, qMeωh] with |s− s′| < δ we have that

|N(s)−N(s′)| < ε

h
. (6.13)

Let n0 ∈ N be such that

||xn0 − x|| < δ

Meωh
. (6.14)

For every t ∈ [0, h], using relations (6.11) and (6.12) we deduce that ||Φ(θ, t)xn0 ||,
||Φ(θ, t)x|| ∈ [0, qMeωh]. In addition, using relation (6.14) we have that

| ||Φ(θ, t)x|| − ||Φ(θ, t)xn0 || | ≤ ||Φ(θ, t)(x− xn0)|| < δ, ∀t ∈ [0, h]. (6.15)

From (6.13) and (6.15) it follows that

|N(||Φ(θ, t)x||)−N(||Φ(θ, t)xn0 ||)| <
ε

h
, ∀t ∈ [0, h]

which implies that∫ h

0

N(||Φ(θ, t)x||) dt ≤
∫ h

0

N(||Φ(θ, t)xn0 ||) dt + ε ≤ r + ε. (6.16)

Since ε > 0 was arbitrary we have that relation (6.16) holds for every ε > 0. This
shows that x ∈ Bθ,h, so Bθ,h is closed. Taking into account that

Ar =
⋂
θ∈Θ

⋂
h>0

Bθ,h

we finally obtain that Ar is closed. �

We may now get back to the main theme, presenting a fluent and more natural
proof for the Rolewicz type result.

Theorem 6.2. Let π = (Φ, σ) be a strongly continuous skew-product flow on E =
X ×Θ. Then π is uniformly exponentially stable if and only if there exist a function



ON ROLEWICZ-ZABCZYK TECHNIQUES IN THE STABILITY THEORY 231

N : R∗
+ ×R+ → R+ that for every t > 0, N(t, ·) ∈ C and for every s ≥ 0, N(·, s) is

nondecreasing and for every x ∈ X there is α(x) > 0 such that

sup
θ∈Θ

∫ ∞

0

N(α(x), ||Φ(θ, t)x||)dt < ∞.

Proof. Necessity follows by choosing the function

N : R∗+ × R+ → R+, N(t, s) = s.

Sufficiency. For every p ∈ N∗ we consider the function

Np : R+ → R+, Np(t) = N(
1
p
, t)

and the associated set

Ap = {x ∈ X : sup
θ∈Θ

∫ ∞

0

Np(||Φ(θ, t)x||) dt ≤ p}

According to our hypothesis the function Np is continuous and then, from Proposition
6.1 we obtain that Ap is closed.

Let x ∈ X. Then there is α(x) > 0 such that

sup
θ∈Θ

∫ ∞

0

N(α(x), ||Φ(θ, t)x||) dt < ∞.

Let kx ∈ N∗ be such that∫ ∞

0

N(α(x), ||Φ(θ, t)x||) dt ≤ kx, ∀θ ∈ Θ. (6.18)

If mx = [1/α(x)] + 1 then 1/mx < α(x). We set px = max{mx, kx}. From the
hypothesis we have that for every s ≥ 0, N(·, s) is nondecreasing, so

N(
1
px

, ||Φ(θ, t)x||) ≤ N(α(x), ||Φ(θ, t)x||), ∀t ≥ 0. (6.19)

Using relations (6.18) and (6.19) we deduce that∫ ∞

0

N(
1
px

, ||Φ(θ, t)x||) dt ≤ px, ∀θ ∈ Θ,

so x ∈ Apx
.

It follows that
X =

⋃
j∈N∗

Aj . (6.20)

Using relation (6.20) and the theorem of Baire we obtain that there are j ∈ N∗,
x0 ∈ Aj and r > 0 such that D(x0, r) ⊂ Aj . By applying Theorem 6.1 for Nj we
obtain that π is uniformly exponentially stable. �
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7. Open Problems

It was always the next natural step in any investigation concerning the stability
of a dynamical system to analyze if the methods may be also applied to the study
of the instability (see e.g. [14], [36]). This question for the case of skew-product
flows was considered and answered in [14], by applying the techniques developed
in [12] for stability to the new case of instability. The conclusions were interesting
and extended the topic to a new direction. But, for all that, at first sight it was
not possible to provide a sufficient condition for exponential instability employing an
integral condition which is nonuniform with respect to x ∈ X.

The main techniques described in the previous sections relied on the behavior of
some associated trajectories and it was clear that starting with [12] where we identified
for the first time the potential methods in the investigation of the exponential stability
of skew-product flows and moreover the study was later extended for the concept of
exponential instability. The open problems arising in this framework will be presented
in what follows both for the discrete-time case as well as in the continuous-time setting.
In order to formulate these problems, we recall first the basic concepts.

Let X be a real or complex Banach space. For every x ∈ X and every r > 0 let
C(x, r) := {y ∈ X : ||y − x|| = r} and let C(0, 1) =: C.

Let (Θ, d) be a metric space, let J ∈ {N, Z} and let σ : Θ × J → Θ be a discrete
flow on Θ, i.e. σ(θ, 0) = θ and σ(θ, m + n) = σ(σ(θ, m), n), for all (θ, m, n) ∈ Θ× J2.

Let {A(θ)}θ∈Θ ⊂ L(X). We consider the variational discrete dynamical system

(A) x(θ)(n + 1) = A(σ(θ, n))x(θ)(n), ∀(θ, n) ∈ Θ× N
and the associated discrete cocycle {Φ(θ, n)}θ∈Θ,n∈N.

