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Abstract. In this paper we use methods developed in [8] to extend fixed point results for Banach

lattices obtained for the weak topology in [3] and [4] to other topologies. We obtain conditions
which guarantee that Banach lattices which have topology τ have τ -normal structure and τ -fixed

point property.
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1. Introduction

The main goal of this paper is to study conditions which imply existence of fixed
points of nonexpansive mappings in Banach lattices. For mappings on weakly compact
convex sets such problems were studied in [16], [3] and [4]. However in function
and sequence lattices it is also natural to consider other topologies, in particular
the topology of convergence in measure in case of function lattices or the topology
of coordinatewise convergence in case of sequence lattices. Those topologies were
successfully applied to the fixed point theory in [8].

In this paper we use methods developed in [8] to extend fixed point results obtained
for the weak topology in [3] and [4] to other topologies. In our results we consider
properties related to the lattice order. However, some of them are also related to a
topology τ . This is in particular the case of the so-called τ -orthogonality. In some
lattices this property does not hold for the weak topology but it holds for a different
one. The basic example is the space L1 with the topology of convergence in measure
(see Example 3.1). This is the main motivation for considering topologies τ different
from the weak topology.

In this paper we consider Banach lattices equipped with linear topologies τ . First
we prove that every τ -orthogonal uniformly monotone Banach lattice such that its
every τ -sequentially compact subset is separable has normal structure with respect
to τ . Then we show that a Banach space has the fixed point property with respect to
a topology τ if it admits an equivalent norm such that with this new norm it is a τ -
orthogonal order uniformly noncreasy Banach lattice. This extends the Browein and
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Sims result from [5]. Sims considered also a stronger version of weak orthogonality
and showed that every such Banach lattice has the weak fixed point property (see
[16]). We extend his result by showing that a Banach lattice has the fixed point
property with respect to τ if it is strong τ -orthogonal.

2. Basic notation and some geometric properties of Banach lattices

Let X be a Banach space. By B(X) and S(X) we denote the closed unit ball and
the unit sphere of X, respectively. For notation and terminology concerning lattices
we refer the reader to [12]. Let us recall that if an inequality involves lattice and
algebraic operations, then it is enough to check its validity for real numbers to be
sure that it holds for vectors in an arbitrary Banach lattice (see [12, p. 1]). In the
next lemma we collect some inequalities and equality which will be used in the sequel.

Lemma 2.1. Let X be a Banach lattice. Then
(i) |x|+ |y| = 2(|x| ∧ |y|) + ||x| − |y|| ≤ 2(|x| ∧ |y|) + |x− y|,
(ii) |x| − |x| ∧ |y| ≤ |x− y|,
(iii) |z| ≤ |x− z| ∨ |y − z|+ |x| ∧ |y|

for all x, y, z ∈ X.

Let X be σ-complete Banach lattice. Then for each x ∈ X we can define the
principle band projection Px by

Px(y) =
∞∨

n=1

[
(n|x|) ∧ y+

]
−

∞∨
n=1

[
(n|x|) ∧ y−

]
.

For all x, y ∈ X the projection has the following properties Px(x) = x, ‖Px‖ =
‖I − Px‖ = 1 and Px(y) = 0, ‖Px + Py‖ = 1 whenever |y| ∧ |x| = 0. Here I denotes
the identity operator.

The projection can be used to prove the following lemma that will be needed later.

Lemma 2.2. Let (X, ‖ · ‖) be a Banach lattice and a1, a2 ∈ X be such that ‖|a1| ∧
|a2|‖ = 0 and ‖|ai| ∧ |x|‖ = 0 for i = 1, 2 and every x ∈ X. Then

‖u‖ ≤ 1
2

(‖u− a1‖+ ‖u− a2‖+ ‖u− x‖)

for all u, x ∈ X.

Proof. Since X ⊂ X∗∗, we can replace X by X∗∗ which is σ-order complete (see [12]).
Now we can consider the principle band projection

Pai
y =

∞∨
n=1

[
(n|ai|) ∧ y+

]
−

∞∨
n=1

[
(n|ai|) ∧ y−

]
for i = 1, 2. Following [16], we have

‖u‖ =
1
2
‖(Pa1 + Pa2)(u− x) + (I − Pa1)(u− a1) + (I − Pa2)(u− a2)‖

≤ 1
2
(‖u− x‖+ ‖u− a1‖+ ‖u− a2‖).

