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1. Introduction

This paper is concerned with the following integro-differential equation

x′(t) = g(t, x(t), x(t − τ)) +

∫ t

t−h

K(s, x(s))ds, t ∈ S, (1.1)

where g and K are continuous functions on a Banach space and satisfy certain con-
ditions to be specified later.

Regarding the earlier works on existence, uniqueness and convergence of the se-
quence of the successive approximation to integro-differential equations with delays
and functional-differential equations with delays under different conditions, we refer
to Guo et al [2], Kolmanowskii and Mishkis [5], Precup [7], Precup and Kirr [8], I.A.
Rus [12] and the references therein. The related results for the existence and unique-
ness, convergence of the sequence of the successive approximation, lower and upper
solutions to the differential equations with delays can be found in Dobriţoiu et al [1],
Ilea [3] and Otrocol [6].
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The authors Rus, Şerban, Trif [13] have considered the following integral equation

x(t) = g(t, x(t − τ)) +

∫ t

t−τ

K(t, s, x(s))ds, t ∈ [a, b], τ > 0

x(t) = φ(t), t ∈ [a − τ, a],

in a Banach space and proved that the sequence of the successive approximation
generated by the step method converges to the solution of this integral equation
using the results of Rus [9].

Sakata and Hara [14] have considered the linear differential equation with two kinds
of time lags

x′(t) = ax(t − τ) + b

∫ t

t−h

x(s)ds

where τ > 0, h > 0 and a, b are both real and they have studied the dependence on
delays towards stability regions.

In the present work we use the ideas of Rus, Şerban, Trif [13] to establish the
convergence of the sequence of successive approximation to equation (1.1). Regarding
the two delays we have the following cases: h > 0, τ > 0, τ > h and h > 0, τ <
0, |τ | > h. Here, the authors study the first case, while the second case is studied in
[4].

The aim of this paper is to obtain existence and uniqueness theorems using con-
traction principle and step method. Such kind of results have been proved in [13].
The approach proposed in the present paper is different to the ones in [13] and [1]
and it is based on the different time lags. Also, we present here some lower and upper
solution result, and a numerical example concerning equation (1.1).

We note that Sakata and Hara study in [14] the stability regions for similar integro-
differential equation with two time lags.

2. Preliminaries

Let τ > 0, h > 0, h < τ and

x′(t) = g(t, x(t), x(t − τ)) +

∫ t

t−h

K(s, x(s))ds, t ∈ [0, T ], (2.1)

x(t) = ϕ(t), t ∈ [−τ, 0]. (2.2)

Relative to (2.1)–(2.2) we consider the following conditions:

(C1) (B, ‖·‖) is a Banach space, g ∈ C([0, T ] × B
2, B), K ∈ C([0, T ] × B, B), ϕ ∈

C ([−τ, 0], B) ;
(C2) there exists Lg > 0 such that

‖g(t, u1, v1) − g(t, u2, v2)‖ ≤ Lg(‖u1 − u2‖ + ‖v1 − v2‖), ui, vi ∈ B, t ∈ [0, T ];

(C
′

2) there exists L′
g > 0 such that

‖g(t, u1, v) − g(t, u2, v)‖ ≤ L′
g ‖u1 − u2‖ , u1, u2, v ∈ B, t ∈ [0, T ];
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(C3) there exists LK > 0 such that

‖K(t, u) − K(t, v)‖ ≤ LK ‖u − v‖ , u, v ∈ B, t ∈ [0, T ];

(C4) ϕ′(0) = g(0, ϕ(0), ϕ(−τ)) +
∫ 0

−h
K(s, ϕ(s))ds.

We consider the space X = C([−τ, T ], B) endowed with the norms ‖·‖∞ and ‖·‖λ

where

‖x‖∞ := max
t∈[−τ,T ]

{‖x(t)‖}, ‖x‖λ := sup
t∈[−τ,T ]

{‖x(t)‖ e−λ(t+τ)}.

