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Abstract. A new fixed point theorem on nonlinear expansive operators as defined in this article

is firstly pointed out. Subsequently, we establish several fixed point theorems on the sum of A +
B, where A is a compact operator, B is a nonlinear expansive operator. The results obtained

generalize and improve the corresponding results of Avramescu and Xiang in papers [C. Avramescu,

C. Vladimirescu, Some remarks on Krasnoselskii’s fixed point theorem, Fixed Point Theory, 4 (2003)
3–13, T. Xiang, R. Yuan, A class of expansive-type Krasnosel’skii fixed point theorems, Nonlinear

Anal. 71 (2009) 3229–3239]. As applications, the existence theorem of nonnegative solutions for a

class of nonlinear integral equation is discussed.
Key Words and Phrases: Fixed point theorem, nonlinear expansive mapping, nonlinear integral

equation.
2010 Mathematics Subject Classification: 47H10, 45G10.

1. Introduction

In many problems of analysis, one encounters operators which may be split in the
form A + B, where A is a compact operator and B is contraction in some sense, and
itself has neither of these properties. Thus neither the Schauder fixed point theorem
nor the Banach contraction principle applies directly in this case, and it becomes
desirable to develop fixed point theorems for such situations. An early theorem of
this type was given by Krasnosel’skii [1] (or see [2]).
Theorem A. Let M be a closed convex nonempty subset of Banach space X. Suppose
that A and B map M into X such that

(i) A is continuous and A(M) is contained in a compact set;
(ii) B is a contraction with constant α < 1;
(iii) Ax + By ∈ M(∀ x, y ∈ M). Then the operator equation Au + Bu = u has a

solution in M .
Since then there have appeared a large number of papers contributing generaliza-

tions or modifications of the Theorem A and their applications. One of the main
features of such generalizations is the adopting of generalized forms of the Banach
contraction principle or the Schauder fixed point theorem. See [3] and the references
therein. Here the operator equation Au + Bu = u may also be considered as a per-
turbation of Au = u. In [1], Krasnosel’skii asserted the existence of a solution of
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the perturbed equation under the condition of the perturbative item B being a con-
traction. However, in 2003, Avramescu and Vladimirescu firstly considered that the
perturbative item B as an expansion rather than a contraction, in [4] they obtained
the following result.
Theorem B. Let (X, ‖ · ‖) be a Banach space, and let M = {x ∈ X : ‖x‖ < r}.
Suppose that A and B map M into X such that

(i) A is continuous, A(M) is contained in a compact set;
(ii) B is an expansive mapping (i.e. there exists a constant h > 1 such that

‖Bx−By‖ ≥ h‖x− y‖, for all x, y ∈ X), Bθ = θ and I −B is surjective;
(iii) sup

x∈M
‖Ax‖ ≤ r(h− 1).

Then the operator equation Au + Bu = u has a solution in M .
Recently, Xiang and Yuan [5] also considered B as an expansion and obtained the

following result.
Theorem C. Let (X, ‖·‖) be a Banach space, and let M be a nonempty closed convex
subset of X. Suppose that A and B map M into X such that

(i) A is continuous, A(M) is contained in a compact subset of X;
(ii) B is an expansive mapping;
(iii) x ∈ M implies Ax + B(M) ⊃ M .

Then the operator equation Au + Bu = u has a solution in M .
The purpose of this paper is to improve and generalize the Theorems B and C. Being

directly motivated by [4–5], in this paper, we will define a new class of mappings which
is said to be nonlinear expansion, and prove a new fixed point theorem on nonlinear
expansions. As main results in present paper we will give several Krasnosel’skii type
fixed point theorems for nonlinear expansion, and an application will be also discussed.

The remainder of this paper is organized as follows. In Section 2, we define a new
class of nonlinear expansive mappings and prove a fixed point theorem on which. In
Section 3, we give the results on Krasnosel’skii type fixed point theorems for nonlinear
expansion. In Section 4, the existence of nonnegative solutions of a class of nonlinear
integral equation is discussed.