�
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A Banach lattice X is said to be strictly monotone if ‖x‖ < ‖y‖ whenever x, y ∈ X,
0 ≤ x ≤ y and x 6= y. Given a Banach lattice X and ε ∈ [0, 1], we put

δm,X(ε) = inf{1− ‖x− y‖ : 0 ≤ y ≤ x, ‖x‖ ≤ 1, ‖y‖ ≥ ε}.
We say that X is uniformly monotone if δm,X(ε) > 0 for all ε ∈ (0, 1]. Clearly,
uniformly monotone lattices are strictly monotone. The coefficient

ε0,m(X) = sup{ε ∈ [0, 1) : δm,X(ε) = 0}
is called the characteristic of monotonicity of the lattice X. Since δm,X(0) = 0
and δm,X is a nondecreasing function, the condition ε0,m(X) < 1 is equivalent to
limε→1 δm,X(ε) > 0. In [11], the modulus of order smoothness of a Banach lattice X
was introduced. We set

ρm,X(t) = sup{‖x ∨ ty‖ − 1 : x, y ∈ B(X), x, y ≥ 0}
where t ∈ [0, 1]. A Banach lattice X is called order uniformly smooth if

lim
t→0

ρm,X(t)
t

= 0.

Observe that

ρm,X(1) + 1 = sup{‖x ∨ y‖ : x, y ∈ B(X), x, y ≥ 0}
is called the Riesz angle of X and denoted by α(X) (see [5]). Kurc [11] proved the
duality formulae

ρm,X∗(t) = sup
0≤ε≤1

(εt− δm,X(ε))

δm,X(ε) = sup
0≤t≤1

(εt− ρm,X∗(t))

for all ε, t ∈ [0, 1]. They show that a Banach lattice X is uniformly monotone (resp.
order uniformly smooth) if and only if the dual lattice X∗ is order uniformly smooth
(resp. uniformly monotone). Using the above formulae it is also easy to see that
ρm,X∗(1) < 1 if and only if ε0,m(X) < 1.

The following definition which combines uniform monotonicity and uniform order
smoothness was introduced in [3]

Definition. Let r ∈ (0, 1]. A Banach lattice X is said to be r-order uniformly
noncreasy (r-OUNC) if for all u, v ∈ 1

2B(X) we have either

‖|u| ∨ |v|‖ ≤ r

or for every y ∈ X the conditions |y| ≤ |u− v|, ‖y‖ ≥ r imply that ‖|u− v|− |y|‖ ≤ r.
A Banach lattice X is order uniformly noncreasy (OUNC) if it is r-OUNC for some

r ∈ (0, 1).

Clearly, each Banach lattice X is r-OUNC with r = 1
2 (ρm,X(1) + 1) = 1

2α(X).
Therefore, if ρm,X(1) < 1, then X is OUNC. It is also easy to see that X is r-OUNC
where

r = max {ε, 1− δm,X(ε)}
for any ε ∈ (0, 1). It follows that if ε0,m(X) < 1, then X is OUNC. The class of all
OUNC Banach lattices contains therefore all order uniformly smooth lattices and all
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uniformly monotone lattices. Moreover, there is a Banach lattice which is OUNC but
neither uniformly monotone nor order uniformly smooth (see [3]).

Let X be a Banach space and τ be a linear topology on X. In this paper we will
need also the definitions of a τ -sequentially lower semi continuous function and a τ -null
type. We shall say that a function f : X → R is τ -sequentially lower semicontinuous
(τ -slsc) if for every sequence (xn) in X which converges to x ∈ X with respect to τ
we have

f(x) ≤ lim inf
n→∞

f(xn).

If X is a Banach space and w is the weak topology on X it is known that the norm
is a w-slsc function. If X is a dual space and w∗ is the weak star topology on X the
norm is also a w∗-slsc function. A τ -null type on X is a function of the form

Γ(xn)(x) = lim sup
n→∞

‖xn − x‖

where x ∈ X and (xn) is a τ -null sequence in X. It is know that the w-null types are
w-slsc. Notice that if X is a Banach space and τ is a linear topology on X such that
τ -null types are τ -slsc functions, then the norm is a τ -slsc function. In addition, the
condition that the norm is a τ -slsc function is equivalent to the τ -sequential closedness
of the closed unit ball in X.

