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1. Introduction

We consider the n-th order nonlinear differential system

(S)
{

u(n)(t) + b(t)f(v(t)) = 0, t ∈ (0, T )
v(n)(t) + c(t)g(u(t)) = 0, t ∈ (0, T ), n ≥ 2,

with the m-point boundary conditions

(BC)


u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(T ) =

m−2∑
i=1

aiu(ξi) + b0

v(0) = v′(0) = · · · = v(n−2)(0) = 0, v(T ) =
m−2∑
i=1

aiv(ξi) + b0,

where m ∈ N, m ≥ 3, 0 < ξ1 < · · · < ξm−2 < T and ai > 0, i = 1,m− 2.
The system (S) with b(t) = λb̃(t), c(t) = µc̃(t) (denoted by (S̃)), T = 1 and

the three-point nonlocal boundary conditions u(0) = u′(0) = · · · = u(n−2)(0) = 0,
u(1) = αu(η), v(0) = v′(0) = · · · = v(n−2)(0) = 0, v(1) = αv(η), where 0 < η < 1,
0 < αηn−1 < 1, has been investigated in [2]. By using the Guo-Krasnoselskii fixed
point theorem, the authors give sufficient conditions for λ and µ such positive solutions
of the above problem exist. In the paper [5] the authors studied the existence of
positive solutions to the n-th order m-point boundary value problem

u(n)(t) + f(t, u, u′) = 0, t ∈ (0, 1),

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) =
m−2∑
i=1

kiu(ξi),
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by using the extension of Krasnoselkii’s fixed point theorem in a cone. In [8] we
give sufficient conditions for λ and µ such that the system (S̃) with n = 2 and the
boundary conditions

(BC0)


βu(0)− γu′(0) = 0, u(T ) =

m−2∑
i=1

aiu(ξi) + b0

βv(0)− γv′(0) = 0, v(T ) =
m−2∑
i=1

aiv(ξi) + b0, m ∈ N, m ≥ 3,

for b0 = 0, has positive solutions. In [9] we investigate the existence and nonexistence
of positive solutions of the system (S) with n = 2 and the boundary conditions (BC0)
with b0 > 0. The discrete case of the (S̃) for n = 2, namely the system{

∆2un−1 + λbnf(vn) = 0, n = 1, N − 1
∆2vn−1 + µcng(un) = 0, n = 1, N − 1, N ≥ 2,

with the m + 1 - point boundary conditions
βu0 − γ∆u0 = 0, uN −

m−2∑
i=1

aiuξi = 0,

βv0 − γ∆v0 = 0, vN −
m−2∑
i=1

aivξi
= 0, m ≥ 3,

where ∆ is the forward difference operator with stepsize 1, ∆un = un+1 − un, and

k, m
def
= {k, k + 1, . . . ,m} for k, m ∈ N, has been studied in [7]. We also mention the

paper [6] where the authors investigated the existence and nonexistence of positive
solutions for the m-point boundary value problem on time scales

u∆∇(t) + a(t)f(u(t)) = 0, t ∈ (0, T ),

βu(0)− γu∆(0) = 0, u(T )−
m−2∑
i=1

aiu(ξi) = b, m ≥ 3, b > 0.

The multi-point boundary value problems for ordinary differential or difference
equations have applications in a variety of different areas of applied mathematics and
physics. For example the vibrations of a guy wire of a uniform cross-section and
composed of N parts of different densities can be set up as a multi-point boundary
value problem (see [12]); also many problems in the theory of elastic stability can be
handled as multi-point problems (see [14]). The study of multi-point boundary value
problems for second order differential equations was initiated by Il’in and Moiseev
(see [3]-[4]). Since then such multi-point boundary value problems (continuous or
discrete cases) have been studied by many authors (see for example [1], [10]-[11],
[13], [15]-[16]), by using different methods, such as fixed point theorems in cones, the
Leray-Schauder continuation theorem, nonlinear alternatives of Leray-Schauder and
coincidence degree theory.

Inspired by the work [6], in this paper we shall prove an existence result for the
positive solutions of problem (S), (BC), by using the Schauder fixed point theorem.
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We shall also give sufficient conditions for the nonexistence of the solutions for our
problem.

