Fixed Point Theory, 13(2012), No. 1, 259-265 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

A DUALITY FIXED POINT THEOREM AND APPLICATIONS

YONGFU SU* AND HONG-KUN XU**

*Department of Mathematics, Tianjin Polytechnic University Tianjin 300160, China E-mail: suyongfu@tjpu.edu.cn **Department of Applied Mathematics, National Sun Yat-Sen University Kaohsiung 80424, Taiwan

E-mail: xuhk@math.nsysu.edu.tw

Abstract. Let *E* be a 2-uniformly convex Banach space with the 2-uniformly convex constant 1/c, let $T: E \to E^*$ be a *L*-Lipschitz mapping with condition $0 < \frac{2L}{c^2} < 1$. Then *T* has a unique duality fixed point $x^* \in E$ $(Tx^* = Jx^*)$ and for any given guess $x_0 \in E$, the iterative sequence $x_{n+1} = J^{-1}Tx_n$ converges strongly to this duality fixed point x^* . If $0 < \frac{2L}{c^2} \leq 1$ and the duality fixed point set of *T* is nonempty, let $\{\alpha_n\} \subset [0,1]$ be a real sequence which satisfies the condition $\sum_{n=0}^{\infty} \alpha_n(1-\alpha_n) = +\infty$, then for any guess $x_0 \in E$, the iterative sequence $x_{n+1} = x_n + \infty$.

 $(1 - \alpha_n)x_n + \alpha_n J^{-1}Tx_n$ converges weakly to a duality fixed point. This main result can be used for solving the variational inequalities and optimal problems.

Key Words and Phrases: 2-uniformly smooth Banach space, dual space, fixed point, contraction mapping principle, application.

2010 Mathematics Subject Classification: 47H05, 47H09, 47H10.

1. INTRODUCTION AND PRELIMINARIES

Let E be a real Banach space with the dual E^* , let T be an operator from E into E^* . Firstly, we consider the variational inequality problem of finding an element $x^* \in E$ such that

$$\langle Tx^*, x^* - x \rangle \ge 0, \quad \forall \ \|x\| \le \|x^*\|.$$
 (1.1)

Secondly, we consider the optimal problem of finding an element $x^* \in E$ such that

$$(\|x^*\| - \|Tx^*\|)^2 = \min_{x \in E} (\|x\| - \|Tx\|)^2.$$
(1.2)

Thirdly, we consider the operator equation problem of finding an element $x^* \in E$ such that

$$\langle Tx^*, x^* \rangle = \|Tx^*\|^2 = \|x^*\|^2.$$
 (1.3)

Let *E* be a real Banach space with the dual E^* . Let *p* be a given real number with p > 1. The generalized duality mapping J_p from E into 2^{E^*} is defined by

$$J_p(x) = \{ f \in E^* : \langle x, f \rangle = \| f \|^p, \| f \| = \| x \|^{p-1} \}, \quad \forall \ x \in E,$$
(1.4)

where $\langle \cdot, \cdot \rangle$ denotes the generalized duality pairing. In particular, $J = J_2$ is called the normalized duality mapping and $J_p(x) = ||x||^{p-2}J(x)$ for all $x \neq 0$. If E is a Hilbert space, then J = I, where I is the identity mapping. The duality mapping J has the following properties:

- if E is smooth, then J is single-valued;
- if E is strictly convex, then J is one-to-one;
- if E is reflexive, then J is surjective;
- if E is uniformly smooth, then J is uniformly norm-to-norm continuous on each bounded subset of E.
- if E^* is uniformly convex, then J is uniformly continuous on each bounded subsets of E and J is singe-valued and also one-to-one.
 - For more details, see [1].

In this paper, we firstly present the definition of duality fixed point for a mapping T from E into its dual E^* as follows.

Let E be a Banach space with a single valued generalized duality mapping J_p : $E \to E^*$. Let $T: E \to E^*$. An element $x^* \in E$ is said to be a generalized duality fixed point of T if $Tx^* = J_px^*$. An element $x^* \in E$ is said to be a duality fixed point of T if $Tx^* = Jx^*$.

Example 1. Let E be a smooth Banach space with the dual E^* , $A: E \to E^*$ be an operator, then an element $x^* \in E$ is a zero point of A if and only if x^* is a duality fixed point of $J + \lambda A$ for any $\lambda > 0$. Namely, the x^* is a duality fixed point of $J + \lambda A$ for any $\lambda > 0$. Namely, the x^* is a duality fixed point of $J + \lambda A$ for any $\lambda > 0$ if and only if x^* is a fixed point of $J_{\lambda} = (J + \lambda A)^{-1}J : E \to E$ (if A is maximal monotone, then J_{λ} is namely the resolvent of A).