Finally, for the sake of simplicity let us define additional notations. Let (X, ‖ · ‖)
be a Banach space and τ be a linear topology on X. We shall say that space X has
property τ -(N) if all τ -null types are τ -slsc functions and τ -sequentially compact sets
are τ -compact.

3. Applications to fixed point theory

A self-mapping T of a subset C of a Banach space X is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖

for all x, y in C. Let τ be an arbitrary topology on X. We say that X has the fixed
point property with respect to τ (τ -FPP) if every nonexpansive mapping defined on
a nonempty τ -sequentially compact convex bounded subset of X has a fixed point. If
the norm on X is additionally a τ -slsc function then this is in particular the case if
X has normal structure with respect to τ (see [8], Theorem 1). Recall that a Banach
spaces X is said to have normal structure with respect to τ (τ -NS) if for each τ -
sequentially compact norm bounded convex subset D of X with diam D > 0 there
exists a point x ∈ D such that

sup{‖x− y‖ : y ∈ D} < diam D.

In the case when τ is the weak topology in the above definitions sequential compact-
ness can be replaced by compactness.

In [5], Borwein and Sims introduced the definition of a weakly orthogonal Banach
lattice X. We extend his definition to an arbitrary topology on X.

Definition. Let X be a Banach lattice and τ be a linear topology on X.
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(1) X is said to be τ -orthogonal if

lim inf
n→∞

lim inf
m→∞

‖|xn| ∧ |xm|‖ = 0

whenever (xn) is a sequence in X which converges to 0 with respect to τ .
(2) X is said to be strong τ -orthogonal if

lim inf
n→∞

‖|xn| ∧ |x|‖ = 0

for every x ∈ X and every sequence (xn) in X which converges to 0 with
respect to τ .

Clearly, if X is strong τ -orthogonal, then X is τ -orthogonal.

Example 3.1. The space L1([0, 1]) is strong τ -orthogonal where τ is the topology of
convergence in measure (clm) and it is not strong weak-orthogonal.

To see that the space L1([0, 1]) is strong τ -orthogonal fix ε > 0. For any f ∈
L1([0, 1]) there exists η > 0 such that for any B ⊂ [0, 1] such that µ(B) < η we have∫

B
|f |dµ < ε

2 , where µ is the Lebesgue measure. Let (fn) converge to 0 with respect
to µ. By the Riesz theorem there exists a subsequence (fnk

) of (fn) which converges
to 0 almost everywhere. From the Jegorow theorem there exists F ⊂ [0, 1] such that
µ([0, 1]\F ) < η and fnk

is uniformly convergent to 0 on F . Hence there exists N ∈ N
such that |fnk

(x)| ≤ ε
2µ([0,1]) for all k ≥ N and x ∈ F . For k ≥ N we have

‖|fnk
| ∧ |f |‖L1 ≤

(∫
[0,1]\F

|f |dµ +
∫

F

|fnk
|dµ

)
≤ ε.

To see that the space L1([0, 1]) is not strong weak-orthogonal it is enough to consider
the sequence of Rademacher functions.

In [3] it was proven that a weakly orthogonal Banach lattice X with ε0(X) < 1
has weak normal structure. Using the next theorem and following the proof from [3],
we can generalize the result to an arbitrary topology on X.

Theorem 3.1 ([10]). Let X be a Banach space and τ be a linear topology on X such
that every τ -sequentially compact subset A of X is separable. If X does not have
τ -NS, then there is a bounded sequence (xn) in X that converges to x with respect to
τ and

lim
n→∞

‖xn − x‖ = lim
n→∞

‖xn − xm‖ > 0

for every m ∈ N. In case τ is the weak topology the separability assumption is not
necessary.