The following relation between the Cebyshev and Bielecki norms holds

‖x‖∞ ≤ ‖x‖λ · eλ(t+τ), ∀t ∈ [−τ, T ].

The problem (2.1)–(2.2) is equivalent with the following fixed point problem:

x(t) =

{

ϕ(t), t ∈ [−τ, 0]

ϕ(0) +
∫ t

0
g(ξ, x(ξ), x(ξ − τ))dξ +

∫ t

0

∫ ξ

ξ−h
K(s, x(s))dsdξ, t ∈ [0, T ]

3. Fibre weakly Picard operator

Let (X, d) be a metric space and A : X → X an operator. In this paper we shall
use the terminologies and notations from [13]. For the convenience of the reader we
shall recall some of them.

Denote by A0 := 1X , A1 := A, An+1 := A ◦ An, n ∈ N, the iterate operators of
the operator A. Also

P (X) := {Y ⊆ X| Y 6= ∅} , FA := {x ∈ X| A(x) = x} ,

I(A) := {Y ∈ P (X)|A(Y ) ⊆ Y } .

Definition 3.1. A : X → X is called a Picard operator (briefly PO) if:

(i) FA = {x∗};
(ii) An(x) → x∗ as n → ∞, for all x ∈ X.

Definition 3.2. A : X → X is said to be a weakly Picard operator (briefly WPO) if
the sequence (An(x))n∈N converges for all x ∈ X and the limit (which may depend
on x) is a fixed point of A.

If A : X → X is a WPO, then we may define the operator A∞ : X → X by

A∞(x) := lim
n→∞

An(x).

Obviously A∞(X) = FA. Moreover, if A is a PO and we denote by x∗ its unique fixed
point, then A∞(x) = x∗, for each x ∈ X.

Lemma 3.3. Let (X, d,≤) an ordered metric space and A,B,C : X → X be such
that:

(i) the operator A,B,C are WPOs;
(ii) A ≤ B ≤ C;
(iii) the operator B is increasing.
Then x ≤ y ≤ z implies that A∞(x) ≤ B∞(y) ≤ C∞(z).
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Theorem 3.4. (Fibre contraction principle, Rus [10]) Let (X, d) be a metric space
and (Y, ρ) be a complete metric space. Let B : X → X and C : X × Y → Y be two
operators. We suppose that:

(i) B is a WPO;
(ii) C(x, ·) : Y → Y is α-contraction, for all x ∈ X;
(iii) if (x∗, y∗) ∈ FA, where A : X × Y → X × Y, A(x, y) = (B(x), C(x, y)), then

C(·, y∗) is continuous in x∗.

Then A is a WPO. Moreover, if B is PO then A is PO.

By induction, from the above result we have:

Theorem 3.5. (Rus [11]) Let (Xi, di), i = 0,m, m ≥ 1, be some metric spaces. Let

Ai : X0 × · · · × Xi → Xi, i = 0,m

be some operator. We suppose that:

(i) (Xi, di), i = 1,m, are complete metric spaces;
(ii) the operator A0 is WPO;
(iii) there exists αi ∈ (0; 1) such that:

Ai(x0, . . . , xi−1, ·) : Xi → Xi, i = 1,m

are αi-contractions;
(iv) the operator Ai, i = 1,m, are continuous.

Then the operator A : X0 × · · · × Xm → X0 × · · · × Xm,

A(x0, . . . , xm) = (A0(x0), A1(x0, x1), . . . , Am(x0, . . . , xm))

is WPO. If A0 is PO, then A is PO.

4. Existence and uniqueness

In this section we give an existence theorem for the solution of the problem (2.1)–
(2.2).