2. On nonlinear expansion

In [6], F.E. Browder proved that the constant α in Banach contraction principle can
be replaced by the use of a nondecreasing and right continuous function. Inspiration
by this idea we now investigate the nonlinear expansion in present section.
Definition 2.1. Let (X, d) be a metric space, and let M be a certain subset of X.
The mapping T : M → X is said to be a nonlinear expansion, if there exists a function
φ : [0,+∞) → [0,+∞) satisfying (i) φ is nondecreasing, (ii) φ(t) > t for each t > 0,
(iii) φ is right continuous, such that

d(Tx, Ty) ≥ φ(d(x, y)), for all x, y ∈ X. (2.1)

Remark 2.2. Note that if one takes φ(t) = ht with h > 1, the nonlinear expansion
in (2.1) reduces to an expansion with constant h.
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The main result in this section is the following fixed point theorem on nonlinear
expansive mappings.
Theorem 2.3. Let M be a closed subset of complete metric space (X, d). Assume
that mapping T : M → X is a nonlinear expansion and T (M) ⊃ M , then T has a
unique fixed point u ∈ M .
Proof. Uniqueness is clear from (2.1), so we need only prove existence. Let µ =
inf{d(x, Tx) : x ∈ M}. Now, we prove µ = 0. Suppose that this is not the case. For
any ε > 0, we can find x ∈ M such that

µ ≤ d(x, Tx) ≤ µ + ε.

Since T (M) ⊃ M , there is y ∈ M such that x = Ty, and so µ ≤ d(y, Ty). By virtue
of nondecreasing property of φ, we have

φ(µ) ≤ φ(d(y, Ty)) ≤ d(Ty, T 2y) = d(x, Tx) < µ + ε,

so φ(µ) ≤ µ, a contraction. Thus µ = 0.
In fact, it has just been confirmed that there is a sequence {xn} in M satisfying

lim
n→∞

d(xn, Txn) = 0. We next show that such {xn} is a Cauchy sequence. Suppose

that this is not the case. We can find two sequences of integers {mk} and {nk} with
mk > nk ≥ k, such that

α = lim inf
p→∞, k≥p

d(xmk
, xnk

) > 0.

We define the sequence of real numbers {αk} by

αk = d(xmk
, xnk

), k = 1, 2, . . . ,

then there is a subsequence of αk which is nonincreasing and converges at α. Without
loss of generality, we might suppose that it is {αk}. Thus

φ(αk) = φ(d(xmk
, xnk

))
≤ d(Txmk

, Txnk
)

≤ d(Txmk
, xmk

) + d(xmk
, xnk

) + d(xnk
, Txnk

)
= d(Txmk

, xmk
) + d(Txnk

, xnk
) + αk.

(2.2)

Let k →∞ in (2.2), we obtain
φ(α) ≤ α,

a contradiction. Therefore {xn} is Cauchy sequence, and

lim
n→∞

xn = x ∈ M,

for X is complete and M is closed.
Since M ⊂ T (M), there exist {un} and u in M such that xn = Tun and x = Tu.

Finally, we prove u is a fixed point. For any ε > 0, there is a nature number N
such that d(xn, Txn) < ε

3 and d(xn, x) < ε
3 , provided that n > N . By the nonlinear

expansion of T , we have

d(u, Tu) ≤ d(u, un) + d(un, xn) + d(xn, Tu)
≤ φ(d(u, un)) + φ(d(un, xn)) + d(xn, Tu)
≤ d(Tu, Tun) + d(Tun, Txn) + d(xn, Tu)
= 2d(x, xn) + d(xn, Txn) < ε,
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which implies Tu = u.
Remark 2.4. Unlike the formerly several results on expansions, we give an inde-
pendent proof of Theorem 2.3 which do not rely upon the fixed point theorems on
T−1.
Corollary 2.5. Let M be a closed subset in a metric space (X, d), and let mapping
T : M → X be a nonlinear expansive and surjective. Then T has a unique fixed point
in M .