Theorem 3.2. Let X be a Banach lattice and τ be a linear topology on X such that
every τ -sequentially compact subset of X is separable. If X is τ -orthogonal and does
not have τ -NS, then for every η > 0 there exist x, y ∈ S(X) such that x, y ≥ 0 and

(1− η) max{|a|, |b|} ≤ ‖ax + by‖ ≤ (1 + η)max{|a|, |b|}

for all a, b ∈ R. If τ is the weak topology, then the separability assumption is not
necessary.
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Proof. Assume that X fails to have τ -normal structure. By Theorem 3.1 there exists
a sequence (xn) in X which converges to x with respect to τ and

lim
n→∞

‖xn − x‖ = lim
n→∞

‖xn − xm‖ > 0

for all m ∈ N. Put yn = xn − x. Then (yn) converges to 0 with respect to τ and

lim
n→∞

‖yn‖ = lim
n→∞

‖yn − ym‖ > 0

for every m ∈ N. We can assume that ‖yn‖ > c > 0 for all n ∈ N. If X is τ -orthogonal,
then

lim inf
n→∞

lim inf
m→∞

‖|yn| ∧ |ym|‖ = 0

so we can find subsequences (ynk
) and (ymk

) of (yn) such that

lim
k→∞

‖|ynk
| ∧ |ymk

|‖ = 0.

We put uk = |ynk
|

‖ynk
‖ and vk = |ymk

|
‖ymk

‖ . Then uk, vk ∈ S(X) and uk, vk ≥ 0 for every
k ∈ N. Using the equality in Lemma 2.1 (i) we get

‖uk + vk‖ ≤
∥∥∥∥ |ynk

|+ |ymk
|

‖ynk
‖

∥∥∥∥+
∥∥∥∥|ymk

|
(

1
‖ymk

‖
− 1
‖ynk

‖

)∥∥∥∥
≤ 1
‖ynk

‖
(2‖|ynk

| ∧ |ymk
|‖+ ‖|ynk

| − |ymk
|‖) +

∣∣∣∣1− ‖ymk
‖

‖ynk
‖

∣∣∣∣
≤ 1
‖ynk

‖
(2‖|ynk

| ∧ |ymk
|‖+ ‖ynk

− ymk
‖) +

∣∣∣∣1− ‖ymk
‖

‖ynk
‖

∣∣∣∣
Since the expression on the right hand side tends to 1 as k →∞, given η > 0 we can
find k0 ∈ N so that

‖uk + vk‖ ≤ 1 + η

for every k ≥ k0. Let a, b ∈ R. We can assume that |a| = max{|a|, |b|}. Denote
t = b

|a| , then |t| ≤ 1. We have

‖uk + tvk‖ ≤ ‖uk + |t|vk‖
≤ |t|‖uk + vk‖+ (1− |t|)‖uk‖ ≤ 1 + η.

Since ‖uk ∧ vk‖ =
∥∥∥ |ynk

|
‖ynk

‖ ∧
|ymk

|
‖ymk

‖

∥∥∥ ≤ 1
c‖|ynk

| ∧ |ymk
|‖ there exists k1 ∈ N so that

‖uk ∧ vk‖ ≤ η for every k ≥ k1 and hence

‖uk + tvk‖ ≥ ‖uk − |t|vk‖
= ‖uk ∨ |t|vk − uk ∧ |t|vk‖
≥ ‖uk ∨ |t|vk‖ − ‖uk ∧ |t|vk‖
≥ ‖uk‖ − ‖uk ∧ vk‖ = 1− ‖uk ∧ vk‖ ≥ 1− η

for every k ≥ k1. So for k ≥ max{k0, k1} we have

(1− η)|a| ≤ ‖auk + bvk‖ ≤ (1 + η)|a|.

�
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Corollary 3.3. Let X be a Banach lattice and τ be a linear topology on X such that
every τ -sequentially compact subset of X is separable. If X is a τ -orthogonal and
ε0(X) < 1, then X has τ -normal structure.

Proof. Suppose that X fails to have τ -normal structure. Let η > 0. Then by Theorem
3.2 there exist x, y ∈ S(X) such that x, y ≥ 0 and ‖x + y‖ ≤ 1 + η. Denote z = x + y,
then 0 ≤ x ≤ z and ‖z‖ ≤ 1 + η. Let z1 = z

1+η and v1 = x
1+η . We have ‖z1‖ ≤ 1,

‖v1‖ = 1
1+η and 1−‖z1−v1‖ = η

1+η . Hence δm,X

(
1

1+η

)
≤ η

1+η , so limε→1 δm,X(ε) = 0
which means that ε0,m(X) = 1. �

Corollary 3.4. Let X be a Banach lattice and τ be a linear topology on X such that
every τ -sequentially compact subset of X is separable. If X is τ -orthogonal, uniformly
monotone and such that ‖ · ‖ is τ -slsc function, then X has τ -FPP.