Theorem 4.1. In the condition (C1), (C2), (C3) and (C4), the problem (2.1)–(2.2)
has in C([−τ, T ], B) a unique solution x∗ and the sequence of successive approxima-
tion, (xn)n∈N

xn+1(t) =







ϕ(t), t ∈ [−τ, 0]

ϕ(0) +
∫ t

0
g(ξ, xn(ξ), xn(ξ − τ))dξ +

∫ t

0

∫ ξ

ξ−h
K(s, xn(s))dsdξ,

t ∈ [0, T ]

converges uniformly to x∗, for every x0 ∈ C([−τ, T ], B), with x0
∣

∣

[−τ,0] = ϕ.

Proof. Let Xϕ ⊂ X, Xϕ = {x ∈ X| x(t) = ϕ(t), t ∈ [−τ, 0]} and A : Xϕ → Xϕ

defined by

A(x)(t) =







ϕ(t), t ∈ [−τ, 0]

ϕ(0) +
∫ t

0
g(ξ, x(ξ), x(ξ − τ))dξ +

∫ t

0

∫ ξ

ξ−h
K(s, x(s))dsdξ,

t ∈ [0, T ].

Note that Xϕ is a closed subset of X, so (Xϕ, d‖·‖
λ
) is a complete metric space.
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In a standard way we have

‖A(x) − A(y)‖λ ≤
1

λ
(Lg + LKh) ‖x − y‖λ , for all x, y ∈ Xϕ,

which proves that A is Lipschitz with LA = 1
λ
(Lg+LKh). We can choose λ sufficiently

large such that LA = 1
λ
(Lg +LKh) < 1, so A is contraction. Applying the contraction

principle we get the conclusion. �

Remark 4.2. From the proof of Theorem 4.1, it follows that the operator A is PO.

5. Step method

Using step method and contraction principle on each step for the problem (2.1)–
(2.2), in this section we obtain a better result by replacing the condition (C2) from
Theorem 4.1 with (C2′).

Let m ∈ N
∗ such that (m − 1)h ≤ T, mh > T . To simplify our presentation we

suppose that h < τ ≤ 2h. In the conditions (C1), (C
′
2), (C3) and (C4) the step method

for (2.1)–(2.2) consist in the following:
(p0) x0(t) = ϕ(t), t ∈ [−τ, 0]

(p1) x1(t) = ϕ(0) +
∫ t

0
g(ξ, x1(ξ), ϕ(ξ − τ))dξ +

∫ t

0

∫ 0

ξ−h
K(s, ϕ(s))dsdξ+

+
∫ t

0

∫ ξ

0
K(s, x1(s))dsdξ, t ∈ [0, h]

(p2) x2(t) = x∗
1(h) +

∫ τ

h
g(ξ, x2(ξ), ϕ(ξ − τ))dξ +

∫ t

τ
g(ξ, x2(ξ), x

∗
1(ξ − τ))dξ+

+
∫ t

h

∫ h

ξ−h
K(s, x∗

1(s))dsdξ +
∫ t

h

∫ ξ

h
K(s, x2(s))dsdξ, t ∈ [h, 2h]

..................................................................................................

(pi) xi(t) = x∗
i−1((i − 1) h) +

∫ (i−2)h+τ

(i−1)h
g(ξ, xi(ξ), x

∗
i−2(ξ − τ))dξ+

+
∫ t

(i−2)h+τ
g(ξ, xi(ξ), x

∗
i−1(ξ − τ))dξ+

+
∫ t

(i−1)h

∫ (i−1)h

ξ−h
K(s, x∗

i−1(s))dsdξ+

+
∫ t

(i−1)h

∫ ξ

(i−1)h
K(s, xi(s))dsdξ, t ∈ [(i − 1) h, ih]

..................................................................................................