Example 2. In Hilbert space, the fixed point of an operator is always duality fixed point.

Example 3. Let E be a smooth Banach space with the dual E^* , then any element of E must be the duality fixed point of the normalized duality mapping J.

Conclusion 1.1. If x^* is a duality fixed point of T, then x^* must be a solution of variational inequality problem (1.1).

Proof. Suppose x^* is a duality fixed point of T. Then $\langle Tx^*, x^* \rangle = \langle Jx^*, x^* \rangle = ||Jx^*||^2 = ||Tx^*||^2 = ||x^*||^2$. Observe that

$$\langle Tx^*, x^* - x \rangle = \langle Tx^*, x^* \rangle - \langle Tx^*, x \rangle \ge ||Tx^*||^2 - ||Tx^*|| ||x|| = ||Tx^*||(||Tx^*|| - ||x||) = ||Tx^*||(||x^*|| - ||x||) \ge 0$$

for all $||x|| \le ||x^*||$.

Conclusion 1.2. If x^* is a duality fixed point of T, then x^* must be a solution of the optimal problem (1.2). Therefore, x^* is also a solution of operator equation problem (1.3).

Proof. If x^* is a duality fixed point of T, then $Tx^* = Jx^*$, so that

$$\langle Tx^*, x^* \rangle = \langle Jx^*, x^* \rangle = \|Jx^*\|^2 = \|Tx^*\|^2 = \|x^*\|^2.$$

The all conclusions are obvious.

Let $U = \{x \in E : ||x|| = 1\}$. A Banach space E is said to be strictly convex if for any $x, y \in U, x \neq y$ implies $||\frac{x+y}{2}|| < 1$. It is also said to be uniformly convex if for each $\varepsilon \in (0,2]$, there exists $\delta > 0$ such that for any $x, y \in U$, $||x - y|| \geq \varepsilon$ implies $||\frac{x+y}{2}|| < 1 - \delta$. It is well known that a uniformly convex Banach space is reflexive and strictly convex. We define now a function $\delta : [0,2] \rightarrow [0,1]$ called the modulus of convexity of E as follows

$$\delta(\varepsilon) = \{1 - \|\frac{x+y}{2}\| : \|x\| = \|y\| = 1, \|x-y\| \ge \varepsilon\}.$$

It is well known that E is uniformly convex if and only if $\delta(\varepsilon) > 0$ for all $\varepsilon \in (0, 2]$. Let p be a fixed real number with $p \ge 2$. Then E is said to be p-uniformly convex if there exists a constant c > 0 such that $\delta(\varepsilon) \ge c\varepsilon^p$ for all $\varepsilon \in [0, 2]$. For example, see [2,3] for more details. The constant $\frac{1}{c}$ is said to be uniformly convexity constant of E.

A Banach space E is said to be smooth if the limit $\lim_{t\to 0} \frac{\|x+ty\| - \|x\|}{t}$ exists for all $x, y \in U$. It is also said to be uniformly smooth if the above limit is attained uniformly for $x, y \in U$. One should note that no Banach space is p-uniformly convex for 1 ; see [6] for more details. It is well known that the Hilbert and the $Lebesgue <math>L^q(1 < q \leq 2)$ spaces are 2-uniformly convex and uniformly smooth. Let X be a Banach space and let $L^q(X) = \{\Omega, \Sigma, \mu; X\}, 1 < q \leq \infty$ be the Lebesgue-Bochner space on an arbitrary measure space (Ω, Σ, μ) . Let $2 \leq p < \infty$ and let $1 < q \leq p$. Then $L^q(X)$ is p-uniformly convex if and only if X is p-uniformly convex; see [3].

Lemma 1.3. ([4,5]). Let E be a p-uniformly convex Banach space with $p \ge 2$. Then, for all $x, y \in E$, $j(x) \in J_p(x)$ and $j(y) \in J_p(y)$,

$$\langle x - y, j(x) - j(y) \rangle \ge \frac{c^p}{c^{p-2}p} ||x - y||^p,$$
 (1.5)

where J_p is the generalized duality mapping from E into E^* and 1/c is the p-uniformly convexity constant of E.

