Fixed Point Theory, 13(2012), No. 1, 129-136 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

MINIMUM-NORM FIXED POINT OF NONEXPANSIVE NONSELF MAPPINGS IN HILBERT SPACES

XIA LIU^{*,1} AND YANLAN CUI^{**}

*Department of Mathematics, Yulin University Yulin, Shaaxi 719000, China E-mail: liuxia1232007@163.com

**Department of Mathematics and Computer Science Yanan University, Yanan 716000, Shaaxi, China E-mail: yadxcui53@163.com

Abstract. Both implicit and explicit methods are introduced to find the minimum-norm fixed point of a nonexpansive nonself mapping from a closed convex subset C of a Hilbert space H into H and satisfying the weak inwardness condition. Our idea is to apply the nearest point projection P_C to the well-known Browder's implicit and Halpern's explicit methods. Key Words and Phrases: Nonexpansive nonself mapping, nearest point projection, fixed point,

minimum-norm, Browder's method, Halpern's method, weak inwardness condition. 2010 Mathematics Subject Classification: 47H09, 47H10.

1. INTRODUCTION

Throughout this paper, it is assumed that H is a real Hilbert space, C a nonempty closed convex subset of H, and $T : C \to H$ a non-self nonexpansive mapping (i.e., $||Tx - Ty|| \leq ||x - y||$ for all $x, y \in C$). We use F(T) to denote the set of fixed points of T; that is, $F(T) = \{x \in C : Tx = x\}$, and always assume that $F(T) \neq \emptyset$. Since now F(T) is closed, convex and nonempty, there exists a unique point $x^{\dagger} \in F(T)$ satisfying the property:

$$||x^{\dagger}|| = \min\{||x|| : x \in F(T)\}.$$
(1.1)

Namely, x^{\dagger} is the nearest point projection of the original onto the fixed point set F(T).

In many occasions, it is of interest to find a particular solution of a problem (assume the problem has multiple solutions); in particular, the solution with least norm (e.g., in least-squares problems, the least-norm solutions are used to define the pseudoinverse of bounded linear operators).

In this paper we are concerned with the least-norm fixed point x^{\dagger} of a nonexpansive nonself-mapping T. We will introduce two methods (one implicit and one explicit)

 $^{^{1}}$ Corresponding author.

¹²⁹

to find x^{\dagger} . First let us review some literature in which iterative methods for finding fixed points of nonexpansive mappings are studied.

In the case where T is assumed to be a nonexpansive self-mapping of C with $F(T) \neq \emptyset$, Browder [1] and Halpern [6] introduced an implicit method and an explicit method, respectively.

Browder's implicit method generates a net $\{x_t\}$ in an implicit way: for each $t \in$ $(0,1), x_t \in C$ is the unique fixed point of the contraction

$$x \mapsto T_t x := tu + (1-t)Tx, \quad x \in C \tag{1.2}$$

where $u \in C$ is a fixed point. (See [26] for another implicit method.)

Halpern's explicit method generates a sequence $\{x_n\}$ explicitly by the recursive manner:

$$x_{n+1} = t_n u + (1 - t_n) T x_n, \quad n \ge 0$$
(1.3)

where the initial guess $x_0 \in C$ is arbitrarily fixed, and where $\{t_n\}$ is a sequence in the unit interval (0, 1).

The convergence of the net $\{x_t\}$ and of the sequence $\{x_n\}$ is as follows.

Theorem 1.1. [1] Suppose $T: C \to C$ is a nonexpansive self-mapping of C with $F(T) \neq \emptyset$. Then the net $\{x_t\}$ strongly converges as $t \to 0$ to the fixed point x^* of T that is closest to u from F(T) (i.e., $P_{F(T)}(u)$).

Theorem 1.2. [6, 18, 19, 20] Suppose $T: C \to C$ is a nonexpansive self-mapping of C with $F(T) \neq \emptyset$. Assume the conditions:

- (C1) $\lim_{n\to\infty} t_n = 0;$

(C1) $\lim_{n \to \infty} \sum_{n=1}^{\infty} t_n = \infty;$ (C3) $either \sum_{n=1}^{\infty} |t_{n+1} - t_n| < \infty \text{ or } \lim_{n \to \infty} (t_n/t_{n+1}) = 1.$

Then the sequence $\{x_n\}$ generated by (1.3) strongly converges as $t \to 0$ to the fixed point x^* of T that is closest to u from F(T) (i.e., $P_{F(T)}(u)$).

