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Abstract. A new family of Chebyshev-Halley like methods free from second derivative for nonlinear
equations is presented in this paper. The family is at least of third order convergence and includes

one fourth order method as special case. It uses only two function evaluations and one first derivative
evaluation per iteration. A general error analysis is given. Several numerical examples are given to

illustrate the performance of the presented methods by comparing with some other methods.
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1. Introduction

One of the most important and challenging problems in mathematics, physics and
other sciences is to find the solutions of nonlinear equations. In this paper, we consider
some new iterative methods to find a simple root for the nonlinear equation

f(x) = 0, (1.1)

where f : D ⊆ R → R is a scalar function defined on an open interval D and
sufficiently smooth in a neighborhood of the root, say α.

The typical method for solving (1.1) is Newton’s method (NM), which is defined
by

xn+1 = xn −
f(xn)
f ′(xn)

, (1.2)

and converges quadratically in some neighborhood of α in D.
In [6], a family of third order methods was given which requires evaluations of one

function, one first derivative and one second derivative per iteration. It was given as
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follows,

xn+1 = xn −
(
1 +

1
2

Lf (xn)
1− βLf (xn)

) f(xn)
f ′(xn)

, (1.3)

where

Lf (x) =
f ′′(x)f(x)

f ′2(x)
, β ∈ R. (1.4)

One can see that Chebyshev’s method (CM) (β = 0), Halley’s method (HAM)

(β =
1
2

) and Super-Halley’s method (SHM) (β = 1) [1, 6, 10] are the special cases

of (1.3).
The family in (1.3) requires the evaluation of the second derivative. However, it

is usually expensive to compute the second derivative, and the practical applications
of such methods are very inconvenient. Several authors introduced and analyzed
methods free from second derivatives, see for example, [2]-[5], [7]-[9] and the references
therein. Motivated by their work, in this paper, we modify (1.3) to give a new family
of third order methods and a new fourth order method. Each iteration requires only
one first derivative and two function evaluations.

The improved iterative methods and their convergence analyses are presented in
Section 2. With the help of Maple, we also obtain the error equations in the section. In
Section 3, we present some special cases. And in Section 4, several numerical examples
are compared with other famous iterative methods to illustrate the performance of
the presented methods.

2. Improved methods and convergence analyses

In order to derive an approximation to f ′′(x) in (1.4), we consider approximating
f(x) around the point (xn, f(xn)) by a parabola in the following form:

ay2 + y + bx + c = 0. (2.1)

Let us impose the tangency conditions:

y(xn) = f(xn), y′(xn) = f ′(xn), y(ϕn) = f(ϕn), (2.2)

where xn is the nth iteration and

ϕn = xn −
f(xn)
f ′(xn)

. (2.3)

By imposing the tangency conditions (2.2), we have

a = − f(ϕn)
f(ϕn)2 + f(xn)2

. (2.4)

On the other hand, from (2.1), we have

y′′(x) = − 2ay′(x)2

2ay(x) + 1
. (2.5)

Using (2.2), (2.4) and (2.5), we can obtain

f ′′(xn) ≈ y′′(xn) =
2f(ϕn)f ′(xn)2

[f(xn)− f(ϕn)]2
. (2.6)
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Substituting (2.6) into (1.4), we have

Lf (xn) ≈
2f(ϕn)f(xn)

(f(xn)− f(ϕn))2
. (2.7)

Therefore, by (1.3) and (2.7), we can obtain a new family of methods as follows,

xn+1 = xn −
(
1 +

f(ϕn)f(xn)
[f(xn)− f(ϕn)]2 − 2βf(ϕn)f(xn)

) f(xn)
f ′(xn)

, (2.8)

where β ∈ R,ϕnis defined in (2.3).
The following theorem gives the convergence orders and the error equations of the

new iterative methods defined in (2.8).
Theorem 2.1. Let α ∈ D be a simple root of a sufficiently differentiable function
f : D ⊆ R → R for an open interval D. If x0 is sufficiently close to α, then the
iterative methods defined in (2.8) are at least of order three for nonzero β ∈ R or of
order four for β = 0, and their error equations are given by

en+1 = Me4
n + Ne3

n + O(e5
n), (2.9)

where

M = 7tC3
2 + 7C2C3 − 4tC2C3 − t2C3

2 − 8C3
2 , (2.10)

N = (2− t)C2
2 , (2.11)

t = 2(1 + β), (2.12)

