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1. Introduction

Third order nonlinear differential equations arise in a variety of different areas of
applied mathematics and physics [1]. Recently, many authors studied the existence
and multiplicity of positive solutions for two-point or three-point boundary value
problem for nonlinear third-order ordinary differential equations, see in [2-10]. For
examples, Anderson [2] established the existence of at least three positive solution of
problem

x′′′(t) = f(x(t)), t ∈ (0, 1)

x(0) = x′(t2) = x′′(1) = 0, t2 ∈ (0, 1),

where f : R → [0,+∞) is continuous and 1/2 ≤ t2 < 1. By using Guo-Krasnoselskĭi
fixed point theorem, Palamides and Smyrlis [4] obtained the existence of positive
solution for third-order three-point boundary value problem

x′′′(t) = a(t)f(t, x(t)), t ∈ (0, 1)

x′′(η) = 0, x(0) = x(1) = 0, η ∈ (0, 1).

But in all these work ([2-10]), the first and second order derivative are not involved
in the nonlinear term. Furthermore, all these work are concentrated on the two
or three point boundary conditions. Few paper deals with the existence of positive
solutions to m-point problems for third-order differential equations which the first
and second order derivative are involved in the nonlinear term explicitly.
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In this paper, we consider the positive solutions for multi-point third-order bound-
ary value problem 

x′′′(t) = f(t, x(t), x′(t), x′′(t)), t ∈ [0, 1]

x′′(1) = 0, x′(1) = 0, x(0) =
m−2∑
i=1

βix(ξi),
(1.1)

where 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, 0 < βi < 1, i = 1, 2, · · · ,m− 2,
∑m−2

i=1 βi < 1
and f ∈ C([0, 1] × R3, [0,+∞)). Positive solutions for this problem have not been
considered before. By using Avery and Peterson fixed point [11], existence of at
least three concave positive solutions for problem (1.1) are established. The results
established in this paper are general than the papers before.

2. Definitions and Lemmas

Definition 2.1. The map α is said to be a nonnegative continuous convex functional
on cone P of a real Banach space E provided that α : P → [0,+∞) is continuous and

α(tx+ (1− t)y) ≤ tα(x) + (1− t)α(y), for all x, y ∈ P and t ∈ [0, 1].

Definition 2.2. The map β is said to be a nonnegative continuous concave functional
on cone P of a real Banach space E provided that β : P → [0,+∞) is continuous and

β(tx+ (1− t)y) ≥ tβ(x) + (1− t)β(y), for all x, y ∈ P and t ∈ [0, 1].

Let γ, θ be nonnegative continuous convex functionals on P , α be a nonnegative
continuous concave functional on P and ψ be a nonnegative continuous functional on
P. Then for positive numbers a, b, c and d, we define the following convex sets:

P (γ, d) = {x ∈ P |γ(x) < d},

P (γ, α, b, d) = {x ∈ P |b ≤ α(x), γ(x) ≤ d},

P (γ, θ, α, b, c, d) = {x ∈ P |b ≤ α(x), θ(x) ≤ c, γ(x) ≤ d}
and a closed set

R(γ, ψ, a, d) = {x ∈ P |a ≤ ψ(x), γ(x) ≤ d}.

Lemma 2.1. Let P be a cone in Banach space E. Let γ, θ be nonnegative continuous
convex functionals on P , α be a nonnegative continuous concave functional on P and
ψ be a nonnegative continuous functional on P satisfying:

ψ(λx) ≤ λψ(x), for 0 ≤ λ ≤ 1, (2.1)

such that for some positive numbers l and d,

α(x) ≤ ψ(x), ‖x‖ ≤ lγ(x) (2.2)

for all x ∈ P (γ, d). Suppose T : P (γ, d) → P (γ, d) is completely continuous and
there exist positive numbers a, b, c with a < b such that
(S1) {x ∈ P (γ, θ, α, b, c, d)|α(x) > b} 6= ∅ and α(Tx) > b for x ∈ P (γ, θ, α, b, c, d);
(S2) α(Tx) > b for x ∈ P (γ, α, b, d) with θ(Tx) > c;
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(S3) 0 6∈ R(γ, ψ, a, d) and ψ(Tx) < a for x ∈ R(γ, ψ, a, d) with ψ(x) = a.
Then T has at least three fixed points x1, x2, x3 ∈ P (γ, d) such that:

γ(xi) ≤ d, i = 1, 2, 3; b < α(x1); a < ψ(x2), α(x2) < b; ψ(x3) < a. (2.3)

3. Main results

Consider the third-order m-point boundary value problem

x′′′(t) = y(t), t ∈ [0, 1] (3.1)

x′′(1) = 0, x′(1) = 0, x(0) =
m−2∑
i=1

βix(ξi), (3.2)

where 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, 0 < βi < 1, i = 1, 2, · · · ,m− 2, and
m−2∑
i=1

βi < 1.

Lemma 3.1. Denote ξ0 = 0, ξm−1 = 1, β0 = βm−1 = 0, y(t) ∈ C[0, 1], problem
(3.1), (3.2) has the unique solution

x(t) =
∫ 1

0

G(t, s)y(s)ds,

where for i = 1, 2, · · · , m− 1,

G(t, s) =
1

1−
m−1∑
i=0

βk



(1−
m−1∑
i=0

βi)(−
t2

2
+ st)

−1
2

i−1∑
k=0

βkξ
2
k +

i−1∑
k=0

βkξks+
1
2

m−1∑
k=i

βks
2, ξi−1 ≤ s ≤ ξi

s2

2
− 1

2

i−1∑
k=0

βkξ
2
k +

i−1∑
k=0

βkξks−
1
2

i−1∑
k=0

βks
2, ξi−1 ≤ s ≤ ξi

Proof. Let G(t, s) is the Green’s function of problem x′′′(t) = 0 with boundary
condition (3.2). We can suppose

G(t, s) =

{
a2t

2 + a1t+ a0 t ≤ s, ξi−1 ≤ s ≤ ξi, i = 1, 2, · · · , m− 1

b2t
2 + b1t+ b0 t ≥ s, ξi−1 ≤ s ≤ ξi, i = 1, 2, · · · , m− 1

Considering the definition and properties of Green’s function together with the bound-
ary condition (3.2), we have

a2s
2 + a1s+ a0 = b2s

2 + b1s+ b0
2a2s+ a1 = 2b2s+ b1
2a2 − 2b2 = −1
b2 = 0
2a2s+ a1 = 0

a0 =
i−1∑
k=0

βk(a2ξ
2
k + a1ξk + a0) +

m−1∑
k=i

βk(b2ξ2k + b1ξk + b0)
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Hence
a2 = −1

2
, a1 = s, b2 = b1 = 0,

a0 =

−1
2

i−1∑
k=0

βkξ
2
k +

i−1∑
k=0

βkξks+
1
2

m−1∑
k=i

βks
2

1−
m−1∑
i=0

βi

,

b0 =

1
2
s2 − 1

2

i−1∑
k=0

βkξ
2
k +

i−1∑
k=0

βkξks−
1
2

i−1∑
k=0

βks
2

1−
m−1∑
i=0

βi

These give the explicit expression of the Green’s function of G(t, s). The proof of
Lemma 3.1 is completed.
Lemma 3.2. The Green’s function G(t, s) satisfies that G(t, s) ≥ 0, t, s ∈ [0, 1].
Proof. For ξi−1 ≤ s ≤ ξi, i = 1, 2, · · · , m− 1 and t ≤ s,

(1−
m−1∑
i=0

βk)G(t, s) ≥ (1−
m−1∑
i=0

βk)G(0, s) = −1
2

i−1∑
k=0

βkξ
2
k +

i−1∑
k=0

βkξks+
1
2

m−1∑
k=i

βks
2

≥
i−1∑
k=0

βkξk(s− ξk) +
1
2

m−1∑
k=i

βks
2 ≥ 0.