3. Krasnosel’skii type fixed point theorems for nonlinear expansion

The main result of this section is the following Krasnosel’skii type fixed point
theorem under the condition of nonlinear expansion.
Theorem 3.1. Let (X, ‖ · ‖) be a Banach space, and let M be a nonempty closed
convex subset of X. Suppose that A and B map M into X such that

(i) A is continuous, A(M) is contained in a compact subset of X;
(ii) B is a nonlinear expansion with φ;
(iii) Ax + B(M) ⊃ M , for any x ∈ M .

Then there exists a point u ∈ M such that Au + Bu = u.
Proof. For any fixed x ∈ M , we define a mapping Tx : M → X such that

Tx(z) = Ax + Bz.

Then Tx is a nonlinear expansion, since

‖Txz2 − Txz1‖ = ‖Bz2 −Bz1‖ ≥ φ(‖z2 − z1‖), for all z1, z2 ∈ M,

and Tx(M) = Ax + B(M) ⊃ M . By using Theorem 2.3, there is a unique fixed point
y ∈ M , i.e.

y = Ax + By.

From the above discussing, a new mapping S : M → M is defined, such that S(x) = y
for any x ∈ M .

Next we will prove that the mapping S is continuous and S(M) is contained in a
compact subset of X. For a sequence {xn} and its limit x0 in M , we set yn = S(xn)
and y0 = S(x0) respectively. Now we show that lim

n→∞
yn = y0. Suppose that this is

not the case. We can find a subsequence ynk
such that η = lim inf

p→∞, k≥p
‖ynk

− y0‖ > 0.

From the nonlinear expansion of mapping B, we have

φ(‖ynk
− y0‖) ≤ ‖Bynk

−By0‖
≤ ‖(Axnk

+ Bynk
)− (Ax0 + By0)‖+ ‖Axnk

−Ax0‖
= ‖ynk

− y0‖+ ‖Axnk
−Ax0‖.

(3.1)

Without loss of generality, we might suppose that {‖ynk
− y0‖} is nonincreasing and

converges at η. Let k →∞, by the continuity of A, from (3.1) we obtain

φ(η) ≤ η,

a contradiction, which implies yn → y0 as n → ∞. The continuity of S has been
proved. Furthermore, the inequality

φ(‖yk − y‖)− ‖yk − y‖ ≤ ‖Byk −By‖ − ‖yk − y‖ ≤ ‖Axk −Ax‖,
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implies that for any ε > 0, there is a δ > 0 such that ‖y − yk‖ < ε, provided that
‖Ax − Axk‖ < δ. Now let Ax1, · · · , Axk be a δ-net in A(M) and yi = S(xi), i =
1, · · · , k. Then y1, · · · , yk are ε-net in S(M). This proves that S(M) is contained in a
compact subset of X. By Schauder fixed point theorem, we know that S has a fixed
point u ∈ M such that Au + Bu = u.

Some different versions of Theorem 3.1 will be discussed subsequently. We intro-
duce a useful lemma in advance.
Lemma 3.2. Let mapping T be a nonlinear expansion on a certain subset M in a
normed linear space X. Then I − T is injective and (I − T )−1 is continuous, where
I denotes the identity operator.
Proof. For any x, y ∈ M and x 6= y, we have

‖(I − T )x− (I − T )y‖ ≥ ‖Tx− Ty‖ − ‖x− y‖
≥ φ(‖Tx− Ty‖)− ‖x− y‖ > 0.