Ck =
f (k)(α)
k!f ′(α)

, k = 2, 3, · · · , (2.13)

en = xn − α. (2.14)

Proof. For any fixed n ≥ 0, let

r =
f(xn)f(ϕn)

f(xn)2 + f(ϕn)2
, (2.15)

φ(r, β) =
r

1− 2(1 + β)r
=

r

1− tr
, (2.16)

where t is defined in (2.12).
Substituting (2.12), (2.14), (2.15) and (2.16) into (2.8) , we have

en+1 = en −
(
1 + φ(r, β)

) f(xn)
f ′(xn)

. (2.17)

Using Taylor expansion around α and taking into account f(α) = 0, we have

f(xn) = f ′(α)(en + C2e
2
n + C3e

3
n + C4e

4
n + · · · ), (2.18)

f ′(xn) = f ′(α)(1 + 2C2en + 3C3e
2
n + 4C4e

3
n + · · · ). (2.19)

Dividing (2.18) by (2.19), we get

f(xn)
f ′(xn)

= en − C2e
2
n + 2(C2

2 − C3)e3
n + (7C2C3 − 4C3

2 − 3C4)e4
n + · · · . (2.20)
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Let εn = ϕn − α, then

εn = en −
f(xn)
f ′(xn)

= C2e
2
n − (2C2

2 − 2C3)e3
n + (4C3

2 + 3C4 − 7C2C3)e4
n + · · · .

Expanding f(ϕn) at α, we have

f(ϕn) = f ′(α)(en + C2e
2
n + C3e

3
n + C4e

4
n + C5e

5
n + C6e

6
n + · · · )

= f ′(α)
(
C2e

2
n − 2(C2

2 − C3)e3
n + (5C3

2 − 7C2C3 + 3C4)e4
n + · · ·

)
.

(2.21)

Hence, from (2.18) and (2.21), one has

f(xn)f(ϕn) = f ′(α)2
(
C2 + (2C3 − C2

2 )en + (3C3
2 + 3C4 − 4C2C3)e2

n + · · ·
)
e3
n,

(2.22)

f(xn)2 + f(ϕn)2 = f ′(α)2
(
1 + 2C2en + (2C2

2 + 2C3)e2
n + (2C4 − 4C3

2

+ 6C2C3)e3
n + · · ·

)
e2
n.

(2.23)

Thus,

r =
f(xn)f(ϕn)

f(xn)2 + f(ϕn)2

= C2en + (−3C2
2 + 2C3)e2

n + (7C3
2 − 10C2C3 + 3C4)e3

n + · · · ,

(2.24)

and

φ(r, β) =
r

1− tr

= C2en + (tC2
2 − 3C2

2 + 2C3)e2
n + (t2C3

2 + 4tC2C3

+ 7C3
2 − 10C2C3 − 6tC3

2 + 3C4)e3
n + · · · .

(2.25)

Therefore, by substituting (2.20) and (2.25) into (2.17), we obtain the error equations
for the methods defined by (2.8),

en+1 = Me4
n + Ne3

n + O(e5
n),

where M,N, t are shown in (2.10)–(2.12). The proof is complete.
Remark 2.1. From Theorem 2.1, when β = 0, the iterative method defined in (2.8)
is fourth-order convergence and its error equation is given by

en+1 = (2C3
2 − C2C3)e4

n + O(e5
n),

where Ck, en are shown in (2.13), (2.14).

3. Several special cases

When β takes different values, we obtain various iterative methods.
1 In fact, when β = ±∞, we obtain Newton’s method (1.2).

2 When β =
1
2

, we obtain a modified Halley’s method (MHAM)

xn+1 = xn −
(
1 +

f(ϕn)f(xn)
f(xn)2 + f(ϕn)2 − 3f(ϕn)f(xn)

) f(xn)
f ′(xn)

. (3.1)
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3 When β = 1, we obtain a modified Super-Halley’s method (MSHM)

xn+1 = xn −
(
1 +

f(ϕn)f(xn)
f(xn)2 + f(ϕn)2 − 4f(ϕn)f(xn)

) f(xn)
f ′(xn)

. (3.2)

4 When β = −1, we obtain a new third order method (NEWM1)

xn+1 = xn −
(
1 +

f(ϕn)f(xn)
f(xn)2 + f(ϕn)2

) f(xn)
f ′(xn)