We will also consider lattices which do not have normal structure with respect to
a topology τ . In this case we will use the ultrapower method. Given a Banach space
X, by l∞(X) we denote the space of all bounded sequences in X with the supremum
norm. Let U be a free ultrafilter on N. The ultrapower (X)U is the quotient space
l∞(X)/N where

N =
{

(xn) ∈ l∞(X) : lim
U
‖xn‖ = 0

}
.

Here limU ‖xn‖ stands for the limit over the ultrafilter U (see [1, p. 13]). The equiv-
alence class of the sequence (xn) ∈ l∞(X) will be denoted by (xn)U . It is easy to see
that the quotient norm is given by the formula (see [1, p. 23])

‖(xn)U‖ = lim
U
‖xn‖.

In the sequel we will need the following result (see [3]).

Theorem 3.5. Let X be a Banach lattice and U be a free ultrafilter on N. If X is
OUNC, then (X)U is OUNC.

The same tools as for weak topology can be use to study τ -FPP. The following
theorem can be found in [8].

Theorem 3.6 (Generalized Goebel-Karlovitz Lemma). Let a Banach space X have
the property τ -(N). Let T be a fixed point free nonexpansive mapping defined from a
τ -sequentially compact bounded convex subset C of X into itself. Assume that C is
minimal and let (xn) be an approximated fixed point sequence for T in C. Then

lim
n→0

‖xn − x‖ = diam C

for every x ∈ C.

Let τ be an arbitrary topology on X. If C is a τ -sequentially compact convex sub-
set of X, C is not necessarily norm closed. However, as every nonexpansive mapping
T can be extended, in a continuous way, to the set C

‖·‖
and this extension is also

a nonexpansive mapping. Banach Contraction Principle lets us find an approximate
fixed point sequence for the extension of T in C

‖·‖
. Finally, by an approximation ar-

gument, we can construct an approximate fixed point sequence for T in C. Moreover,
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since C is τ sequentially compact, taking a subsequence if necessary, we can assume
that this sequence is τ -convergent.

This argument allows us to generalize the well-known Maurey result (see [1]).

Lemma 3.7 (Generalized Maurey Lemma). Let C be a convex bounded subset of a
Banach space (X, ‖ · ‖) and let (xn), (yn) be approximated fixed point sequences for
nonexpansive mapping T defined from C onto itself. Then there exists an approxima-
tion fixed point sequence (zn) in C such that

lim sup
n→∞

‖xn − zn‖ ≤
1
2

lim sup
n→∞

‖xn − yn‖, lim sup
n→∞

‖yn − zn‖ ≤
1
2

lim sup
n→∞

‖xn − yn‖.

Using a reasoning from [8], we obtain the following result.

Theorem 3.8. Let Banach space X have a property τ -(N). If X fails to have the τ -
FPP, there exists a fixed point free nonexpansive mapping defined from a subset C of
X into itself, which is τ -sequentially compact bounded convex and minimal. Moreover,
under these conditions, C is also a diametral set.

The Banach–Mazur distance of two isomorphic Banach spaces X and Y is defined
by the formula

d(X, Y ) = inf ‖S‖‖S−1‖

where the infimum is taken over all linear isomorphisms S of X onto Y . Borwein and
Sims [5] proved that a Banach space X has the weak fixed point property if there
exists a weakly orthogonal Banach lattice Y such that

d(X, Y )α(Y ) < 2.

As a consequence every weakly orthogonal Banach lattice X with α(X) < 2 has the
weak fixed point property. In [3] the following theorem is proven.

Theorem 3.9. A Banach space X has the weak fixed point property if there exists a
weakly orthogonal r-OUNC Banach lattice Y such that

d(X, Y )r < 1.

We will show how to modify the proof to establish the following generalization.

Theorem 3.10. Let (X, ‖ · ‖) be a Banach lattice with property τ -(N). Then X has
the τ -FPP, if there exist a norm ‖ · ‖1 on X and d > 0 such that ‖x‖1 ≤ ‖x‖ ≤ d‖x‖1

for every x ∈ X and Y = (X, ‖ · ‖1) is τ -orthogonal r-OUNC Banach lattice that
satisfies condition dr < 1.