We shall suppose that the following conditions are verified
(H1) 0 < ξ1 < ξ2 < · · · < ξm−2 < T , ai > 0 for i = 1,m− 2,

d = Tn−1 −
m−2∑
i=1

aiξ
n−1
i > 0, b0 > 0.

(H2) The functions b, c : [0, T ] → [0,∞) are continuous and there exist t0, t̃0 ∈
[ξm−2, T ) such that b(t0) > 0, c(t̃0) > 0.

(H3) The functions f, g : [0,∞) → [0,∞) are continuous and satisfy the conditions
a) There exists c0 > 0 such that f(u) <

c0

L
, g(u) <

c0

L
, for all u ∈ [0, c0].

b) lim
u→∞

f(u)
u

= ∞, lim
u→∞

g(u)
u

= ∞,
where

L = max

{
Tn−1

d(n− 1)!

∫ T

0

(T − s)n−1b(s) ds,
Tn−1

d(n− 1)!

∫ T

0

(T − s)n−1c(s) ds

}
.

2. Preliminary results

In this section we shall present some auxiliary results from [5] related to the fol-
lowing n-th order differential equation with boundary conditions

u(n)(t) + y(t) = 0, 0 < t < T, (1)

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(T ) =
m−2∑
i=1

aiu(ξi). (2)

Lemma 2.1. ([5]) If d = Tn−1 −
m−2∑
i=1

aiξ
n−1
i 6= 0, 0 < ξ1 < · · · < ξm−2 < T and

y ∈ C([0, T ]) then the solution of (1), (2) is given by

u(t) =
tn−1

d(n− 1)!

∫ T

0

(T − s)n−1y(s) ds

− tn−1

d(n− 1)!

m−2∑
i=1

ai

∫ ξi

0

(ξi − s)n−1y(s) ds

− 1
(n− 1)!

∫ t

0

(t− s)n−1y(s) ds, 0 ≤ t ≤ T.

(3)
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Lemma 2.2. ([5]) Under the assumptions of Lemma 2.1, the Green function for the
boundary value problem (1), (2) is given by

G(t, s) =



tn−1

d(n− 1)!

(T − s)n−1 −
m−2∑

i=j+1

ai(ξi − s)n−1

− 1
(n− 1)!

(t− s)n−1,

if ξj ≤ s < ξj+1, s ≤ t,

tn−1

d(n− 1)!

(T − s)n−1 −
m−2∑

i=j+1

ai(ξi − s)n−1

 ,

if ξj ≤ s < ξj+1, s ≥ t, j = 0,m− 3,
tn−1

d(n− 1)!
(T − s)n−1 − 1

(n− 1)!
(t− s)n−1, if ξm−2 ≤ s ≤ T, s ≤ t,

tn−1

d(n− 1)!
(T − s)n−1, if ξm−2 ≤ s ≤ T, s ≥ t, (ξ0 = 0).

Using the Green function, the solution of problem (1),(2) is given by

u(t) =
∫ T

0

G(t, s)y(s) ds.

Lemma 2.3. ([5]) If ai > 0 for all i = 1,m− 2, 0 < ξ1 < · · · < ξm−2 < T and d > 0,
then G(t, s) ≥ 0 for all t, s ∈ [0, T ].
Lemma 2.4. ([5]) If ai > 0 for all i = 1,m− 2, 0 < ξ1 < · · · < ξm−2 < T , d > 0
and y ∈ C([0, T ]), y(t) ≥ 0 for all t ∈ [0, T ], then the unique solution u of problem
(1), (2) satisfies u(t) ≥ 0 for all t ∈ [0, T ].
Lemma 2.5. If ai > 0 for all i = 1,m− 2, 0 < ξ1 < · · · < ξm−2 < T , d > 0,
y ∈ C([0, T ]), y(t) ≥ 0 for all t ∈ [0, T ], then the solution of problem (1), (2) satisfies

u(t) ≤ Tn−1

d(n− 1)!