. (3.3)

5 When β = − 1
2

, we obtain another new third order iterative method

(NEWM2)

xn+1 = xn −
(
1 +

f(ϕn)f(xn)
f(xn)2 + f(ϕn)2 − f(ϕn)f(xn)

) f(xn)
f ′(xn)

. (3.4)

6 When β = 0, we obtain a modified Chebyshev’s method (MCM)

xn+1 = xn −
(
1 +

f(ϕn)f(xn)
(f(xn)− f(ϕn))2

) f(xn)
f ′(xn)

. (3.5)

Remark 3.1. From Theorem 2, we can obtain the order of convergence and the error
equations for (3.1)–(3.5).

4. Numerical testing

In this section, we present some numerical tests to illustrate the efficiency of our
iterative methods defined in (2.8).

The following methods are compared: Newton’s method (NM), Chebyshev’s
method (CM), Halley’s method (HM), Super-Halley’s method (SHM), and our new
methods defined in (3.1) (MHAM), (3.2) (MSHM), (3.3) (NEWM1), (3.4) (NEWM2)
and (3.5) (MCM).

All computations are done by using Maple 14.0 with 128 digits floating point
arithmetics (Digits:=128). We accept an approximate solution rather than the exact
root, depending on the precision (ε) of the computer. We use the following stopping
criteria for computer programs: (i), |f(xn+1)| ≤ ε; (ii), |xn+1 − xn| ≤ ε. When the
stopping criteria are satisfied, xn+1 is taken as the exact root α computed. For
numerical illustrations in this paper, we use the fixed ε = 10−32.

Displayed in Table 1 are the numbers of iterations required. Please note that some
of fi(x) (i = 1 · · · 8) with the iterative methods (NM), (HAM), (SHM) and (CM) were
also studied in [3] and [4].

Table 2 shows the values of x∗ and f(x∗) after required iterations displayed in
Table 1 and all the values of x∗ and f(x∗) have 28th decimal places.
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We use the following test functions:

f1(x) = x3 + 4x2 − 10, f2(x) = ex2+7x−30 − 1,

f3(x) = xex2
− sin2(x) + 3 cos(x) + 5, f4(x) = sin(x)− x

2
,

f5(x) = sin2(x)− x2 + 1, f6(x) = x2 − ex − 3x + 2,

f7(x) = cos(x)− x,

f8(x) = x2 sin2(x) + ex2 cos(x) sin(x) − 28.

Table 1. Iteration numbers of various iterative methods

f(x) x0 NM HAM SHM CM MHAM MSHM NEWM1 NEWM2 MCM

f1 0.8 8 5 5 6 4 5 5 4 4

f2 3.5 14 9 Div. 9 9 Div. 9 9 7

f3 −1 8 5 5 5 4 4 4 4 3
f4 1.5 7 5 5 6 4 4 5 4 4

f5 2.3 8 5 5 6 4 5 5 5 4
f6 0.0 6 4 4 4 3 3 3 3 3

f7 1.7 7 5 5 5 4 3 4 4 3

f8 3.5 8 5 5 5 4 5 4 4 4

Remark 4.1. In Table 1, Div. means divergence.
From the results presented in Table 1, we can see that the iterative methods of this

paper converge faster than the other well known iterative methods, such as (NM),
(HAM), (SHM) and (CM).

Table 2. The values of x∗ and f(x∗).

f(x) x∗ f(x∗)

f1 +1.3652300134140968457608068290 −2.7512616374220847651839558232 e(−29)

f2 +3.0000000000000000000000000000 0

f3 −1.2076478271309189270094167584 −7.9521837893616811601101927680 e(−29)
f4 +1.8954942670339809471440357381 −5.2403585720546242592849636477 e(−30)

f5 +1.4044916482153412260350868178 −7.7749132572317528408560279395 e(−30)

f6 +0.2575302854398607604553673049 +4.6922825867499603300668792255 e(−30)
f7 +0.7390851332151606416553120877 −2.1187256600039723395038675974 e(−31)

f8 +3.4374717434217662712321963069 +1.2499519014620847411294804780 e(−27)

5. Conclusion

In this paper, we present a new family of Chebyshev-Halley like methods free from
second derivative and a new fourth order method. Per iteration of these methods
requires only one first derivative and two function evaluations. The error equations
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are also given in this paper. Some numerical examples are given to illustrate the
performance of the presented methods.
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