Proof. Assume that X fails to have τ -FPP. Then there exist a nonempty τ -
sequentially compact convex bounded C ⊂ X and nonexpansive mapping T : C → C
which has no fixed point. Moreover, there exist a nonempty τ -sequentially compact
convex minimal and T -invariant subset D ⊂ C and an approximate fixed point se-
quence (xn) for T in D. We may assume that diam D = 1 and (xn) converges to 0
with respect to τ (in particular 0 ∈ D).
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Let Y = (X, ‖ · ‖1) be a τ -orthogonal r-OUNC Banach lattice such that ‖x‖1 ≤
‖x‖ ≤ d‖x‖1 for every x ∈ X and dr < 1. We choose r′ > 0 so that r′ > r and
dr′ < 1. By τ -orthogonality of Y , there exists an increasing sequence (nk) such that

lim inf
m→∞

‖|xnk
| ∧ |xm|‖1 <

1
k

and by Lemma 3.6 we have

lim
m→∞

‖xnk
− xm‖ = 1

for all k ∈ N. Hence for every k ∈ N there exists ik ∈ N such that

‖xnk
− xm‖ > 1− 1

k

for all m ≥ ik and there exists mk ≥ ik such that

‖|xnk
| ∧ |xmk

|‖1 <
1
k

and ‖xnk
− xmk

‖ > 1− 1
k

.

We can assume that (mk) is an increasing sequence. We have

lim
k→∞

‖|xnk
| ∧ |xmk

|‖1 = 0 and lim
k→∞

‖xnk
− xmk

‖ = 1.

Using Lemma 3.7, we obtain an approximate fixed point sequence (zk) in C for which

lim sup
k→∞

‖zk−xnk
‖ ≤ 1

2
lim sup

k→∞
‖xmk

−xnk
‖, lim

k→∞
‖zk−xmk

‖ ≤ 1
2

lim sup
k→∞

‖xmk
−xnk

‖

and limk→∞ ‖zk‖ = limk→∞ ‖xnk
‖ = 1. We can further assume, taking a subsequence

if necessary, that the following limits exist

lim
k→∞

‖zk − xnk
‖ ≤ 1

2
, lim

k→∞
‖zk − xmk

‖ ≤ 1
2
.

Let U be a free ultrafilter on N and

u = (zk − xnk
)U ,

v = (zk − xmk
)U ,

y = (|xnk
| − |xnk

| ∧ |xmk
|)U .

Then

‖u‖Ỹ = lim
U
‖zk − xnk

‖1 ≤ lim
U
‖zk − xnk

‖ = lim
k→∞

‖zk − xnk
‖ ≤ 1

2
and similarly ‖v‖Ỹ ≤ 1

2 .
We have

‖y‖Ỹ = lim
U
‖|xnk

| − |xnk
| ∧ |xmk

|‖1 ≥ lim
U

(
‖xnk

‖1 − ‖|xnk
| ∧ |xmk

|‖1

)
= lim

U
‖xnk

‖1 ≥
1
d

lim
U
‖xnk

‖ =
1
d

> r′.
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From Lemma 2.1 (ii) it follows that |u− v| ≥ |y|. Moreover, using Lemma 2.1 (i), we
get

‖|u− v| − |y|‖Ỹ ≥ lim
U
‖||xnk

| − |xmk
|| − |xnk

|+ |xnk
| ∧ |xmk

|‖1

= lim
U
‖|xmk

| − |xnk
| ∧ |xmk

|‖1

≥ lim
U

(
‖xmk

‖1 − ‖|xnk
| ∧ |xmk

|‖1

)
= lim

U
‖xmk

‖1 ≥
1
d

lim
U
‖xmk

‖ =
1
d

> r′,

Next, by Lemma 2.1 (iii) we obtain

1 = lim
k→∞

‖zk‖ ≤ d lim
k→∞

‖zk‖1 = d lim
U
‖zk‖1

≤ d lim
U

(‖|xnk
− zk| ∨ |xmk

− zk|‖1 + ‖|xnk
| ∧ |xmk

|‖1)

= d lim
U
‖|xnk

− zk| ∨ |xmk
− zk|‖1 <

1
r′
‖|u| ∨ |v|‖Ỹ ,

and we see that ‖|u| ∨ |v|‖
eY > r′. It follows that Ỹ is not r′-OUNC, so by Theorem

3.5, Y is not r-OUNC. �

Corollary 3.11. Let (X, ‖ · ‖) be a Banach lattice with the property τ -(N). Assume
that X is τ -orthogonal and OUNC. Then X has the τ -FPP.