∫ T

0

(T − s)n−1y(s) ds, ∀t ∈ [0, T ],

u(ξj) ≥
ξn−1
j

d(n− 1)!

∫ T

ξm−2

(T − s)n−1y(s) ds, ∀ j = 1,m− 2.

Proof. By (3) we have

u(t) ≤ tn−1

d(n− 1)!

∫ T

0

(T − s)n−1y(s) ds ≤ Tn−1

d(n− 1)!

∫ T

0

(T − s)n−1y(s) ds,

for all t ∈ [0, T ].
Then by using Lemma 2.2 and Lemma 2.3 we obtain

u(ξj) =
∫ T

0

G(ξj , s)y(s) ds ≥
∫ T

ξm−2

G(ξj , s)y(s) ds

=
ξn−1
j

d(n− 1)!

∫ T

ξm−2

(T − s)n−1y(s) ds,

for all j = 1,m− 2. �
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Lemma 2.6. ([5]) We assume that 0 < ξ1 < · · · < ξm−2 < T , ai > 0 for all
i = 1,m− 2, d > 0 and y ∈ C([0, T ]), y(t) ≥ 0 for all t ∈ [0, T ]. Then the solution of
problem (1), (2) verifies inf

t∈[ξm−2,T ]
u(t) ≥ γ‖u‖, where

γ =


min

{
am−2(T − ξm−2)
T − am−2ξm−2

,
am−2ξ

n−1
m−2

Tn−1

}
, if

m−2∑
i=1

ai < 1,

min

{
a1ξ

n−1
1

Tn−1
,
ξn−1
m−2

Tn−1

}
, if

m−2∑
i=1

ai ≥ 1

and ‖u‖ = sup
t∈[0,T ]

|u(t)|.

3. Main results

First we shall present an existence result for the positive solutions of (S), (BC).
Theorem 3.1. Assume that the assumptions (H1), (H2), (H3)a hold. Then the
problem (S), (BC) has at least one positive solution for b0 > 0 sufficiently small.
Proof. We consider the problem

h(n)(t) = 0, t ∈ (0, T )

h(0) = h′(0) = · · · = h(n−2)(0) = 0, h(T ) =
n−2∑
i=1

aih(ξi) + 1.
(4)

The solution h(t), t ∈ (0, T ) of equation (4)1 is

h(t) =
C1t

n−1

(n− 1)!
+

C2t
n−2

(n− 2)!
+ · · ·+ Cn−1t + Cn.

Because h(0) = · · · = h(n−2)(0) = 0 we obtain C2 = · · · = Cn = 0, so h(t) =

C1t
n−1/(n− 1)!. By the condition h(T ) =

m−2∑
i=1

aih(ξi) + 1 we obtain

C1T
n−1

(n− 1)!
=

m−2∑
i=1

ai
C1ξ

n−1
i

(n− 1)!
+ 1 or C1

(
Tn−1 −

m−2∑
i=1

aiξ
n−1
i

)
= (n− 1)!.

Hence C1 = (n− 1)!/d. So

h(t) =
tn−1

d
, t ∈ [0, T ]. (5)

We define the functions x(t), y(t), t ∈ [0, T ] by

x(t) = u(t)− b0h(t), y(t) = v(t)− b0h(t), t ∈ [0, T ].

Then (S), (BC) can be equivalently written as{
x(n)(t) + b(t)f(y(t) + b0h(t)) = 0
y(n)(t) + c(t)g(x(t) + b0h(t)) = 0, t ∈ (0, T )

(6)
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with the boundary conditions
x(0) = x′(0) = · · · = x(n−2)(0) = 0, x(T ) =

m−2∑
i=1

aix(ξi)

y(0) = y′(0) = · · · = y(n−2)(0) = 0, y(T ) =
m−2∑
i=1

aiy(ξi).