A number of authors made contributions to Theorem 1.2 on different choices of the parameters $\{t_n\}$; see [8, 15, 16, 18, 19, 20]. Related work can be found in [10, 11, 12, 14, 17, 21, 22, 23, 24, 25, 27]. A recent survey on Halpern's method can be found in [9].

Browder's implicit method is extended to the case where T is assumed to be a nonslf-mapping by Xu and Yin [28].

Note that if $0 \in C$ then indeed the limit in both Theorems 1.2 and 1.3 are the minimum-norm fixed point of T. However, if $0 \notin C$, then this is no longer true, and in this case, an additional projection is needed to apply to both Browder's and Halpern's methods. This has recently been done in [3]. In this paper we further investigate the case where the nonexpansive mapping T is nonself. We prove that if T satisfies the wean inwardness condition, then the results in [3] for self-mappings hold fully for the implicit method and partially for the explicit method.

It is observed that minimum-norm solutions of fixed point equations and variational inequalities have recently been paid attention (see the references [3, 7, 29, 30]).

We adopt the following notions as popularized in literature:

• $x_n \to x$ means that $\{x_n\}$ converges to x in norm;

130

- $x_n \rightarrow x$ means that $\{x_n\}$ converges to x in the weak topology;
- $\omega_w(x_n)$ is the weak ω -limit set of $\{x_n\}$; that is, the set of all those points x such that $x_{n_j} \rightharpoonup x$ as $j \rightarrow \infty$ for some subsequence $\{x_{n_j}\}$ of $\{x_n\}$.

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H and let $T: C \to H$ be nonexpansive; namely, T satisfies the property:

$$||Tx - Ty|| \le ||x - y||, \quad x, y \in C.$$

The following result, the so-called demiclosedness principle for nonexpansive mappings, will play an important role in our argument in the subsequent sections.

Lemma 2.1. (cf. [4, 5, 13]) If $\{x_n\}$ is a sequence in C weakly converging to x and if $\{(I-T)x_n\}$ converges strongly to y, then (I-T)x = y. In particular, if y = 0, then $x \in F(T)$.

Our methods depend on (nearest point or metric) projections. Recall that the projection from H onto C is a mapping that assigns to each x the point $P_C x$ that is closest to x from C; that is, P_C is the unique point in C satisfying the property:

$$||x - P_C x|| = \min\{||x - y|| : y \in C\}.$$

The proposition below collects some characterizations of projections.

Proposition 2.2. The following hold.

(i) Given $x \in H$ and $z \in C$. Then $z = P_C x$ if and only there holds the inequality $\langle x - z, y - z \rangle \leq 0, \quad y \in C.$

$$\langle x \quad z, g \quad z/ \leq 0, \quad g \in \mathbb{C}.$$

- (ii) $\langle x y, P_C x P_C y \rangle \ge ||P_C x P_C y||^2$ for all $x, y \in H$.
- (iii) $||x P_C x||^2 \le ||x y||^2 ||y P_C x||^2$ for all $x \in H$ and $y \in C$.

Since we deal with nonself-mappings, we need boundary conditions for the mappings. Recall that for a point $x \in C$, the inward set to C at x is the set

 $I_C(x) = \{ y \in H : y = x + a(z - x) \text{ for some } a \ge 0 \text{ and } z \in C \}.$

Recall also that a nonself-mapping $T : C \to H$ is said to satisfy the inwardness condition if $Tx \in I_C(x)$ for all $x \in C$, and the weak inwardness condition if $Tx \in \overline{I_C(x)}$ for all $x \in C$.

We need the following result which appeared implicitly in [28] (see also [2]) and which states the relationship between the fixed point sets of T and P_CT .

Lemma 2.3. Let $T : C \to H$ be a nonexpansive nonself mapping satisfying the weak inwardness condition. Then the mappings P_CT and T have the same fixed points; namely, $F(P_CT) = F(T)$.

