
Fixed Point Theory, 13(2012), No. 1, 205-236

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

ON ROLEWICZ-ZABCZYK TECHNIQUES IN THE
STABILITY THEORY OF DYNAMICAL SYSTEMS
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Abstract. The aim of this paper is to present a general overview concerning the Rolewicz-Zabzczyk
type techniques in the stability theory of dynamical systems. We discuss the main methods based on

trajectories that may be used in order to characterize the uniform exponential stability of variational

discrete systems and their applications to the case of skew-product flows. Beside our techniques
used in the past decade on this topic, we also point out several new issues and analyze both their

connections with previous results as well as some new characterizations for uniform exponential

stability. Finally, motivated by the potential extension of the framework to dichotomy, we propose
several open problems in the case of the exponential instability.
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