(3.2)

Hence (I − T )−1 is existent. For any ξ, η ∈ (I − T )(M), by (3.2), we have

φ(‖(I − T )−1ξ − (I − T )−1η‖)− ‖(I − T )−1ξ − (I − T )−1η‖ ≤ ‖ξ − η‖, (3.3)

which implies (I − T )−1 is continuous on (I − T )(M).
Theorem 3.3. Let (X, ‖ · ‖) be a Banach space, and let M be a nonempty closed
convex subset of X. Suppose that

(i) A : M → X is continuous, A(M) is contained in a compact subset of X;
(ii) B : X → X is a nonlinear expansion with φ;
(iii) A(M) ⊂ (I −B)(X) and (I −B)−1A(M) ⊂ M .

Then there exists a point u ∈ M such that Au + Bu = u.
Proof. For any fixed x ∈ M , by (iii), we have Ax ∈ (I − B)(X), so the mapping
(I − B)−1A is well defined on M . By Lemma 3.2, (I − B)−1 is continuous, thus
(I − B)−1A(M) is contained in a compact subset of X. By Schauder fixed point
theorem, there is a fixed point u ∈ M such that Au + Bu = u.

The following theorem may be considered as a local version of Theorem 3.1. With-
out loss of generality, we can admit Bθ = θ, or else we can use B1 instead of B for
B1x = Bx−Bθ.
Theorem 3.4. Let (X, ‖ · ‖) be a Banach space, and let Mr = {x ∈ X : ‖x‖ ≤ r}.
Suppose that

(i) A : Mr → X is continuous, A(Mr) is contained in a compact subset of X;
(ii) B : X → X is a nonlinear expansion with φ,Bθ = θ, and I −B is surjective;
(iii) σ = inf

t∈(0,r]

φ(t)−t
t > 0, sup

x∈Mr

‖Ax‖ ≤ σr.

Then there exists a point u ∈ Mr such that Au + Bu = u.
Proof. By Theorem 3.3, it is only need to prove that (I−B)−1A(Mr) ⊂ Mr. For any
x ∈ Mr, we have

σ ≤ φ(‖(I −B)−1Ax‖)− ‖(I −B)−1Ax‖
‖(I −B)−1Ax‖

. (3.4)

By Bθ = θ, we obtain
(I −B)−1θ = θ.
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It follows from (3.3) and (3.4) that

σ‖(I −B)−1Ax‖ ≤ φ(‖(I −B)−1Ax‖)− ‖(I −B)−1Ax‖ ≤ ‖Ax‖ ≤ σr,

which means ‖(I −B)−1Ax‖ ≤ r, i.e. (I −B)−1A(Mr) ⊂ Mr.
Remark 3.5. Note that Theorems B and C in Section 1 respectively follow as a
special case of Theorem 3.4 and Theorem 3.1 if we choose φ(t) = ht with h > 1.

4. Applications

In this section, we will apply Theorem 3.1 to the following nonlinear integral equa-
tion

u(t) = (1 + t2)eu(t) −
∫ b

a

K(t, s, u(s))ds, t ∈ [a, b], (4.1)

where K : [a, b]× [a, b]× R → R is a continuous function.
Let X = C[a, b]. Then X is a Banach space with the sup norm ‖u‖ = sup

0≤t≤1
|u(t)|.

Denote M = {x ∈ X : ‖x‖ ≤ r, x(t) ≥ 0, t ∈ [a, b]}, where r > 0.
Theorem 4.1. Suppose that

1 + t2

b− a
≤ K(t, s, x(s)) ≤ (1 + t2)er − r

b− a
, (t, s, x) ∈ [a, b]× [a, b]×M. (4.2)

Then the integral equation (4.1) has at least one nonnegative solution u ∈ C[a, b].
Proof. We can easily convert (4.1) into the following operator equation

x(t) = (Ax)(t) + (Bx)(t), t ∈ [a, b],

where the operators A and B are defined by

(Ax)(t) = −
∫ b

a

K(t, s, x(s))ds, ∀ t ∈ [a, b], x ∈ M ; (4.3)

(Bx)(t) = (1 + t2)ex(t), ∀ t ∈ [a, b], x ∈ M. (4.4)