(pm−1) xm−1(t) = x∗
m−2((m−2)h) +

∫ (m−3)h+τ

(m−2)h
g(ξ, xm−1(ξ), x

∗
m−3(ξ−τ))dξ+

+
∫ t

(m−3)h+τ
g(ξ, xm−1(ξ), x

∗
m−2(ξ − τ))dξ+

+
∫ t

(m−2)h

∫ (m−2)h

ξ−h
K(s, x∗

m−2(s))dsdξ+

+
∫ t

(m−2)h

∫ ξ

(m−2)h
K(s, xm−1(s))dsdξ, t∈ [(m−2)h, (m−1)h]

(pm) xm(t) = x∗
m−1((m − 1)h) +

∫ (m−2)h+τ

(m−1)h
g(ξ, xm(ξ), x∗

m−2(ξ − τ))dξ+

+
∫ t

(m−2)h+τ
g(ξ, xm(ξ), x∗

m−1(ξ − τ))dξ+

+
∫ t

(m−1)h

∫ (m−1)h

ξ−h
K(s, x∗

m−1(s))dsdξ+

+
∫ t

(m−1)h

∫ ξ

(m−1)h
K(s, xm(s))dsdξ, t ∈ [(m − 1)h, T ]

where x∗
i is the unique solution of (pi), i = 1,m.

So, we have the following result:

Theorem 5.1. In the conditions (C1), (C
′
2), (C3) and (C4) we have:
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a) the problem (2.1)–(2.2) has in C([−τ, T ], B) a unique solution x∗,

x∗(t) =















ϕ(t), t ∈ [−τ, 0]
x∗

1(t), t ∈ [0, h]
· · ·
x∗

m(t), t ∈ [(m − 1)h, T ]

b) for each x0
i ∈ C([(i − 1) h, ih], B), i = 1,m − 1,

x0
m ∈ C([(m − 1) h, T ], B), the sequence defined by:

xn+1
1 (t) = ϕ(0) +

∫ t

0
g(ξ, xn

1 (ξ), ϕ(ξ − τ))dξ +
∫ t

0

∫ 0

ξ−h
K(s, ϕ(s))dsdξ+

+
∫ t

0

∫ ξ

0
K(s, xn

1 (s))dsdξ, t ∈ [0, h],

xn+1
2 (t) = x∗

1(h) +
∫ τ

h
g(ξ, xn

2 (ξ), ϕ(ξ − τ))dξ +
∫ t

τ
g(ξ, xn

2 (ξ), x∗
1(ξ − τ))dξ+

+
∫ t

h

∫ h

ξ−h
K(s, x∗

1(s))dsdξ +
∫ t

h

∫ ξ

h
K(s, xn

2 (s))dsdξ, t ∈ [h, 2h],

..................................................................................................

xn+1
m (t) = x∗

m−1((m − 1)h) +
∫ (m−2)h+τ

(m−1)h
g(ξ, xn

m(ξ), x∗
m−2(ξ − τ))dξ+

+
∫ t

(m−2)h+τ
g(ξ, xn

m(ξ), x∗
m−1(ξ − τ))dξ+

+
∫ t

(m−1)h

∫ (m−1)h

ξ−h
K(s, x∗

m−1(s))dsdξ+

+
∫ t

(m−1)h

∫ ξ

(m−1)h
K(s, xn

m(s))dsdξ, t ∈ [(m − 1)h, T ]

converge and lim
n→∞

xn
i = x∗

i , i = 1,m.

Proof. In order to proof this theorem we apply the contraction principle for each step:
[(i − 1)h, ih], [(m − 1)h, T ], where i = 1,m − 1.

For the first step we consider the Banach space X1 := (C([0, h], B), ‖·‖λ1
), where

‖x‖λ1
= max

t∈[0,h]
{‖x(t)‖ e−λ1t} and the operator A1 : X1 → X1 defined by

A1(x)(t) = ϕ(0) +

∫ t

0

g(ξ, x(ξ), ϕ(ξ − τ))dξ+

+

∫ t

0

∫ 0

ξ−h

K(s, ϕ(s))dsdξ +

∫ t

0

∫ ξ

0

K(s, x(s))dsdξ.

For x, y ∈ X1, we have

‖A1(x) − A1(y)‖λ1
≤

1

λ1
(L′

g + LKh) ‖x − y‖λ1
.