For ξi−1 ≤ s ≤ ξi, i = 1, 2, · · · , m− 1 and t ≥ s,

(1−
m−1∑
i=0

βk)G(t, s) =
s2

2
− 1

2

i−1∑
k=0

βkξ
2
k +

i−1∑
k=0

βkξks−
1
2

i−1∑
k=0

βks
2

≥ 1
2

i−1∑
k=0

βk[s2 − (ξk − s)2] ≥ 0

These gives that G(t, s) ≥ 0, t, s ∈ [0, 1].
Lemma 3.3. If y(t) ≥ 0, t ∈ [0, 1], x(t) is the solution of problem (3.1), (3.2), we
claim that

(1) min
0≤t≤1

|x(t)| ≥ δ max
0≤t≤1

|x(t)|,

(2) max
0≤t≤1

|x(t)| ≤ γ max
0≤t≤1

|x′(t)|,

where δ =
m−2∑
i=1

βiξi/(1 −
m−2∑
i=1

βi(1 − ξi)), γ = (1 −
m−2∑
i=1

βi(1 − ξi))/(1 −
m−2∑
i=1

βi) are

positive constants.
Proof. (1) For x′′′(t) = y(t) ≥ 0, t ∈ [0, 1], we see that x′′(t) is increasing on [0,1].
Considering x′′(1) = 0, we have x′′(t) ≤ 0, t ∈ (0, 1). This together with x′(1) = 0,
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we get that max
0≤t≤1

x(t) = x(1) and min
0≤t≤1

x(t) = x(0).

From the concavity of x(t), we have

ξi(x(1)− x(0)) ≤ x(ξi)− x(0).

Multiplying both sides with βi and considering the boundary condition, we have
m−2∑
i=1

βiξix(1) ≤ (1−
m−2∑
i=1

βi(1− ξi))x(0). (3.3)

(2) Considering the mean-value theorem we get

x(ξi)− x(0) = ξix
′(ηi), η ∈ (ξi, 1).

From the concavity of x similarly with above we know

(1−
m−2∑
i=1

βi)x(0) <
m−2∑
i=1

βiξix
′(0). (3.4)

Considering (3.3) together with (3.4) we have x(0) ≤ γ|x′(0)|. These give the proof
of Lemma 3.3.

Furthermore, for x′(t) = x′(1)−
∫ 1

t

x′′(s)ds and x′(1) = 0, we get

|x′(t)| = |
∫ 1

t

x′′(s)ds| ≤
∫ 1

0

|x′′(s)|ds.

Thus
max
0≤t≤1

|x′(t)| ≤ max
0≤t≤1

|x′′(t)|.

Remark. Above conclusion with Lemma 3.3 ensure that

max{max
0≤t≤1

|x(t)|, max
0≤t≤1

|x′(t)|, max
0≤t≤1

|x′′(t)|} ≤ γ max
0≤t≤1

|x′′(t)|.

Let Banach space E = C2[0, 1] be endowed with the norm

‖x‖ = max{max
0≤t≤1

|x(t)|, max
0≤t≤1

|x′(t)|, max
0≤t≤1

|x′′(t)|}, x ∈ E.

Define the cone P ⊂ E by

P = {x ∈ E|x(t) ≥ 0, x′′(1) = 0, x′(1) = 0,

x(0) =
m−2∑
i=1

βix(ξi), x(t) is concave on [0, 1]}.

Let the nonnegative continuous concave functional α, the nonnegative continuous
convex functionals γ, θ and the nonnegative continuous functional ψ be defined on
the cone by

γ(x) = max
0≤t≤1

|x′′(t)|, θ(x) = ψ(x) = max
0≤t≤1

|x(t)|, α(x) = min
0≤t≤1

|x(t)|.

By Lemma 3.3, the functionals defined above satisfy:

δθ(x) ≤ α(x) ≤ θ(x) = ψ(x), ‖x‖ ≤ γγ(x). (3.5)
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Let

m =
∫ 1

0

G(0, s)ds, N =
∫ 1

0

G(1, s)ds, λ = min{m, δγ}.