(7)

Using the Green function given in Lemma 2.2, a pair (x(t), y(t)) is a solution of
problem (6), (7) if and only if

x(t) =
∫ T

0

G(t, s)b(s)f

(∫ T

0

G(s, τ)c(τ)g(x(τ) + b0h(τ)) dτ + b0h(s)
)

ds,

y(t) =
∫ T

0

G(t, s)c(s)g(x(s) + b0h(s)) ds, 0 ≤ t ≤ T,

(8)

where h(t), t ∈ [0, T ] is given by (5).
We consider the Banach space X = C([0, T ]) with supremum norm ‖ · ‖ and we

define the set

K = {x ∈ C([0, T ]), 0 ≤ x(t) ≤ c0, ∀ t ∈ [0, T ]} ⊂ X.

We also define the operator Λ : K → X by

Λ(x)(t)=
∫ T

0

G(t, s)b(s)f

(∫ T

0

G(s, τ)c(τ)g(x(τ) + b0h(τ))dτ + b0h(s)

)
ds, 0 ≤ t ≤ T.

For sufficiently small b0 > 0, by (H3)a we deduce

f(y(t) + b0h(t)) ≤ c0

L
, g(x(t) + b0h(t)) ≤ c0

L
, ∀x, y ∈ K, ∀ t ∈ [0, T ].

Then for any x ∈ K we have, by using Lemma 2.4, that Λ(x)(t) ≥ 0, ∀ t ∈ [0, T ].
By Lemma 2.5 we also have

y(s) ≤ Tn−1

d(n− 1)!

∫ T

0

(T − τ)n−1c(τ)g(x(τ) + b0h(τ)) dτ

≤ c0

L

Tn−1

d(n− 1)!

∫ T

0

(T − τ)n−1c(τ) dτ ≤ c0

L
L = c0, ∀ s ∈ [0, T ]

and

Λ(x)(t) ≤ Tn−1

d(n− 1)!

∫ T

0

(T − s)n−1b(s)f(y(s) + b0h(s)) ds

≤ c0

L

Tn−1

d(n− 1)!

∫ T

0

(T − s)n−1b(s)ds ≤ c0

L
L = c0, ∀ t ∈ [0, T ].

Therefore Λ(K) ⊂ K.
Using standard arguments we deduce that Λ is completely continuous (continuous

and compact). By the Schauder fixed point theorem, we conclude that Λ has a
fixed point x ∈ K. This element together with y given by (8) represent a solution
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for (6) and (7). This shows that our problem (S), (BC) has a positive solution
u = x + b0h, v = y + b0h for sufficiently small b0. �

In what follows we shall present sufficient conditions for nonexistence of positive
solutions of (S), (BC).
Theorem 3.2. Assume that the assumptions (H1),(H2), (H3)b hold. Then the prob-
lem (S), (BC) has no positive solution for b0 sufficiently large.
Proof. We suppose that (u, v) is a positive solution of (S), (BC) . Then

x = u− b0h, y = v − b0h

is solution for (6), (7), where h is the solution of problem (4). By Lemma 2.4 we have
x(t) ≥ 0, y(t) ≥ 0, ∀ t ∈ [0, T ], and by (H2) we deduce that ‖x‖ > 0, ‖y‖ > 0. Using
Lemma 2.6 we also have

inf
t∈[ξm−2,T ]

x(t) ≥ γ‖x‖ and inf
t∈[ξm−2,T ]

y(t) ≥ γ‖y‖,

where γ is defined in Lemma 2.6.
Using now (5) - the expression for h, we deduce that

inf
t∈[ξm−2,T ]

h(t) =
ξn−1
m−2

d
=

ξn−1
m−2

Tn−1
· Tn−1

d
.

So

inf
t∈[ξm−2,T ]

h(t) =
ξn−1
m−2

Tn−1
‖h‖ ≥ γ‖h‖.

Then

inf
t∈[ξm−2,T ]

(x(t) + b0h(t)) ≥ inf
t∈[ξm−2,T ]

x(t) + b0 inf
t∈[ξm−2,T ]

h(t)

≥ γ(‖x‖+ b0‖h‖) ≥ γ‖x + b0h‖

and

inf
t∈[ξm−2,T ]

(y(t) + b0h(t)) ≥ inf
t∈[ξm−2,T ]

y(t) + b0 inf
t∈[ξm−2,T ]

h(t)

≥ γ(‖y‖+ b0‖h‖) ≥ γ‖y + b0h‖.