Lemma 1.4. Let E be a p-uniformly convex Banach space with $p \ge 2$. Then J_p is one-to-one from E onto $J_p(E) \subset E^*$ and for all $x, y \in E$,

$$\|x - y\| \le \left(\frac{p}{c^2}\right)^{\frac{1}{p-1}} \|J_p(x) - J_p(y)\|^{\frac{1}{p-1}}.$$
(1.6)

where J_p is the generalized duality mapping from E into E^* with range $J_p(E)$, and 1/c is the p-uniformly convexity constant of E.

Proof. Let *E* be a *p*-uniformly convex Banach space with $p \ge 2$, then $J = J_2$ is one-to-one from *E* onto E^* . Since $J_p(x) = ||x||^{p-2}J(x)$, then $J_p(x)$ is single-valued. From (1.5) we have

$$\langle x - y, J_p(x) - J_p(y) \rangle \ge \frac{c^p}{c^{p-2}p} ||x - y||^p,$$

which implies that

$$||x - y|| ||J_p(x) - J_p(y)|| \ge \frac{c^p}{c^{p-2}p} ||x - y||^p.$$

That is

$$||J_p(x) - J_p(y)|| \ge \frac{c^p}{c^{p-2}p} ||x - y||^{p-1}.$$

Hence

$$||x - y|| \le \left(\frac{p}{c^2}\right)^{\frac{1}{p-1}} ||J_p(x) - J_p(y)||^{\frac{1}{p-1}}.$$

Then (1.6) has been proved. Therefore, from (1.6) we can see, for any $x, y \in E$, $J_p(x) = J_p(y)$ implies that x = y.

2. DUALITY CONTRACTION MAPPING PRINCIPLE AND APPLICATIONS

Let E be a Banach space with the dual E^* . An operator $T: E \to E^*$ is said to be L–Lipschitz, if

$$||Tx - Ty|| \le L||x - y||, \quad \forall \ x, y \in E,$$

where $L \in (0, +\infty)$ is a constant.

Theorem 2.1. (Duality contraction mapping principle) Let E be a 2-uniformly convex Banach space, let $T : E \to E^*$ be a L-Lipschitz mapping with condition $0 < \frac{2L}{c^2} < 1$. Then T has a unique duality fixed point $x^* \in E$ and for any given guess $x_0 \in E$, the iterative sequence $x_{n+1} = J^{-1}Tx_n$ converges strongly to this duality fixed point x^* .

Proof. Let $A = J^{-1}T$, then A is a mapping from E into it-self. By using Lemma 1.4, we have

$$\begin{aligned} \|Ax - Ay\| &= \|J^{-1}Tx - J^{-1}Ty\| \\ &\leq \left(\frac{2}{c^2}\right)^{\frac{1}{2-1}} \|Tx - Ty\|^{\frac{1}{2-1}} \leq \frac{2}{c^2} \|Tx - Ty\| \leq \frac{2L}{c^2} \|x - y\|, \end{aligned}$$

for all $x, y \in E$. By using Banach's contraction mapping principle, there exists a unique element $x^* \in E$ such that $Ax^* = x^*$. That is, $Tx^* = Jx^*$, so p is a unique duality fixed point of T. Further, the Picard iterative sequence $x_{n+1} = Ax_n = J_p^{-1}Tx_n$ (n=0,1,2,...) converges strongly to this duality fixed point x^* . \Box

From Conclusions 1.1-1.2 and Theorem 2.1, we have the following results for solving the variational inequality problem (1.1), the optimal problem (1.2) and the operator equation problem (1.3).

Theorem 2.2. Let E be a 2-uniformly convex Banach space and let $T : E \to E^*$ be a L-Lipschitz mapping with condition $0 < \frac{2L}{c^2} < 1$. Then the variational inequality problem (1.1) (the optimal problem (1.2) and operator equation problem (1.3)) has solutions and for any given guess $x_0 \in E$, the iterative sequence $x_{n+1} = J^{-1}Tx_n$ converges strongly to a solution of the variational inequality problem (1.1) (the optimal problem of the variational inequality problem (1.1) (the optimal problem (1.2) and the operator equation problem (1.3)).