Proof. It is evident that $F(T) \subset F(P_C T)$. Conversely, we take $x \in F(P_C T)$; namely, $P_C(Tx) = x$. Since T satisfies the weak inwardness conditions, there exists a sequence $\{y_n\}$ converging to Tx strongly, where

$$y_n = x + a_n(z_n - x)$$
 (2.1)

By Proposition 2.2(i), we have

$$\langle Tx - x, z_n - x \rangle \le 0.$$

This implies that

$$\langle Tx - x, y_n - x \rangle \le 0$$

which in turn implies that

$$||Tx - x||^2 = \lim_{n \to \infty} \langle Tx - x, y_n - x \rangle \le 0.$$

Therefore, Tx = x and $x \in F(T)$.

In our convergence argument for the explicit method, we need the following result.

Lemma 2.4. (cf. [19]) Assume $\{a_n\}$ is a sequence of nonnegative real numbers such that

$$a_{n+1} \le (1 - \gamma_n)a_n + \gamma_n \delta_n, \quad n \ge 0,$$

where $\{\gamma_n\}$ is a sequence in (0,1) and $\{\delta_n\}$ is a sequence in \mathbb{R} such that

(i) $\sum_{n=1}^{\infty} \gamma_n = \infty;$ (ii) either $\sum_{n=1}^{\infty} \gamma_n |\delta_n| < \infty$ or $\limsup_{n \to \infty} \delta_n \le 0.$

Then $\lim_{n\to\infty} a_n = 0$.

This implies that, for

3. Methods for Finding Minimum-norm Fixed Point

3.1. Implicit Method. In this section we introduce an implicit method that can be used to find minimum-norm fixed point.

Let C be a nonempty closed convex subset of a real Hilbert space H and let $T: C \to H$ be a (possibly nonself) nonexpansive mapping such that $F(T) \neq \emptyset$. Let P_C be the projection from H onto C. For each $t \in (0,1)$, the mapping

$$x \mapsto T_t x := P_C((1-t)Tx), \quad x \in C$$

is a self-contraction of C; hence it has a unique fixed point which is denoted by $x_t \in C$. Consequently, x_t is the unique solution in C of the fixed point equation

$$x_t = P_C((1-t)Tx_t). (3.1)$$

Theorem 3.1. Assume in addition that T satisfies the weak inwardness condition. Then the net $\{x_t\}$ defined by (3.1) converges strongly as $t \to 0$ to the minimum-norm fixed point of T.

Proof. We divide the proof into three steps.

(i) We prove that $\{x_t\}$ is bounded. As a matter of fact, taking any point $p \in F(T)$, we derive that

$$\begin{aligned} \|x_t - p\| &= \|P_C((1 - t)Tx_t) - p\| \\ &\leq \|(1 - t)Tx_t - p\| \\ &= \|(1 - t)(Tx_t - Tp) - tp\| \\ &\leq \|(1 - t)\|x_t - p\| + t\|p\|. \end{aligned}$$

all $t \in (0, 1),$

$$||x_t - p|| \le ||p||. \tag{3.2}$$

132

 \square

So $\{x_t\}$ is bounded. Let M > 0 satisfy $M \ge \max\{\|x_t\|, \|Tx_t\|\}$ for all $t \in (0, 1)$.

(ii) We prove that $\omega_w(x_t) \subset F(T)$. Namely, if $\{t_n\}$ is a null sequence in (0, 1) such that $x_{t_n} \rightharpoonup \bar{x}$, then $\bar{x} \in F(T)$.

Since, for each $t \in (0, 1)$,

$$\begin{aligned} \|x_t - P_C T x_t\| &= \|P_C((1-t)Tx_t) - P_C T x_t\| \\ &\leq \|(1-t)Tx_t - Tx_t\| \\ &= t\|Tx_t\| \le tM \to 0 \quad \text{as } t \to 0. \end{aligned}$$

In particular, $||x_{t_n} - P_C T x_{t_n}|| \to 0$ as $n \to \infty$. Therefore, by Lemma 2.1 and Lemma 2.3, we know that $\bar{x} \in F(T)$.