We now consider

R =
d(n− 1)!
γξn−1

m−2

(
min

{∫ T

ξm−2

(T − s)n−1c(s) ds,

∫ T

ξm−2

(T − s)n−1b(s) ds

})−1

> 0.

By (H3)b, for R defined above we deduce that there exists M > 0 such that
f(u) > 2Ru, g(u) > 2Ru, for all u ≥ M .

We consider b0 > 0 sufficiently large such that

inf
t∈[ξm−2,T ]

(x(t) + b0h(t)) ≥ M and inf
t∈[ξm−2,T ]

(y(t) + b0h(t)) ≥ M.
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By using Lemma 2.5 and the above considerations, we have

y(ξm−2) ≥
ξn−1
m−2

d(n− 1)!

∫ T

ξm−2

(T − s)n−1c(s)g(x(s) + b0h(s)) ds

≥
ξn−1
m−2

d(n− 1)!

∫ T

ξm−2

(T − s)n−1c(s) · 2R(x(s) + b0h(s)) ds

≥
ξn−1
m−2

d(n− 1)!

∫ T

ξm−2

(T − s)n−1c(s) · 2R inf
τ∈[ξm−2,T ]

(x(τ) + b0h(τ)) ds

≥
2Rγξn−1

m−2

d(n− 1)!

∫ T

ξm−2

(T − s)n−1c(s) ds · ‖x + b0h‖ ≥ 2‖x + b0h‖ ≥ 2‖x‖.

Therefore we obtain

‖x‖ ≤ 1
2
y(ξm−2) ≤

1
2
‖y‖. (9)

In a similar manner we deduce x(ξm−2) ≥ 2‖y + b0h‖ ≥ 2‖y‖ and so

‖y‖ ≤ 1
2
x(ξm−2) ≤

1
2
‖x‖. (10)

By (9) and (10) we obtain ‖x‖ ≤ 1
2
‖y‖ ≤ 1

4
‖x‖, which is a contradiction, because

‖x‖ > 0. Then, when b0 is sufficiently large, our problem (S), (BC) has no positive
solution. �

4. An example

We consider T = 1, b(t) = bt, c(t) = ct, t ∈ [0, 1], b, c > 0, n = 3, m = 5,

ξ1 = 1
3 , ξ2 = 2

3 , a1 = 1, a2 = 1
2 . Then d = 1−

2∑
i=1

aiξ
2
i =

2
3

> 0.

We also consider the functions f, g : [0,∞) → [0,∞), f(x) =
ãx3

x + 1
, g(x) =

b̃x3

x + 1

with ã, b̃ > 0. We have lim
x→∞

f(x)
x

= lim
x→∞

g(x)
x

= ∞. The constant L from (H3) is
in this case

L = max
{

1
2d

∫ 1

0

(1− s)2bs ds,
1
2d

∫ 1

0

(1− s)2cs ds

}
=

1
16

max{b, c}.

We choose c0 = 1 and if we select ã and b̃ satisfying the conditions

ã <
2
L

=
32

max{b, c}
= 32min

{
1
b
,
1
c

}
, b̃ <

2
L

= 32 min
{

1
b
,
1
c

}
,

then we obtain f(x) ≤ ã
2 < 1

L , g(x) ≤ b̃
2 < 1

L , for all x ∈ [0, 1].
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Thus all the assumptions (H1)− (H3) are verified. By Theorem 3.1 and Theorem
3.2 we deduce that the nonlinear third-order differential system

u′′′(t) + bt
ãv3(t)

v(t) + 1
= 0

v′′′(t) + ct
b̃u3(t)

u(t) + 1
= 0, t ∈ (0, 1)

with the boundary conditions{
u(0) = u′(0) = 0, u(1) = u( 1

3 ) + 1
2u( 2

3 ) + b0

v(0) = v′(0) = 0, v(1) = v( 1
3 ) + 1

2v( 2
3 ) + b0,

has at least one positive solution for sufficiently small b0 > 0 and no positive solution
for sufficiently large b0.
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