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Abstract. In this paper, by means of τ -ϕ-concave (convex) operators, the existence of two positive
fixed points for some nonlinear operators is considered. In particular, the fixed point theorems of

the sum of a ϕ1-concave operator and a ϕ2-convex operator are obtained, our tools are based on the

properties of cones and the fixed point theorem of cone expansion and compression. Our abstract
results are applied to superlinear second-order multi-point boundary value problems.
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1. Introduction

The fixed point theory for nonlinear operators with convexity and concavity has
been investigated extensively in the past several decades and is applied to the study of
various nonlinear differential equations (see [1-11] and the references therein). Kras-
noselskii [1] studied the definitions and properties of e-concave operators and e-convex
operators. In [2], Potter introduced the definitions of α-concave operators and α-
convex operators. We note that Zhao [3] considered the existence of multiple positive
fixed points for some nonlinear operators, a particular case of the operators is the
sum of α-concave operators and β-convex operators. Paper [4] is the continuation of
paper [3], the author further discussed the existence of multiple positive fixed points
for the sum of two operators, in particular, Corollary 3.1 of [4] showed that the sum of
an e-concave operator and an e-convex operator has at least two positive fixed points
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under reasonable conditions. Very recently, Zhai and Cao [5] defined τ -ϕ-concave
operator, which is essentially sublinear, α-concave operator (0 < α < 1) is its partic-
ular case. Motivated by paper [5], Zhao [6] introduced τ -ϕ-convex operator, which is
essentially superlinear, β-convex operator (β > 1) is its particular case. Under some
conditions, the author obtained the existence of fixed points for the class of opera-
tors. As corollaries, some fixed point theorems for e-convex operators and α-convex
operators were also given.

In [10], the two point expansion fixed point theorem for increasing operator was
discussed by using fixed point index theory, moreover, fixed point theorems for super-
linear operator, convex operator and sum of convex operator and concave operator
were established. In [11], Cabada and Cid presented sufficient conditions for a non-
decreasing operator defined on an ordered Banach space to have at least a non-zero
fixed point. Their main results combined the monotone iterative technique with the
expansion fixed point theorem of Krasnoselskii.

In this paper, we will combine τ -ϕ-concave operators with τ -ϕ-convex operators,
the existence of two positive fixed points for some nonlinear operators is considered.
As corollaries, we also obtain some fixed point theorems for the sum of a ϕ1-concave
operator and a ϕ2-convex operator. In particular, the assumption of the monotonicity
of the operator is not required. Our results generalize and improve the corresponding
ones in [3, 4]. Moreover, as a sample of application, we apply our fixed point the-
orem to a class of multi-point boundary value problems for second-order differential
equations.

Throughout this paper, E is a real Banach space with norm ‖ · ‖, θ is the zero
element of E, and P is a cone in E. So, a partially ordered relation in E is given by
x ≤ y iff y − x ∈ P . A cone P ⊂ E is said to be normal if there exists a constant N ,
such that θ ≤ x ≤ y =⇒ ‖x‖ ≤ N‖y‖, the smallest N is called the normal constant
of P . We write R+ = [0,+∞), P+ = P − {θ} and

Ce = {x ∈ E : there exist positive numbers a, b such that ae ≤ x ≤ be}, for e ∈ P+.

Assume D is a subset of E, operator A : D −→ E is continuous and bounded. If there
is a constant k, 0 ≤ k < 1 such that γ(A(S)) ≤ kγ(S) for any bounded set S ⊂ D,
then A is called a strict set contraction, where γ(D) denotes the Kuratowski measure
of noncompactness of bounded set S.