Definition 7.1. We say that the system (A) is uniformly exponentially unstable if
there are K, ν > 0 such that

||Φ(θ, n)x|| ≥ Keνn||x||, ∀x ∈ X,∀(θ, n) ∈ Θ× N. (7.1)

Remark 7.1. It is easy to see that relation (7.1) is sufficient to hold on the circle
C(0, r).

Remark 7.2. Let x ∈ C and θ ∈ Θ. If there is n0 ∈ N such that Φ(θ, n0)x = 0, then
using the cocycle identity it follows that Φ(θ, n)x = 0, for all n ≥ n0. In this case it
is obvious that the system (A) is not uniformly exponentially unstable.

Definition 7.2. We say that the discrete cocycle Φ is injective if Φ(θ, n) is an injective
operator, for all (θ, n) ∈ Θ× N.

In what follows we suppose that the cocycle associated with the system (A) is
injective. Then for every (x, θ) ∈ X ×Θ, x 6= 0 we define the sequence

γx,θ : N → R+, γx,θ(n) =
1

||Φ(θ, n)x||
.

Remark 7.3. Following the same idea like in [14] (see Theorem 3.1) we can deduce
the following:
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Theorem 7.1. The system (A) is uniformly exponentially unstable if and only if the
associated cocycle is injective and there is a Banach sequence space B ∈ V(N) such
that for every (x, θ) ∈ C ×Θ, γx,θ ∈ B and there is L > 0 such that |γx,θ|B ≤ L, for
all (x, θ) ∈ C ×Θ.

Taking into account the methods presented in the case of stability, for a space
B ∈ Q(N) we associate the set

UB = {x ∈ X \ {0} : sup
θ∈Θ

|γx,θ|B < ∞}.

Problem 7.1. The first open question is to identify a subclass of Banach sequence
spaces in Q(N) such that the uniform exponential instability of a variational discrete
dynamical system (A) may be characterized in terms of some topological properties
of the set

UB = {x ∈ X \ {0} : sup
θ∈Θ

|γx,θ|B < ∞}

for a given sequence space B in this subclass.

Similarly, the question arises as well in the case of skew-product flows.

Definition 7.3. A skew-product flow π = (Φ, σ) is said to be uniformly exponentially
unstable if there are K, ν > 0 such that

||Φ(θ, t)x|| ≥ Keνt||x||, ∀x ∈ X,∀(θ, t) ∈ Θ× R+. (7.2)

Remark 7.4. It is easy to see that relation (7.2) is sufficient to take place on the
circle C(0, r).

Definition 7.4. We say that the cocycle Φ is injective if Φ(θ, t) is an injective oper-
ator, for all (θ, t) ∈ Θ× R+.

Remark 7.5. If π = (Φ, σ) is a skew-product flow with the property that Φ is
injective, then for every (x, θ) ∈ X ×Θ, x 6= 0 we define the function

ϕx,θ : R+ → R+, ϕx,θ(t) =
1

||Φ(θ, t)x||
.

In [14], based on the discrete result given by Theorem 7.1, we proved that the uni-
form exponential instability of skew-product flows may be expressed in terms of the
ownership of these orbits to certain Banach function spaces (see [14], Theorem 3.2)
and consequently we deduced the first information of Rolewicz and Datko type for
the instability case (see Corollary 3.1 and Theorem 3.4 in [14]).

Problem 7.2. Another question concerning the exponential instability of (injective)
cocycles is whether one may deduce this asymptotic property from a condition in
terms of the existence of a function N(·, ·) such that for every x ∈ X, x 6= 0 there
exists α(x) > 0 with

sup
θ∈Θ

∞∑
n=0

N(α(x),
1

||Φ(θ, n)x||
< ∞. (7.3)

We note that a particular case of (7.3) was considered in [14] (see Theorem 3.3) but
that was a direct consequence of the characterization described in Theorem 7.1.
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Problem 7.3. For strongly continuous skew-product flows π = (Φ, σ) with the asso-
ciated cocycle Φ injective it remains an open question to determine the appropriate
properties of a function N(·, ·) such that the property that for each x ∈ X, x 6= 0
there is α(x) > 0 with

sup
θ∈Θ

∫ ∞

0

N(α(x),
1

||Φ(θ, t)x||
) dt < ∞ (7.4)

is a sufficient condition for the uniform exponential instability of π. A preliminary
answer was formulated in [14], but that was more a generalization of Datko’s type
result (see [14], Theorem 3.4) i.e. we have shown that if there exists a function N ∈ F
such that

sup
θ∈Θ x∈C

∫ ∞

0

N

(
1

||Φ(θ, t)x||

)
dt < ∞.

then the injective skew-product flow π is uniformly exponentially unstable. But the
main question remains if one may employ the non-uniformity with respect to x ∈ X
via a two variables function as we did in the theorems of Rolewicz type for stability,
working with a condition like (7.4).

Remark 7.6. The Zabzcyk type techniques were recently extended to the case of
the exponential dichotomy of variational difference equations in [39], providing several
interesting consequences concerning the dichotomy of difference equations as well as
of skew-product flows.

Remark 7.7. The most complex asymptotic concept represented by the exponential
trichotomy was treated for the first time from the perspective of the Rolewicz type
techniques in [41], where we have also pointed out the applications for the study of
the trichotomy of evolution families on the real line.
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