Assume that there exist constants 0 < a, b, d with a < b < λd such that

A1) f(t, u, v, w) ≤ d, (t, u, v) ∈ [0, 1]× [0, γd]× [−d, 0]× [0, d],

A2) f(t, u, v, w) > b/m, (t, u, v) ∈ [0, 1]× [b, b/δ]× [−d, 0]× [0, d],

A3) f(t, u, v, w) < a/N, (t, u, v) ∈ [0, 1]× [0, a]× [−d, 0]× [0, d].
Theorem. Under assumptions A1) − A3), problem (1.1) has at least three positive
solutions x1, x2, x3 satisfying

max
0≤t≤1

|x′′i (t)| ≤ d, i = 1, 2, 3; b < min
0≤t≤1

|x1(t)|;

a < max
0≤t≤1

|x2(t)|, min
0≤t≤1

|x2(t)| < b; max
0≤t≤1

|x3(t)| ≤ a. (3.6)

Proof. Problem (1.1) has a solution x = x(t) if and only if x solves the operator
equation

x(t) =
∫ 1

0

G(t, s)f(s, x(s), x′(s), x′′(s))ds = (Tx)(t).

By a simple computation, we have

(Tx)′′(t) = −
∫ 1

t

f(s, x, x′, x′′)ds

For x ∈ P (γ, d), considering Lemma 3.3 and assumption A1), we have

f(t, x(t), x′(t), x′′(τ)) ≤ d.

Thus

γ(Tx) = |(Tx)′′(0)| = | −
∫ 1

0

f(s, x, x′, x′′)ds| =
∫ 1

0

|f(s, x, x′, x′′)|ds ≤ d.

Hence T : P (γ, d) → P (γ, d) and T is a completely continuous operator obviously.
The fact that the constant function x(t) = b/δ ∈ P (γ, θ, α, b, c, d) and α(b/δ) > b
implies that

{x ∈ P (γ, θ, α, b, c, d|α(x) > b)} 6= ∅.
This ensures that condition (S1) of Lemma 2.1 holds.
For x ∈ P (γ, θ, α, b, c, d), we have b ≤ x(t) ≤ b/δ and |x′′(t)| < d. From assumption
(A2), f(t, x, x′, x′′) > b/m.
Hence, by definition of α and the cone P , we can get

α(Tx) = (Tx)(0) =
∫ 1

0

G(0, s)f(s, x, x′, x′′)ds ≥ b

m

∫ 1

0

G(0, s)ds >
b

m
m = b,

which means α(Tx) > b, ∀x ∈ P (γ, θ, α, b, b/δ, d).
Second, with (3.4) and b < λd, we have

α(Tx) ≥ δθ(Tx) > δ × b

δ
= b
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for all x ∈ P (γ, α, b, d) with θ(Tx) >
b

δ
.

Thus, condition (S2) of Lemma 2.1 holds. Finally we show that (S3) also holds.
We see ψ(0) = 0 < a and 0 6∈ R(γ, ψ, a, d). Suppose that x ∈ R(γ, ψ, a, d) with
ψ(x) = a, then by the assumption of (A3),

ψ(Tx) = max
0≤t≤1

|(Tx)(t)| =
∫ 1

0

G(1, s)f(s, x, x′, x′′)dτds <
a

N

∫ 1

0

G(1, s)ds = a,

which ensures that condition (S3) of Lemma 2.1 is satisfied. Thus, an application of
Lemma 2.1 implies that the third-order m-point boundary value problem (1.1) have
at least three positive concave solutions x1, x2, x3 satisfying the conditions that

max
0≤t≤1

|x′′i (t)| ≤ d, i = 1, 2, 3; b < min
0≤t≤1

|x1(t)|;

a < max
0≤t≤1

|x2(t)|, min
0≤t≤1

|x2(t)| < b; max
0≤t≤1

|x3(t)| ≤ a.
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