Theorem 2.3. (Duality Mann weak convergence theorem) Let E be a 2-uniformly convex Banach space which satisfying Opial's condition and let $T : E \to E^*$ be a

L-Lipschitz mapping with nonempty duality fixed point set. Assume $0 < \frac{2L}{c^2} \leq 1$, and the real sequence $\{\alpha_n\} \subset [0,1]$ satisfies the condition $\sum_{n=0}^{\infty} \alpha_n(1-\alpha_n) = +\infty$. Then for any given guess $x_0 \in E$, the generalized Mann iterative sequence

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n J^{-1}Tx_n$$

converges weakly to a duality fixed point of T. Proof. Let $A = J^{-1}T$, by using Lemma 1.4, we have

$$||Ax - Ay|| = ||J^{-1}Tx - J^{-1}Ty|| \le \frac{2}{c^2} ||Tx - Ty|| \le \frac{2L}{c^2} ||x - y|| \le ||x - y||,$$

for all $x, y \in E$. Hence A is a nonexpansive mapping from E into it-self. In addition, we have

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n J^{-1}Tx_n = (1 - \alpha_n)x_n + \alpha_n Ax_n.$$

By using a well known result, we know that the sequence $\{x_n\}$ converges weakly to a fixed point x^* of A, which is also a duality fixed point of $T(Tx^* = Jx^*)$.

Next, we prove a more general weak convergence theorem for a finite family of Lipschitz mappings from a Banach space E into its dual E^* . Therefore, we give the applications to solve the system of variational inequalities, the system of optimal problem and the system of operator equations.

Let E be a real Banach space with the dual E^* and let $\{T_i\}_{i=1}^N : E \to E^*$ be N L_i -Lipschitz mappings with the Lipschitz constants L_i respectively.

Firstly, we consider the system of variational inequalities problem of finding an element $x^* \in E$ such that

$$\langle T_i x^*, x^* - x \rangle \ge 0, \quad \forall \ \|x\| \le \|x^*\|.$$
 (2.1)

for all i = 1, 2, 3, ..., N.

Secondly, we consider the system of optimal problem of finding an element $x^* \in E$ such that

$$(\|x^*\| - \|T_ix^*\|)^2 = \min_{x \in E} (\|x\| - \|T_ix\|)^2.$$
(2.2)

for all i = 1, 2, 3, ..., N.

Thirdly, we consider the system of operator equations problem of finding an element $x^* \in E$ such that

$$\langle T_i x^*, x^* \rangle = ||T_i x^*||^2 = ||x^*||^2.$$
 (2.3)

for all i = 1, 2, 3, ..., N.

Theorem 2.4. Let E be a 2-uniformly convex Banach space which satisfying Opial's condition, $\{T_i\}_{i=1}^N : E \to E^*$ be $N \ L_i$ -Lipschitz mappings with nonempty common duality fixed points set. Assume $0 < \frac{2L_i}{c^2} \leq 1$ for all i = 1, 2, 3, ..., N. Let $\{\alpha_n\}, \{r_n\}, \{s_n\}, \{t_n\}, \{w_n\}$ be five real sequences in [0,1] satisfying $0 < a \leq \alpha_n \leq b < 1$ and $t_n + w_n \leq b < 1$, where a, b are some constants. For any guess $x_0 \in E$,

define a iterative sequence $\{x_n\}$ by

$$\begin{cases} x_n = \alpha_n x_{n-1} + (1 - \alpha_n) J^{-1} T_n y_n \\ y_n = r_n x_n + s_n x_{n-1} + t_n J^{-1} T_n x_n + w_n J^{-1} T_n x_{n-1}, \\ r_n + s_n + t_n + w_n = 1, \end{cases}$$
(2.4)

where $T_n = T_{nmodN}$. Then $\{x_n\}$ converges weakly to a common duality fixed point of $\{T_i\}_{i=1}^N$ (the solution of the system of variational inequalities problem (2.1), the solution of system of optimal problem (2.2) and the solution of system of operator equations problem (2.3)).

Proof. Let $A_i = J^{-1}T_i$ for $i = 1, 2, 3, \dots, N$, by using Lemma 1.4, we have

$$||A_i x - A_i y|| = ||J^{-1}T_i x - J^{-1}T_i y|| \le \frac{2}{c^2} ||T_i x - T_i y|| \le \frac{2L}{c^2} ||x - y|| \le ||x - y||,$$

for all $x, y \in E$. Hence $\{A_i\}_{i=1}^N$ is a finite family of nonexpansive mappings from E into it-self. In addition, we can rewrite the iterative scheme (2.4) as follows

$$\begin{cases} x_n = \alpha_n x_{n-1} + (1 - \alpha_n) A_n y_n \\ y_n = r_n x_n + s_n x_{n-1} + t_n A_n x_n + w_n A_n x_{n-1}, \\ r_n + s_n + t_n + w_n = 1. \end{cases}$$
(2.5)

By using the Su and Qin's result (see [6, Theorem 2.1]), we know the iterative sequence $\{x_n\}$ converges weakly to a common fixed point of $\{A_i\}_{i=1}^N$. Hence the sequence $\{x_n\}$ converges weakly to a common duality fixed point of $\{T_i\}_{i=1}^N$.