All the concepts discussed above can be found in [1, 2, 9, 12]. We state below some
definitions and a lemma.
Definition 1.1. (See [1, 9].) Let P be a cone of real Banach space E, e ∈ P+.
(i) A1 : P −→ P is called e-concave if and only if for any x ∈ P+, A1x ∈ Ce; for any
(x, t) ∈ Ce × (0, 1), there exists ζ1 = ζ1(x, t) > 0 such that A1(tx) ≥ t(1 + ζ1)A1x.
(ii) A2 : P −→ P is called e-convex if and only if for any x ∈ P+, A2x ∈ Ce; for any
(x, t) ∈ Ce × (0, 1), there exists ζ2 = ζ2(x, t) > 0 such that A2(tx) ≤ t(1− ζ2)A2x.

Definition 1.2. (See [2].) Let A : P −→ P and α ∈ R. Then we say A is α-concave
(β-convex) if and only if A(tx) ≥ tαAx (A(tx) ≤ tβAx) for all (x, t) ∈ P × (0, 1).

Definition 1.3. Assume P ⊂ E is a cone. We say an operator A1 : P −→ P is ϕ-
concave if there exists a functional ϕ : P × (0, 1) −→ R+ with ϕ(x, t) > t, ∀ t ∈ (0, 1)
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such that
A1(tx) ≥ ϕ(x, t)A1x, ∀ t ∈ (0, 1), x ∈ P.

We say an operator A2 : P −→ P is ϕ-convex if there exists a functional ϕ : P ×
(0, 1) −→ R+ with ϕ(x, t) < t, ∀ t ∈ (0, 1) such that

A2(tx) ≤ ϕ(x, t)A2x, ∀ t ∈ (0, 1), x ∈ P.

Definition 1.4. Assume P ⊂ E is a cone. We say an operator A1 : P −→ P is τ -ϕ-
concave if there exist a function τ : (a, b) −→ (0, 1) and a functional ϕ : P × (a, b) −→
R+ with ϕ(x, t) > τ(t), ∀ t ∈ (a, b) such that

A1(τ(t)x) ≥ ϕ(x, t)A1x, ∀ t ∈ (a, b), x ∈ P.

We say an operator A2 : P −→ P is τ -ϕ-convex if there exist a function τ : (a, b) −→
(0, 1) and a functional ϕ : P × (a, b) −→ R+ with ϕ(x, t) < τ(t), ∀ t ∈ (a, b) such that

A2(τ(t)x) ≤ ϕ(x, t)A2x, ∀ t ∈ (a, b), x ∈ P.

Lemma 1.1. (See [12].) Let Pr,s = {x ∈ P : r ≤ ‖x‖ ≤ s} with s > r > 0. Suppose
that A : Pr,s −→ P is a strict set contraction such that

Ax 6≥ x for x ∈ P, ‖x‖ = r and Ax 6≤ x for x ∈ P, ‖x‖ = s.

Then A has a fixed point x ∈ P such that r < ‖x‖ < s.

2. Main results

Theorem 2.1. Suppose that the following conditions are satisfied
(H1) P is a normal cone of real Banach space E, N is the normal constant of P ,
A : P −→ P is a strict set contraction, which satisfies that

sup{‖Ax‖ : x ∈ P, ‖x‖ = 1} <
1
N

; (2.1)

(H2) there exist operators Ai : P −→ P such that

Ax ≥ Aix, ∀ x ∈ P, i = 1, 2. (2.2)

(H3) A1 is a τ1-ϕ1-concave operator, and

lim
t→a+

τ1(t) = 0, lim
t→a+

ϕ1(x, t)
τ1(t)

>
N

m1
, uniformly for x ∈ P+, (2.3)

where
m1 = inf{‖A1x‖ : x ∈ P, ‖x‖ = 1} > 0. (2.4)

If there exists a positive number c such that

m2 = inf{‖A2x‖ : x ∈ P, ‖x‖ = c} > 0. (2.5)

A2 is a τ2-ϕ2-convex operator, and

lim
t→a+

τ2(t) = 0, lim
t→a+

ϕ2(x, t)
τ2(t)

<
m2

cN
, uniformly for x ∈ P+. (2.6)

Then A has at least two fixed points x∗1, x∗2 in P+, such that ‖x∗1‖ < 1 < ‖x∗2‖.
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Proof. Let Tr = {x ∈ E : ‖x‖ = r}, r > 0. We prove below that there exist real
numbers r1, r2 such that 0 < r < 1 < r2, and