(iii) We prove that $x_t \to x^{\dagger}$ as $t \to 0$, where x^{\dagger} is the minimum-norm fixed point of T; that is, $x^{\dagger} = \arg \min\{|x|| : x \in F(T)\}.$

Set $y_t = (1-t)Tx_t$. Then we have $x_t = P_C y_t$ and for $\tilde{x} \in F(T)$ we deduce that

$$x_t - \tilde{x} = P_C y_t - \tilde{x} = (y_t - \tilde{x}) + P_C y_t - y_t = (1 - t)(T x_t - \tilde{x}) + t(-\tilde{x}) + (P_C y_t - y_t)$$

Using $x_t - \tilde{x}$ to make inner product from both sides of the above equation, we get

$$\begin{aligned} \|x_t - \tilde{x}\|^2 &= (1-t)\langle Tx_t - \tilde{x}, x_t - \tilde{x} \rangle + t\langle -\tilde{x}, x_t - \tilde{x} \rangle + \langle P_C y_t - y_t, x_t - \tilde{x} \rangle \\ &\leq (1-t)\|x_t - \tilde{x}\|^2 + t\langle -\tilde{x}, x_t - \tilde{x} \rangle + \langle P_C y_t - y_t, P_C y_t - \tilde{x} \rangle. \end{aligned}$$
(3.3)

However, $\langle P_C y_t - y_t, P_C y_t - \tilde{x} \rangle \leq 0$ by Proposition 2.2(i). It then follows from (3.3) that

$$\|x_t - \tilde{x}\|^2 \le \langle -\tilde{x}, x_t - \tilde{x} \rangle. \tag{3.4}$$

Now if $\bar{x} \in \omega_w(x_t)$ and $x_{t_n} \to \bar{x}$ for some null sequence (t_n) in (0, 1). Then, from Step (ii), we get $\bar{x} \in F(T)$. We can therefore substitute \bar{x} for \tilde{x} and t_n for t in (3.4) to obtain that $x_{t_n} \to \bar{x}$. This shows that $\{x_t\}$ is indeed relatively compact (as $t \to 0$) in the norm topology.

Note that (3.4) is equivalent to

$$\|x_t\|^2 \le \langle x_t, \tilde{x} \rangle. \tag{3.5}$$

Hence,

$$||x_t|| \le ||\tilde{x}||, \quad t \in (0,1), \ \tilde{x} \in F(T).$$
 (3.6)

This clearly implies that if $\bar{x} \in \omega_w(x_t) = \omega(x_t)$, then

$$\|\bar{x}\| \le \|\tilde{x}\| \quad \forall \tilde{x} \in F(T).$$

Therefore, $\bar{x} = x^{\dagger}$, and x^{\dagger} is the only limit point of the net $\{x_t\}$ as $t \to 0$. This is sufficient to conclude that $x_t \to x^{\dagger}$ as $t \to 0$.

Corollary 3.2. Let H be a real Hilbert space, C a nonempty closed convex subset of H, and $T: C \to C$ a nonexpansive self-mapping with $F(T) \neq \emptyset$. For each $t \in (0, 1)$, let x_t be the unique fixed point in C of the contraction $P_C((1-t))T$ mapping C into C. Then $s - \lim_{t \downarrow 0} x_t = x^{\dagger}$.

3.2. Explicit Method. In this section we introduce an explicit method that generates a sequence converging in norm to the minimum-fixed point of T. Our scheme is the discretization of the implicit method studied in the last section. Consider a sequence $\{t_n\}$ in (0, 1) and an arbitrary initial guess $x_0 \in C$, and define a sequence $\{x_n\}$ iteratively by the recursion:

$$x_{n+1} = P_C((1-t_n)Tx_n), \quad n \ge 0.$$
(3.7)

The convergence of $\{x_n\}$ depends on the choice of the parameters $\{t_n\}$.

Theorem 3.3. Let H be a real Hilbert space, C a nonempty closed convex subset of H, and $T : C \to H$ a nonexpansive mapping such that $F(T) \neq \emptyset$ and satisfying the weak inwardness condition. Assume $\{t_n\}$ satisfies the following assumptions:

 $\begin{array}{l} (A_1) \ \lim_{n \to \infty} t_n = 0; \\ (A_2) \ \sum_{n=1}^{\infty} t_n = \infty; \\ (A_3) \ either \ \sum_{n=1}^{\infty} \frac{|t_{n+1} - t_n|}{t_n} < \infty \ or \ \lim_{n \to \infty} \frac{|t_{n+1} - t_n|}{t_n^2} = 0. \end{array}$

Then the sequence $\{x_n\}$ generated by the algorithm (3.7) converges strongly to the minimum-norm fixed point x^{\dagger} of T.

Proof. We again divided the proof into three steps.