We next verify that the mappings A and B satisfy the conditions (i)-(iii) of Theorem
3.1. Firstly, using the same method as in [7–8], the mapping A : M → X is continuous,
and A(M) is contained in a compact subset of X. Secondly, the mapping B : M → X
is nonlinear expansive. In fact, for any x, y ∈ C[a, b], we have

|(Bx)(t)− (Bx)(t)| = (1 + t2)|ex(t) − ey(t)|
≥ |ex(t) − ey(t)| = emin{x(t),y(t)}(e|x(t)−y(t)| − 1)
≥ e|x(t)−y(t)| − 1 ≥ |x(t)− y(t)|+ 1

2 [x(t)− y(t)]2, ∀ t ∈ [a, b].

Setting φ(t) = t + 1
2 t2, we obtain

‖Bx−By‖ ≥ φ(‖x− y‖),

i.e. B is a nonlinear expansion. Finally, for any x, z ∈ M , we may define

y(t) = ln
(z(t) +

∫ b

a

K(t, s, x(s))ds

1 + t2

)
, t ∈ [a, b]. (4.5)
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Consequently for t ∈ [a, b], from (4.2), we get

y(t) = ln
(z(t) +

∫ b

a

K(t, s, x(s))ds

1 + t2

)
≥ ln

(∫ b

a

K(t, s, x(s))ds

1 + t2

)
≥ 0,

and

y(t) = ln
( z(t)+

∫ b

a

K(t, s, x(s))ds

1+t2

)
≤ ln

( r+

∫ b

a

K(t, s, x(s))ds

1+t2

)
≤ ln(er) = r.

Thus y ∈ M . By (4.5), (4.3) and (4.4), we have

z(t) = −
∫ 1

0

K(t, s, x(s))ds + (1 + t2)ey(t) = (Ax)(t) + (Bx)(t), t ∈ [a, b],

which implies Ax+B(M) ⊃ M . Thus all conditions of Theorem 3.1 are satisfied and
the assertion follows.
Remark 4.2. Krasnosel’skii fixed point theorem is interesting in view of the fact
that it has a wide range of applications to nonlinear integral equations of mixed type
for proving the existence of solutions. However, as far as the authors know, the
existence of nonnegative solutions for a class of nonlinear integral equation as (4.1)
has nearly not been involved by former results. In a certain sense, we can interpret a
class of equations such as (4.1) as follows: if a compact operator has the fixed point
property, then this property can be inherited for some perturbation, provided that
this perturbation is nonlinear expansive.
Acknowledgements. The second author was supported financially by the Natural
Science Foundation of Changzhou University (No. JS201008) and National Natural
Science Foundation of China (No. 10971179).

References

[1] M.A. Krasnosel’skii, Some problems of nonlinear analysis, Amer. Math. Transl., 10(2)(1958),

no. 2, 345-409.
[2] D.R. Smart, Fixed Point Theorems, Cambridge University Press, Cambridge, 31, 1980.

[3] S. Park, Generalizations of the Krasnoselskii fixed point theorem, Nonlinear Anal., 47(2007),
3401-3410.

[4] C. Avramescu, C. Vladimirescu, Some remarks on Krasnoselskii’s fixed point theorem, Fixed

Point Theory, 4(2003), 3-13.
[5] T. Xiang, R. Yuan, A class of expansive-type Krasnosel’skii fixed point theorems, Nonlinear

Anal., 71(2009), 3229-3239.

[6] F.E. Browder, On the convergence of successive approximations for nonlinear functional equa-
tions, Indagat. Math., 30(1968), 27-35.

[7] P. Drabek, J. Milota, Methods of Nonlinear Analysis, Birkauser Verlag AG., 261, 2007.

[8] E. Zeidler, Applied Functional Analysis (Applied Mathematical Sciences 108), Springer-Verlag,
1995.

Received: Octobedr 4, 2010; Accepted: January 26, 2011.