Ax 6≤ x, ∀ x ∈ Tr1 ∩ P, (2.7)

Ax 6≤ x, ∀ x ∈ Tr2 ∩ P, (2.8)

Ax 6≥ x, ∀ x ∈ T1 ∩ P. (2.9)

It follows from (2.3) that there exists t1 ∈ (a, b) such that

0 < τ1(t1) < 1, ϕ1(x, t1) >
Nτ1(t1)

m1
, ∀ x ∈ P+. (2.10)

Setting r1 = τ1(t1). Assume that there exists x1 ∈ Tr1 ∩ P such that Ax1 ≤ x1. By
the definition of A1 and (2.2), we have

x1 ≥ A(x1) ≥ A1(x1) = A1

(
τ1(t1)

x1

τ1(t1)

)
≥ ϕ1

(
x1

τ1(t1)
, t1

)
A1

(
x1

τ1(t1)

)
,

which together with the normality of P and (2.10) implies

‖x1‖ ≥
1
N

ϕ1

(
x1

τ1(t1)
, t1

) ∥∥∥∥A1

(
x1

τ1(t1)

)∥∥∥∥ >
1
N

Nτ1(t1)
m1

m1 = r1,

which contradicts x1 ∈ Tr1 ∩ P , and so (2.7) holds.
In view of (2.6), we know that there exists t2 ∈ (a, b) such that

0 < τ2(t2) < min{1, c}, ϕ2(x, t2) <
m2τ2(t2)

cN
, ∀ x ∈ P+. (2.11)

We take r2 = c
τ2(t2)

, then r2 > 1. Moreover, assume that there exists x2 ∈ Tr2∩P such
that Ax2 ≤ x2, thus, ‖τ2(t2)x2‖ = c. By the definition of A2, we have A2(τ2(t2)x2) ≤
ϕ2(x2, t2)A2(x2). Therefore

A2(x2) ≥
1

ϕ2(x2, t2)
A2(τ2(t2)x2). (2.12)

It follows from (2.2), (2.12) and the normality of P that

‖x2‖ ≥
1
N

1
ϕ2(x2, t2)

‖A2(τ2(t2)x2)‖ >
1
N

cN

m2

1
τ2(t2)

m2 = r2,

which contradicts x2 ∈ Tr2 ∩ P , and so (2.8) holds.
Assume that there exists x3 ∈ T1 ∩ P such that Ax3 ≥ x3. By (2.1), we can know

that 1 = ‖x3‖ ≤ N‖Ax3‖ < 1, which is a contradiction, hence (2.9) holds.
By (2.7), (2.8) and (2.9), applying Lemma 1.1, we assert that A has at least two

fixed points x∗1, x∗2 in P+, such that r1 < ‖x∗1‖ < 1 < ‖x∗2‖ < r2.
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3. Some corollaries

By taking (a, b) = (0, 1) and τ1(t) = τ2(t) = t in Theorem 2.1, we can obtain the
following corollary.
Corollary 3.1. Suppose (H1) in Theorem 2.1 is satisfied. The operator A can be
written as A = A1 + A2, where A1 : P −→ P is ϕ1-concave, and

lim
t→0+

ϕ1(x, t)
t

>
N

m1
, uniformly for x ∈ P+,

A2 : P −→ P is ϕ2-convex, and

lim
t→0+

ϕ2(x, t)
t

<
m2

cN
, uniformly for x ∈ P+,

where N,m1,m2, c as in Theorem 2.1. Then A has at least two fixed points x∗1, x∗2 in
P+, such that ‖x∗1‖ < 1 < ‖x∗2‖.