We can choose a λ1 > 0 such that 1
λ1

(L′
g +LKh) < 1, so A1 is a contraction, therefore

FA1
= {x∗

1}.
For the next steps let us consider the following Banach spaces: for i = 2,m − 1

given by

Xi :=
(

C([(i − 1)h, ih]; B), ‖·‖λi

)

, with ‖x‖λi
:= max

t∈[(i−1)h,ih]

{

‖x(t)‖ e−λi(t−(i−1)h)
}

and

Xm :=(C([(m−1)h, T ]; B), ‖·‖λm
), with ‖x‖λm

:= max
t∈[(m−1)h,T ]

{

‖x(t)‖ e−λm(t−(m−1)h)
}
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and the operators Ai : Xi → Xi, i = 2,m defined by

Ai(x)(t) := x∗
i−1((i − 1) h) +

∫ (i−2)h+τ

(i−1)h

g(ξ, x(ξ), x∗
i−2(ξ − τ))dξ+

+

∫ t

(i−2)h+τ

g(ξ, x(ξ), x∗
i−1(ξ − τ))dξ +

∫ t

(i−1)h

∫ (i−1)h

ξ−h

K(s, x∗
i−1(s))dsdξ+

+

∫ t

(i−1)h

∫ ξ

(i−1)h

K(s, x(s))dsdξ,

For x, y ∈ Xi we have ‖Ai(x) − Ai(y)‖λi
≤ 1

λi

(L′
g + LKh) ‖x − y‖λi

, so Ai is a

contraction for a suitable choice of λi such that 1
λi

(L′
g +LKh) < 1. Therefore, we get

that FAi
= {x∗

i }, i = 2,m.
From condition (C4) we get ϕ(0) = x∗

1(0) and from definition of Ai, i = 1,m, we
have

x∗
i−1((i − 1)h) = x∗

i ((i − 1)h), i = 1,m,

therefore

x∗(t) =















ϕ(t), t ∈ [−τ, 0]
x∗

1(t), t ∈ [0, h]
· · ·
x∗

m(t), t ∈ [(m − 1)h, T ]

is the unique solution in C([−h, T ], B). �

Now the question is: Can we put an approximation of xn
i , i = 1,m instead of x∗

i ,
i = 1,m?

The answer of this question is given by the following theorem:

Theorem 5.2. In the condition of Theorem 5.1, for each
x0

i ∈ C([(i − 1) h, ih], B), i = 1,m − 1, x0
m ∈ C([(m − 1) h, T ], B), the sequences de-

fined by:

xn+1
1 (t) = ϕ(0) +

∫ t

0
g(ξ, xn

1 (ξ), ϕ(ξ − τ))dξ +
∫ t

0

∫ 0

ξ−h
K(s, ϕ(s))dsdξ+

+
∫ t

0

∫ ξ

0
K(s, xn

1 (s))dsdξ, t ∈ [0, h],

xn+1
2 (t) = xn

1 (h) +
∫ τ

h
g(ξ, xn

2 (ξ), ϕ(ξ − τ))dξ +
∫ t

τ
g(ξ, xn

2 (ξ), xn
1 (ξ − τ))dξ+

+
∫ t

h

∫ h

ξ−h
K(s, xn

1 (s))dsdξ +
∫ t

h

∫ ξ

h
K(s, xn

2 (s))dsdξ, t ∈ [h, 2h],

..................................................................................................

xn+1
m (t) = xn

m−1((m − 1)h) +
∫ (m−2)h+τ

(m−1)h
g(ξ, xn

m(ξ), xn
m−2(ξ − τ))dξ+

+
∫ t

(m−2)h+τ
g(ξ, xn

m(ξ), xn
m−1(ξ − τ))dξ+

+
∫ t

(m−1)h

∫ (m−1)h

ξ−h
K(s, xn

m−1(s))dsdξ+

+
∫ t

(m−1)h

∫ ξ

(m−1)h
K(s, xn

m(s))dsdξ, t ∈ [(m − 1)h, T ]