(i) We prove that (x_n) is bounded. Indeed, take a $p \in F(T)$ to deduce that

$$\begin{aligned} \|x_{n+1} - p\| &= \|P_C((1 - t_n)Tx_n) - p\| \\ &\leq \|(1 - t_n)Tx_n - p\| \\ &= \|(1 - t_n)(Tx_n - p) - t_np\| \\ &\leq (1 - t_n)\|x_n - p\| + t_n\|p\| \\ &\leq \max\{\|x_n - p\|, \|p\|\}. \end{aligned}$$

By induction, we get

$$||x_n - p|| \le \max\{||x_0 - p||, ||p||\}$$

for all $n \ge 0$. Hence (x_n) is bounded. Let M > 0 satisfy $M \ge \max\{\|x_n\|, \|Tx_n\|\}$ for all n.

(ii) We prove that $||x_{n+1} - z_n|| \to 0$ as $n \to \infty$, where z_n is the unique fixed point in C of the contraction $z \mapsto P_C((1 - t_n)Tz)$; that is, $z_n = P_C((1 - t_n)Tz_n)$. To see this, we compute, using the fact that P_C is nonexpansive,

$$\begin{aligned} \|x_{n+1} - z_n\| &= \|P_C((1 - t_n)Tx_n) - P_C((1 - t_n)Tz_n)\| \\ &\leq \|(1 - t_n)Tx_n - (1 - t_n)Tz_n\| \\ &= \|(1 - t_n)(Tx_n - Tz_n)\| \\ &\leq (1 - t_n)\|x_n - z_n\| \\ &\leq \|x_n - z_{n-1}\| + \|z_n - z_{n-1}\|. \end{aligned}$$
(3.8)

However,

$$\begin{aligned} \|z_n - z_{n-1}\| &= \|P_C((1 - t_n)Tz_n) - P_C((1 - t_{n-1})Tz_{n-1})\| \\ &\leq \|(1 - t_n)Tz_n - (1 - t_{n-1})Tz_{n-1}\| \\ &= \|(1 - t_n)(Tz_n - Tz_{n-1}) + (t_{n-1} - t_n)Tz_{n-1}\| \\ &\leq (1 - t_n)\|z_n - z_{n-1}\| + |t_{n-1} - t_n|\|Tz_{n-1}\| \\ &\leq (1 - t_n)\|z_n - z_{n-1}\| + M|t_{n-1} - t_n|. \end{aligned}$$

It turns out that

$$||z_n - z_{n-1}|| \le \frac{M|t_{n-1} - t_n|}{t_n}.$$
(3.9)

Substituting (3.9) into (3.8), we get

$$||x_{n+1} - z_n|| \leq (1 - t_n)||x_n - z_{n-1}|| + \frac{M|t_{n-1} - t_n|}{t_n}$$
(3.10)

$$= (1-t_n) \|x_n - z_{n-1}\| + t_n \delta_n.$$
(3.11)

Where $\delta_n = (M|t_{n-1} - t_n|)/t_n^2$. Therefore, an application of Lemma 2.4 to either (3.10) or (3.11) and observing assumption (A₃) to get $||x_{n+1} - z_n|| \to 0$.

(iii) We prove that $x_n \to x^{\dagger}$. First observe from Theorem 3.3 that $z_n \to x^{\dagger}$. This together with Step (ii) ensures that $x_n \to x^{\dagger}$. The proof is complete.

Corollary 3.4. Let H be a real Hilbert space, C a nonempty closed convex subset of H, and $T : C \to C$ a nonexpansive self-mapping with $F(T) \neq \emptyset$. Let $\{t_n\}$ be sequence in (0,1) satisfying assumptions $(A_1) - (A_3)$ in Theorem 3.1. starting an initial $x_0 \in C$, we define a sequence $\{x_n\}$ by the algorithm (3.7). Then $x_n \to x^{\dagger}$.

Remark 3.5. It is interesting to know if assumption (A_3) in Theorem 3.1 can be weakened to condition (C3) as introduced in the Introduction. For nonexpansive self-mappings, the answer is affirmative (see [3]). However, for nonexpansive nonselfmappings, the answer is still unknown.