Corollary 3.2. Suppose (H1) in Theorem 2.1 is satisfied. The operator A can be
written as A = A1 + B1 + A2 + B2, where A1 : P −→ P is ϕ1-concave, A2 : P −→ P
is ϕ2-convex, and Bi : P −→ P are homogeneous (i = 1, 2). If there exist two positive
numbers qi (i = 1, 2) such that

lim
t→0+

ϕ1(x, t)
t

>
N −m1(1− q1)

m1q1
,

lim
t→0+

ϕ2(x, t)
t

<
m2 − cN(1− q2)

cNq2
, uniformly for x ∈ P+, (3.1)

Aix ≥ qi(Aix + Bix)(i = 1, 2), ∀ x ∈ P, (3.2)

where m1,m2, N, c as in Theorem 2.1. Then A has at least two fixed points x∗1, x∗2 in
P+, such that ‖x∗1‖ < 1 < ‖x∗2‖.
Proof. By the definitions A1 and B1, we can know that for any t ∈ (0, 1) and x ∈ P ,
we have

A1(tx) + B1(tx) = A1(tx) + tB1x

≥ ϕ1(x, t)A1x + t(A1x + B1x−A1x)

= [ϕ1(x, t)− t]A1x + t(A1x + B1x)

≥ [ϕ1(x, t)− t]q1(A1x + B1x) + t(A1x + B1x)

= [(ϕ1(x, t)− t)q1 + t](A1x + B1x).

(3.3)

In (3.3), we have used (3.2).
It follows from (3.3) and (3.1) that

lim
t→0+

[ϕ1(x, t)− t]q1 + t

t
= 1 +

(
lim

t→0+

ϕ1(x, t)
t

− 1
)

q1 >
N

m1
.
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In a similar way, we have

A2(tx) + B2(tx) = A2(tx) + tB2x

≤ ϕ2(x, t)A2x + t(A2x + B2x−A2x)

= [ϕ2(x, t)− t]A2x + t(A2x + B2x)

≤ [ϕ2(x, t)− t]q2(A2x + B2x) + t(A2x + B2x)

= [(ϕ2(x, t)− t)q2 + t](A2x + B2x),

which together with (3.1) implies

lim
t→0+

[ϕ2(x, t)− t]q2 + t

t
= 1 +

(
lim

t→0+

ϕ2(x, t)
t

− 1
)

q2 <
m2

cN
.

By Corollary 3.1, we can deduce the conclusion of Corollary 3.2.
Combining the proof of Corollary 3.1 in [4] with Corollary 3.1 in this paper, we

can obtain the following two corollaries.

Corollary 3.3. (See [4].) Suppose (H1) in Theorem 2.1 is satisfied. The operator
A can be written as A = A1 + A2, where A1 : P −→ P is increasing e-concave,
A2 : P −→ P is increasing e-convex. If there exist εi > 0 (i = 1, 2) such that

Aix ≥ εi‖Aix‖e, ∀ x ∈ P+,

lim
t→0+

ζ1(x, t) >
N2

ε1‖A1(ε0e)‖‖e‖
− 1, uniformly for x ∈ Ce, (3.4)

lim
t→0+

ζ2(x, t) > 1− 1
N2

ε2‖A2(ε0e)‖‖e‖, uniformly for x ∈ Ce, (3.5)

then A has at least two fixed points x∗1, x∗2 in P+, such that

‖x∗1‖ < 1 < ‖x∗2‖, min{ε1, ε2}‖x∗i ‖e ≤ x∗i ≤ Mie, ∃ Mi > 0, i = 1, 2. (3.6)

Corollary 3.4. (See [4].) Suppose (H1) in Theorem 2.1 is satisfied. The operator A
can be written as A = A1 +A2 +A3, where Ai : P −→ P (i = 1, 2, 3), A1 is α-concave
(0 < α < 1), A2 is β-convex (β > 1). If there exist positive numbers ci (i = 1, 2) such
that

mi = inf{‖Aix‖ : x ∈ P, ‖x‖ = ci} > 0, i = 1, 2,

then A has at least two fixed points x∗1, x∗2 in P+, such that ‖x∗1‖ < 1 < ‖x∗2‖.