(5.1)

converge and lim
n→∞

xn
i = x∗

i , i = 1,m.
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Proof. We consider the following Banach spaces (with λ > 0):

X0 =
(

C([−τ, 0], B), ‖·‖λ0

)

, ‖·‖λ0

= max
t∈[−τ,0]

{‖x(t)‖ e−λ0(t+τ)},

Xi =
(

C([(i−1)h, ih], B), ‖·‖λi

)

, ‖·‖λi

= max
t∈[(i−1)h,ih]

{‖x(t)‖ e−λi(t−(i−1)h)}, i = 1,m−1,

Xm =
(

C([(m − 1)h, T ], B), ‖·‖λm

)

, ‖·‖λm

= max
t∈[(m−1)h,T ]

{‖x(t)‖ e−λm(t−(m−1)h)},

and the operators:

A0 : X0 → X0, A0(x0)(t) = ϕ(t), t ∈ [−τ, 0],

A1 : X0 × X1 → X1,

A1(x0, x1)(t) = ϕ(0) +

∫ t

0

g(ξ, x1(ξ), x0(ξ − τ))dξ +

∫ t

0

∫ 0

ξ−h

K(s, x0 (s))dsdξ+

+

∫ t

0

∫ ξ

0

K(s, x1(s))dsdξ, t ∈ [0, h],

Ai : Xi−2 × Xi−1 × Xi → Xi, i = 2,m − 1

Ai (xi−2, xi−1, xi) (t) = xi−1((i − 1)h) +

∫ (i−2)h+τ

(i−1)h

g(ξ, xi(ξ), xi−2(ξ − τ))dξ+

+

∫ t

(i−2)h+τ

g(ξ, xi(ξ), xi−1(ξ − τ))dξ+

+

∫ t

(i−1)h

∫ (i−1)h

ξ−h

K(s, xi−1(s))dsdξ+

+

∫ t

(i−1)h

∫ ξ

(i−1)h

K(s, xi(s))dsdξ, t ∈ [(i−1)h, ih]

Am : Xm−2 × Xm−1 × Xm → Xm

Am (xm−2, xm−1, xm) (t) = xm−1((m−1)h)+

∫ (m−2)h+τ

(m−1)h

g(ξ, xm(ξ), xm−2(ξ − τ))dξ+

+

∫ t

(m−2)h+τ

g(ξ, xm(ξ), xm−1(ξ − τ))dξ+

+

∫ t

(m−1)h

∫ (m−1)h

ξ−h

K(s, xm−1(s))dsdξ+

+

∫ t

(m−1)h

∫ ξ

(m−1)h

K(s, xm(s))dsdξ, t ∈ [(m − 1)h, T ]
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and

A : X0 × . . . × Xm → X0 × . . . × Xm,

A(x0, . . . , xm) = (A0(x0), A1(x0, x1), A2(x0, x1, x2), . . . , Am (xm−2, xm−1, xm)).

It is easy to see that for fixed (x0, . . . , xm) ∈ X0 × . . . × Xm the sequence defined by
(5.1) means

(xn
0 , . . . , xn

m) = An(x0, . . . , xm).

To prove the conclusion we need to prove that the operator A is PO and for this we
apply Theorem 3.5.

Since A0 : X0 → X0 is a constant operator then A0 is α0-contraction with α0 = 0,
so A0 is PO and FA0

= {x∗
0}, where x∗

0 = ϕ. We have the inequalities:

‖A1(x0, x1) − A1(x0, y1)‖λ1
≤

1

λ1
(L′

g + LKh) ‖x1 − y1‖λ1

for all x0 ∈ X0, x1, y1 ∈ X1, and

‖Ai (xi−2, xi−1, xi) − Ai (xi−2, xi−1, yi)‖λi
≤

1

λi

(L′
g + LKh) ‖xi − yi‖λi

for all xi−2 ∈ Xi−2, xi−1 ∈ Xi−1, xi, yi ∈ Xi, i = 2,m. For λi sufficiently large, (λi >
L′

g + LKh), we get that A1(x0, ·) : X1 → X1 is α1-contraction and Ai (xi−2, xi−1, ·) :