In [16], Sims proved that every strong weak-orthogonal Banach lattice has the weak
fixed point property. Our next theorem generalizes his result.

Theorem 3.12. Let (X, ‖ · ‖) be a Banach space with the property τ -(N). Then X
has the τ -FPP if there exist a strong τ -orthogonal Banach lattice Y = (X, ‖ · ‖1) and
0 < d < 4

3 such that ‖x‖1 ≤ ‖x‖ ≤ d‖x‖1 for every x ∈ X.

Proof. Assume that X fails to have τ -FPP. There exist a nonempty τ - sequentially
compact convex bounded subset C ⊂ X and nonexpansive mapping T : C → C which
has no fixed point. We can assume that C is minimal invariant for T and diam C = 1.
There exists in C an approximate fixed point sequence (xn) for T . We can assume
that (xn) is τ -convergent to 0 (in particular 0 ∈ C). By τ orthogonality of Y ,

lim
n→∞

‖|xn| ∧ |x|‖1 = 0

for x ∈ X and by Lemma 3.6

lim
n→∞

‖xn − x‖ = 1

for every x ∈ C. In particular for a fixed m ∈ N
lim

n→∞
‖|xn| ∧ |xm|‖1 = 0 and lim

n→∞
‖xn − xm‖ = 1.

Let {εk} ⊆ R+ satisfy limk→∞ εk = 0. There exists n1 ∈ N such that for every n ≥ n1

‖|xn| ∧ |x1|‖1 < ε1 and |‖x1 − xn‖ − 1| < ε1.

Having defined nk we choose nk+1 > nk so that for all n ≥ nk+1

‖|xn| ∧ |xnk
|‖1 < εk+1 and |‖xnk

− xn‖ − 1| < εk+1.
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Since
‖|xnk+1 | ∧ |xnk

|‖1 < εk+1 and |‖xnk+1 − xnk
‖ − 1| < εk+1

we have

lim
k→∞

‖|xnk+1 | ∧ |xnk
|‖1 = 0 and lim

k→∞
‖xnk+1 − xnk

‖ = 1.

Let U be a free ultrafilter on N. Denote ã1 = (xnk
)U , ã2 = (xnk+1)U and x̃ = (x)U .

Then the following conditions hold.
i) For every x ∈ C,

‖ã1 − x̃‖U = lim
U
‖xnk

− x‖ = lim
k→∞

‖xnk
− x‖ = 1.

Similarly
‖ã2 − x̃‖U = 1.

In particular, ‖ãi‖U = 1 for i = 1, 2.
ii) ‖ã1 − ã2‖U = limU ‖xnk

− xnk+1‖ = limk→∞ ‖xnk
− xnk+1‖ = 1

iii) |ãi| ∧ |x̃| = 0 and |ã1| ∧ |ã2| = 0 for every x ∈ C and i = 1, 2.
Let

W̃ :=
{
w̃∈ C̃ : ‖w̃ − ãi‖U≤

1
2

for i = 1, 2 and there exists ṽ ∈ JC with ‖w̃ − ṽ‖ ≤ 1
2

}
,

where J : X → (X)U is given by the formula Jx = (x)U = (x, x, . . .). W̃ is nonempty(
since ea1+ea2

2 ∈ W̃
)
, convex, T̃ -invariant. Due to the P. K. Lin Lemma [13], for every

ε > 0 there exists ṽ ∈ W̃ such that ‖ṽ‖U > 1−ε. Let x ∈ C be such that ‖ṽ−x̃‖U ≤ 1
2 .

Using Lemma 2.2 and inequality between norms, we get

1− ε <‖ṽ‖U ≤ d‖ṽ‖1,U

≤1
2
d(‖ṽ − x̃‖1,U + ‖ṽ − ã1‖1,U + ‖ṽ − ã2‖1,U )

≤1
2
d(‖ṽ − x̃‖U + ‖ṽ − ã1‖U + ‖ṽ − ã2‖U )

≤3
4
d.

By arbitrariness of ε > 0 we have d ≥ 4
3 which contradicts assumption that d < 4

3 . �

Corollary 3.13. Let (X, ‖ · ‖) be a strong τ -orthogonal Banach lattice with the prop-
erty τ -(N). Then X has the τ -FPP.
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