4. Applications to a multi-point boundary value problem

Multi-point boundary value problems arise in many applied sciences. For example,
the vibrations of a guy wire composed of N parts with a uniform cross-section through-
out but different densities in different parts can be set up as multi-point boundary
value problems (see [13]). Many problems in the theory of elastic stability can be
modelled by multi-point boundary value problems (see [14]). In recent years, there
has been a large amount of attention paid to multi-point boundary value problems
for second-order differential equations, see [15-21] and the references therein.
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In this section, we apply Theorem 2.1 to the following boundary value problem
−u′′ + k2u = g(t, u), a < t < b,

u′(a) = 0, u(b) =
m−2∑
i=1

αiu(ηi),
(4.1)

where k > 0, m > 2, ηi ∈ (a, b), αi ∈ R+(i = 1, 2, · · · ,m − 2) are given numbers,
g : (a, b) × R+ −→ R+ is continuous. In order to obtain our result, we need the
following lemmas.

Lemma 4.1. (See [6, 22].) Suppose the function f(t) is continuous on [a, b] and in

addition assume k > 0, cosh(k(b − a)) 6=
m−2∑
i=1

αi cosh(k(ηi − a)). Then the linear

boundary value problem 
−u′′ + k2u = f(t), a ≤ t ≤ b,

u′(a) = 0, u(b) =
m−2∑
i=1

αiu(ηi)

has a unique solution

u(t) =
∫ b

a

K(t, s)f(s)ds,

where the Green’s function

K(t, s) = G(t, s) +
cosh(k(t− a))

cosh(k(b− a))−
m−2∑
i=1

αi cosh(k(ηi − a))

m−2∑
i=1

αiG(ηi, s), (4.2)

with

G(t, s) =


cosh(k(s− a)) sinh(k(b− t))

k cosh(k(b− a))
, a ≤ s ≤ t,

cosh(k(t− a)) sinh(k(b− s))
k cosh(k(b− a))

, t ≤ s ≤ b.
(4.3)

Lemma 4.2. (See [6].) For any t, s ∈ [a, b], the Green’s function K(t, s) satisfies

M1
b− s

cosh(k(b− a))
≤ M1G(s, s) ≤ K(t, s) ≤ M2G(s, s) ≤ M2

sinh(k(b− a))
k(b− a)

(b− s),

(4.4)
where G is defined in (4.3),

M1 =
k

m−2∑
i=1

αiG(ηi, ηi)

sinh(k(b− a))
[
cosh(k(b− a))−

m−2∑
i=1

αi cosh(k(ηi − a))
] , (4.5)
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M2 = 1 +
cosh(k(b− a))

m−2∑
i=1

αi

cosh(k(b− a))−
m−2∑
i=1

αi cosh(k(ηi − a))
. (4.6)

Our main result is the following theorem.

Theorem 4.1. Suppose that cosh(k(b − a)) >
m−2∑
i=1

αi cosh(k(ηi − a)), there exists

β > 1 such that for any 0 < r < 1, we have

rβg(t, u) ≤ g(t, ru), ∀ (t, u) ∈ (a, b)× R+. (4.7)

Furthermore, g can be expressed as g = g1 + g2, for fixed t ∈ [a, b], gi(t, u) (i = 1, 2)
are both increasing in u, and∫ b

a

(b− s)gi(s, 1)ds > 0 (i = 1, 2),
∫ b

a

(b− s)g(s, 1)ds <
k(b− a)

M2 sinh(k(b− a))
, (4.8)

where M2 as in (4.6). In addition, there exist a function τ1 : (a, b) −→ (0, 1) and a
function ϕ1 : (a, b) −→ R+ with ϕ1(t) > τ1(t), ∀ t ∈ (a, b) such that

g1(t, τ1(λ)u) ≥ ϕ1(λ)g1(t, u), ∀ t ∈ (a, b), u ∈ R+. (4.9)

There exists λ1 ∈ (a, b) such that τ1(λ1) = M1
M2

, and

lim
t→a+

τ1(t) = 0, lim
t→a+

ϕ1(t)
τ1(t)