Xi → Xi are αi-contractions with αi = 1
λ
(L′

g + LKh), i = 1,m, so we are in the
conditions of Theorem 3.5, therefore A is PO and FA = {(x∗

0, . . . , x
∗
m)}, thus

(xn
0 , . . . , xn

m) = An(x0, . . . , xm) → (x∗
0, . . . , x

∗
m),

with xn
0 = ϕ and xn

1 , . . . , xn
m, for all n ∈ N, are defined by (5.1). From condition (C4)

and from the definitions of Ai, i = 1,m, we have

x∗
i−1((i − 1)h) = x∗

i ((i − 1)h), i = 1,m

therefore

x∗(t) =















ϕ(t), t ∈ [−τ, 0]
x∗

1(t), t ∈ [0, h]
· · ·
x∗

m(t), t ∈ [(m − 1)h, T ]

is the unique solution in C([−τ, T ], B). �

6. Lower solutions, upper solutions and the solution

In this section we shall prove that the solution of the equation (1.1) is an upper
bound of the lower solutions set and a lower bound of the upper solutions set.

Let the integro-differential equation (1.1) under the conditions (C1), (C2), (C3),
(C4) and we denote by x∗

A ∈ (C[0, T ], B) the unique fixed point of the operator A. In
addition, we suppose that:

(C5) g(t, ·, ·) : B
2 → B is increasing, for every t ∈ [0, T ];

(C6) K(t, ·) : B → B is increasing, for every t ∈ [0, T ].

We have
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Theorem 6.1. We suppose that the conditions (C1)−(C6) are satisfied. The following
implications hold:

(a) If x(t) ≤ g(t, x(t), x(t − τ)) +
∫ t

t−h
K(s, x(s))ds, x ∈ B

then x ≤ x∗
A.

(b) If x(t) ≥ g(t, x(t), x(t − τ)) +
∫ t

t−h
K(s, x(s))ds, x ∈ B

then x ≥ x∗
A.

Proof. (a) We consider the operator A defined by

A(x)(t) =

∫ t

0

g(ξ, x(ξ), x(ξ − τ))dξ +

∫ t

0

∫ ξ

ξ−h

K(s, x(s))dsdξ.

Under the conditions (C1) − (C4) the operator A is PO and by (C5) − (C6) we have
that the operator A is increasing. Since all the conditions of the Abstract Gronwall
Lemma 3.3 are satisfied, we obtain x ≤ x∗

A and the proof is complete.
For (b) the proof is similar. �

7. Numerical example

In this section we give a numerical example to illustrate the convergence of the
sequence defined in theorem 5.1 to the solution. We consider the following integro-
differential equation:

x′ (t) = − (6 + sin (t))x (t) + x
(

t − π
2

)

−

−
t
∫

t−π

4

sin (s) x (s) ds + 5ecos(t) + ecos(t−π

4 ) − ecos(t−π

2 ) , t ∈
[

π
4 ;π

]

x (t) = ecos(t) , t ∈
[

0; π
4

]

which has the exact solution x (t) = ecos(t).
Numerical method. (For more details see N.L. Trefethen [15], D. Trif [16]) We

divide the working interval by the points Pk = k, k = 0, 1, ...,M , (concretely M = 4
and represents the number of subintervals). On each subinterval Ik = [Pk−1;Pk],
k = 1, ...,M , we find the numerical solution by the form

xk (t) = c0,k

T0

2
+ c1,kT1 (ξ) + c2,kT2 (ξ) + ... + cn−1,kTn−1 (ξ) ,

where Ti (ξ) = cos (i arccos (ξ)) are Chebyshev polynomials of i degree, i = 0, ..., n−1,
(concretely n = 8), and t = αξ + β with α = (Pk − Pk−1) /2, respectively β =
(Pk + Pk−1) /2.