Theorem 2.5. (Duality Halpren strong convergence theorem) Let E be a 2-uniformly convex and uniformly smooth Banach space with the dual E^* , let $T: E \to E^*$ be a L-Lipschitz mapping with nonempty duality fixed point set. Assume $0 < \frac{2L}{c^2} \leq 1$. Let u, x_0 be given. Assume real sequence $\{\alpha_n\} \subset [0, 1]$ satisfies the following conditions (C_1) · lim ~

$$(C_1): \lim_{n \to \infty} \alpha_n = 0$$
$$(C_2): \sum_{n \to \infty}^{\infty} \alpha_n = \infty$$

 $\begin{aligned} (C_2) : \sum_{n=0}^{\infty} \alpha_n &= \infty \\ (C_3) : \lim_{n \to \infty} \frac{\alpha_{n+1} - \alpha_n}{\alpha_{n+1}} &= 0 \text{ or } \lim_{n \to \infty} \frac{\alpha_n}{\alpha_{n+1}} = 1. \end{aligned}$

Then iterative sequence

$$x_{n+1} = \alpha_n u + (1 - \alpha_n) J^{-1} T x_n, \qquad (2.6)$$

converges strongly to a duality fixed point of T.

Proof. Let $A = J^{-1}T$, by using Lemma 1.4, we have

$$||Ax - Ay|| = ||J^{-1}Tx - J^{-1}Ty|| \le \frac{2}{c^2} ||Tx - Ty|| \le \frac{2L}{c^2} ||x - y|| \le ||x - y||,$$

for all $x, y \in E$. Hence A is a nonexpansive mapping from E into it-self. In addition, we have

$$x_{n+1} = \alpha_n u + (1 - \alpha_n) J^{-1} T x_n = \alpha_n u + (1 - \alpha_n) A x_n.$$

By using the well-known result of Xu [7, Theorem 2.3], we know the iterative sequence $\{x_n\}$ converges strongly to a fixed point of nonexpansive mapping A. Hence the sequence $\{x_n\}$ converges strongly to a duality fixed point of T.

Theorem 2.6. Let H be a Hilbert space, then its uniformly convexity constant $\frac{1}{c} \geq \frac{\sqrt{2}}{2}$, that is $c \leq \sqrt{2}$.

Proof. If $c > \sqrt{2}$. For any $x \neq y$, by using Lemma 1.4, we have

$$||x - y|| = ||J^{-1}x - J^{-1}y|| \le \frac{2}{c^2} ||x - y|| < ||x - y||.$$

This is a contradiction.

Acknowledgments. This project is supported by the National Natural Science Foundation of China under grant (11071279). The research of H.-K. Xu was supported in part by NSC 100-2115-M-110-003-MY2 (Taiwan).

References

- T. Ibaraki, W. Takahashi, A new projection and convergence theorems for the projections in Banach spaces, J. Approx. Theory, 149(2007), 1-14.
- [2] D. Butnariu, S. Reich, A.J. Zaslavski, Asymptotic behavior of relatively nonexpansive operators in Banach spaces, J. Appl. Anal, 7(2001), 151-174.
- [3] D. Butnariu, S. Reich, A.J. Zaslavski, Weak convergence of orbits of nonlinear operators in reflexive Banach spaces, Numer. Funct. Anal. Optim., 24(2003), 489-508.
- [4] C. Martinez-Yanez, H.-K. Xu, Strong convergence of the CQ method for fixed point iteration processes, Nonlinear Anal., 64(2006), 2400-2411.
- [5] S. Matsushita, W. Takahashi, A strong convergence theorem for relatively nonexpansive mappings in a Banach space, J. Approx. Theory, 134(2005), 257-266.
- [6] Y. Su, X. Qin, General iteration algorithm and convergence rate optimal model for common fixed points of nonexpansive mappings, Applied Math. Comput., 186(2007), 271-278.
- [7] H.-K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc., 65(2002), 109-113.

Received: January 15, 2011; Accepted: June 23, 2011.