Also, it is not hard to find that the choice

$$t_n = \frac{1}{(n+1)^{\delta}}, \quad n \ge 0$$

satisfies the assumptions (A_1) , (A_2) , and the second part of (A_3) in Theorem 3.1 provided $0 < \delta < 1$. Indeed, we have

$$\frac{|t_n - t_{n-1}|}{t_n^2} \sim \frac{1}{n^{1-\delta}} \to 0 \quad (\text{as } n \to \infty).$$

References

- F. E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Z., 100(1967), 201-225.
- [2] R. D. Chen and L. F. Xing, Viscosity approximation of nonexpansive nonself mapping in Hilbert space, Basic Sciences J. Textile Universities, 18(2005), no. 4, 333-339. (In Chinese)
- [3] Y. L. Cui and X. Liu, Notes on Browder's and Halpern's methods for nonexpansive mappings, Fixed Point Theory, 10(2009), no. 1, 89-98.
- [4] K. Geobel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, 1990.

XIA LIU AND YANLAN CUI

- [5] K. Geobel and S. Reich, Uniform Convexity, Nonexpansive Mappings, and Hyperbolic Geometry, Dekker, 1984.
- [6] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 73(1967), 957-961.
- [7] X. Liu and Y. Cui, Common minimal-norm fixed point of a finite family of nonexpansive mappings, Nonlinear Anal., 73(2010), 76-83.
- [8] P. L. Lions, Approximation de points fixes de contractions, C.R. Acad. Sci. Sèr. A-B Paris, 284(1977), 1357–1359.
- [9] G. Lopez, V. Martin, and H. K. Xu, Halpern's Iteration for Nonexpansive Mappings, Contemp. Math., 513(2010), 211-231.
- [10] G. Marino and H. K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 318(2006), 43-52.
- [11] J. G. O'Hara, P. Pillay and H. K. Xu, Iterative approaches to finding nearest common fixed points of nonexpansive mappings in Hilbert spaces, Nonlinear Anal., 54(2003), 1417-1426.
- [12] J. G. O'Hara, P. Pillay and H. K. Xu, Iterative approaches to convex feasibility problems in Banach spaces, Nonlinear Anal., 64(2006), 2022-2042.
- [13] Z. Opial, Weak convergence of the sequence of successive approximations of nonexpansive mappings, Bull. Amer. Math. Soc., 73(1967), 595-597.
- [14] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math Anal. Appl., 67(1979), 274-276.
- [15] S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl., 75(1980), no. 1, 287-292.
- [16] S. Reich, Approximating fixed points of nonexpansive mappings, Panamerican. Math. J., 4(1994), no. 2, 23-28.
- [17] N. Shioji and W. Takahashi, Strong convergence of approximated sequences of nonexpansive mappings in Banach spaces, Proc. Amar. Math. Soc., 125(1997), 3641-3645.
- [18] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math., 58(1992), 486-491.
- [19] H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66(2002), 240-256.
- [20] H. K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc., 65(2002), 109-113.
- [21] H. K. Xu, Remarks on an iterative method for nonexpansive mappings, Comm. Appl. Nonlinear Anal., 10(2003), no. 1, 67-75.
- [22] H. K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl., 298(2004), 279-291.
- [23] H. K. Xu, Strong convergence of an iterative method for Nonexpansive and accretive operators, J. Math. Anal. Appl., 314(2006), 631-643.
- [24] H. K. Xu, A regularization method for the proximal point algorithm, J. Global Optimiz., 36(2006), 115-125.
- [25] H. K. Xu, A variable Krasnoselskii-Mann algorithm and the multiple-set split feasibility problem, Inverse Problems, 22(2006), 2021-2034.
- [26] H. K. Xu, An alternative regularization method for nonexpansive mappings with applications, Contemp. Math., 513(2010), 239-263.
- [27] H. K. Xu, Viscosity method for hierachical fixed point approach to variational inequalities, Taiwanese J. Math., 14(2010), no. 2, 463-478.
- [28] H. K. Xu and X. M. Yin, Strong convergence theorems for nonexpansive nonself-mappings, Nonlinear Anal., 24(1995), 223-228.
- [29] Y. Yao, R. Chen and H. K. Xu, Schemes for finding minimum-norm solutions of variational inequalities, Nonlinear Anal., 72(2010), 3447-3456.
- [30] Y. Yao and H. K. Xu, Iterative methods for finding minimum-norm fixed points of nonexpansive mappings with applications. Optimization, (to appear).

Received: November 24, 2010; Accepted: January 10, 2011.

136