>
cosh(k(b− a))

ϕ1(λ1)M1

∫ b

a

(b− s)g1(s, 1)ds

. (4.10)

There exist a function τ2 : (a, b) −→ (0, 1) and a function ϕ2 : (a, b) −→ R+ with
ϕ2(t) < τ2(t), ∀ t ∈ (a, b) such that

g2(t, τ2(λ)u) ≤ ϕ2(λ)g2(t, u), ∀ t ∈ (a, b), u ∈ R+. (4.11)

There exists λ2 ∈ (a, b) such that τ2(λ2) = M2
M1c , and

lim
t→a+

τ2(t) = 0, lim
t→a+

ϕ2(t)
τ2(t)

<

M1

∫ b

a

(b− s)g2(s, 1)ds

cϕ2(λ2) cosh(k(b− a))
, (4.12)

where c > M2
M1

. Then the boundary value problem (4.1) has at least two nontrivial
nonnegative solutions u1(t) and u2(t) which satisfy

max
t∈[a,b]

u1(t) < 1 < max
t∈[a,b]

u2(t), ui(t) ≥
M1

M2
‖ui‖, i = 1, 2,

where M1 and M2 are defined in (4.5) and (4.6), respectively.
Proof. Let E = C[a, b], ‖ · ‖ denote the sup norm of E,

P =
{

u(t) ∈ E : u(t) ≥ M1

M2
‖u‖

}
.

Then P is a normal cone of E, the normal constant N = 1.
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We define an operator A : P −→ E by setting

Au(t) =
∫ b

a

K(t, s)g(s, u(s))ds, ∀ u ∈ P,

where K(t, s) as in (4.2). By Lemma 4.1, it is easy to check that u is a solution of
the problem (4.1) if and only if u = Au.

According to Lemma 4.2, we can know that A : P −→ P . It is easy to prove that A
is a completely continuous and increasing operator. It follows from the monotonicity
of A, (4.4) and (4.7) that

Au(t) ≤
∫ b

a

K(t, s)g(s, ‖u‖)ds

≤
∫ b

a

K(t, s)g
(
s, (‖u‖+ 1)β

)
ds

≤ M2(1 + ‖u‖)β sinh(k(b− a))
k(b− a)

∫ b

a

(b− s)g(s, 1)ds, ∀ u ∈ P.

Therefore, in view of (4.8), Au(t) is defined well.
It can be obtained by (4.4) and (4.8) that

Au(t) ≤ M2
sinh(k(b− a))

k(b− a)

∫ b

a

(b− s)g(s, 1)ds < 1, ∀ 0 ≤ u ≤ 1,

thus, we have

‖Au‖ < 1 =
1
N

, ∀ u ∈ P, ‖u‖ = 1,

which implies (2.1) is satisfied.
Let

A1u(t) =
∫ b

a

K(t, s)g1(s, u(s))ds, A2u(t) =
∫ b

a

K(t, s)g2(s, u(s))ds, ∀ u ∈ P.

From (4.9) and (4.11), we can know that A1 is a τ1-ϕ1-concave operator and A2 is a
τ2-ϕ2-convex operator.

For any u ∈ P ∩ T1, we have u(t) ≥ M1
M2
‖u‖ = M1

M2
. Since there exists λ1 ∈ (a, b)

such that τ1(λ1) = M1
M2

, it follows from (4.9) that

g1

(
t,

M1

M2

)
= g1(t, τ1(λ1)) ≥ ϕ1(λ1)g1(t, 1), ∀ t ∈ (a, b),
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which together with (4.4) and (4.8) implies

A1u(t) ≥
∫ b

a

K(t, s)g1

(
s,

M1

M2

)
ds

≥ ϕ1(λ1)
∫ b

a

K(t, s)g1(s, 1)ds

≥ ϕ1(λ1)
M1

cosh(k(b− a))

∫ b

a

(b− s)g1(s, 1)ds

> 0, ∀ u(t) ∈ P ∩ T1.