Choosing a mesh ξj , j = 1, ..., n, on interval [−1; 1] consisting by the knots of Gauss
quadrature formula generated by Matlab subprogram [csi,w]=pd(n), the transfor-
mation t = αξ + β corresponding to each interval Ik = [Pk−1;Pk] construct a local
mesh on that subinterval. The coefficients ci,k of xk expansion after the Chebishev
polynomials Ti are obtained from xk values on the local mesh using Fast Fourier Trans-
forms (if n is large) or using a matrix T generated by the subprogram T=x2t(n,csi)
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(for n small)














c0,k

c1,k

...
cn−2,k

cn−1,k















= (T ′)
−1

·















xk (t1)
xk (t2)

...
xk (tn−1)
xk (tn)















.

The same formula allows the quick pass from the local coefficients to the values on
local mesh.

The formulae
ξ

∫

ξ−h

Ti (s) ds =
Ti+1 (ξ)

2 (i + 1)
−

Ti−1 (ξ)

2 (i − 1)

allow to obtain the coefficients Ci of a primitive F for a function f given by its
coefficients ci, from multiplication of them with a sparse matrix J generated by the
subprogram J=tchebj(n)















C0

C1

...
Cn−2

Cn−1















= J ·















c0

c1

...
cn−2

cn−1















.

Of course, if the primitive is calculated for other interval [Pk−1;Pk] instead of [−1; 1],
the matrix J is replaced by αJ , where α = (Pk − Pk−1) /2.

The algorithm from Theorem 5.1 is implemented in the following way
in program [X,sol]=step meth2, which can be obtained from the authors
(mserban@math.ubbcluj.ro):

Step 0. We generate a global mesh X on [0;π] by the union of all local meshes
on which we also add the points Pk of subintervals. We calculate the values of x(0)

on the global mesh from the values of the function ϕ on the local mesh of the first
interval

[

0; π
4

]

and from the constant value ϕ
(

π
4

)

on the other knots.

Step k. Taking the values of x(k) on the global mesh, we obtain the values of
sin (X) · x(k) on the local mesh, we calculate the coefficients of sin (X) · x(k) on each
subinterval, then we get the coefficients of a primitive for sin (X) ·x(k) on each subin-
terval and finally we obtain the values of that primitive on the local mesh. We add
the contribution of nonintegrated part (where it is used the history from the previous
intervals with two steps). The implementation of the formulae from Theorem 5.1 is
now immediately, getting the values of the new iteration x(k+1) on the global mesh by
a new integration: we pass from the values on the mesh to coefficients, then we use
the integration matrix J and finally we return to the values in order to find x(k+1).

Stoping test. We evaluate the difference in norm between the values of x(k) and
x(k+1) and iterations stop when this is below than a chosen value (concretely 10−9).
We represent the graph of solution and the norm of difference for different k.
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For the efficiency estimation of this algorithm, the integro-differential equation
is written in the form of delay differential equation system and we use the Matlab
command dde23 to solve it. We impose the relative error to 10−9 and the absolute
error to 10−12 to obtain a accuracy comparable with the step method. We display
the graph of solution.

Results. Running the program we get the following results:
———————————————————————–
>>[X,sol]=step meth2;
Step method solution
Elapsed time is 0.054235 seconds.
Matlab dde23 solution 1253 successful steps
0 failed attempts
3760 functions evaluations
Elapsed time is 0.671015 seconds.
————————————————————————
The graph of solutions and the evolution of the differences between two successive

iterations are given below:

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

0.5 1 1.5 2 2.5 3 3.5
10

−10

10
−9

10
−8

10
−7



INTEGRO-DIFFERENTIAL EQUATION WITH TWO TIME LAGS 97

Conclusions. For the chosen example, the step method obtains the solution in
68 iterations with an error of 10−10 in 0.054 CPU seconds. The Matlab program
dde23 needs 0.671 CPU seconds (12 times bigger) for a similar precision. The above
comparisons validate the step method from the accuracy and efficiency point of view.
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