Hence,

m1 = inf{‖A1x‖ : x ∈ P, ‖x‖ = 1} = ϕ1(λ1)
M1

cosh(k(b− a))

∫ b

a

(b− s)g1(s, 1)ds.

Therefore, by (4.10), we have

lim
t→a+

ϕ1(t)
τ1(t)

>
1

m1
.

For any u ∈ P ∩ Tc, we have u(t) ≥ M1
M2
‖u‖ = M1

M2
c. Since c > M2

M1
, and there exists

λ2 ∈ (a, b) such that τ2(λ2) = M2
M1c , according to (4.11), we obtain

g2

(
t,

M1

M2
c

)
≥ 1

ϕ2(λ2)
g2(t, 1), ∀ t ∈ (a, b),

which together with (4.4) and (4.8) implies

A2u(t) ≥
∫ b

a

K(t, s)g2

(
s,

M1

M2
c

)
ds

≥ M1

ϕ2(λ2) cosh(k(b− a))

∫ b

a

(b− s)g2(s, 1)ds

> 0, ∀ u(t) ∈ P ∩ Tc.

Hence,

m2 = inf{‖A2x‖ : x ∈ P, ‖x‖ = c} =
M1

ϕ2(λ2) cosh(k(b− a))

∫ b

a

(b− s)g2(s, 1)ds.

Therefore, it follows from (4.12) that

lim
t→a+

ϕ2(t)
τ2(t)

<
m2

c
.

All the conditions of Theorem 2.1 are satisfied, and the conclusion of Theorem 4.1
follows from Theorem 2.1. This completes the proof of the theorem.
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Example 4.1. Assume that k − M2 sinh(k(b − a)) > 0. Consider the following
boundary value problem

−u′′ + k2u = u
1
3

b−t + xu5

b−t , a < t < b,

u′(a) = 0, u(b) =
m−2∑
i=1

αiu(ηi),
(4.13)

where 0 < x < k−M2 sinh(k(b−a))
M2 sinh(k(b−a)) .

In this example, set g1(t, u) = 1
b−tu

1
3 , g2(t, u) = x

b−tu
5, τ1(t) = τ2(t) = t−a

b−a ,
ϕ1(t) = [τ1(t)]

1
2 , ϕ2(t) = [τ2(t)]3. Then ϕ1(t) > τ1(t), ϕ2(t) < τ2(t), t ∈ (a, b). For

u ≥ 0, it is easy to check that

g1(t, τ1(λ)u) =
1

b− t

(
λ− a

b− a
u

) 1
3

≥
(

λ− a

b− a

) 1
2 1

b− t
u

1
3 = ϕ1(λ)g1(t, u), t ∈ (a, b),

lim
t→a+

τ1(t) = 0, lim
t→a+

(
t− a

b− a

)− 1
2

= +∞.

g2(t, τ2(λ)u) =
x

b− t
[τ2(λ)]5u5 ≤ [τ2(λ)]3

x

b− t
u5 = ϕ2(λ)g2(t, u), t ∈ (a, b),

lim
t→a+

τ2(t) = 0, lim
t→a+

[τ2(t)]2 = 0.

Furthermore, we can obtain∫ b

a

(b− s)
(

1
b− s

+
x

b− s

)
ds <

k(b− a)
M2 sinh(k(b− a))

.

We choose β = 7, for any 0 < r < 1, we have

r7

(
1

b− t
u

1
3 +

x

b− t
u5

)
≤ 1

b− t
(ru)

1
3 +

x

b− t
(ru)5.

By Theorem 4.1, we can know that the BVP (4.13) has at least two nontrivial non-
negative solutions u1(t) and u2(t) which satisfy the conclusion stated in Theorem
4.1.

Remark 4.1. In the above example, the existence of two solutions of a multi-point
boundary value problem is discussed by using one of our results for τ1-ϕ1-concave
operators and τ2-ϕ2-convex operators, which cannot be solved by means of previously
available methods [4, 15-22].
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