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Abstract. Let E be a uniformly smooth and uniformly convex real Banach space and let K be a

nonempty, closed and convex sunny nonexpansive retract of E with QK as the sunny nonexpansive

retraction. Let T : K → K be a nonexpansive mapping such that F (T ) 6= ∅. Assume that either E
admits weakly sequentially continuous duality mapping j or T is demicompact. Then, we introduce

two approximation schemes (implicit and explicit) for finding a fixed point of a nonexpansive mapping

and prove strong convergence of the schemes. Our results extend the recent results of Yao et al.
[Strong convergence of two iterative algorithms for nonexpansive mappings in Hilbert spaces, Fixed
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1. Introduction

Let E be a real Banach space and K a nonempty, closed and convex subset of E. A
mapping T : K → K is said to be nonexpansive if for all x, y ∈ K, we have

||Tx− Ty|| ≤ ||x− y||. (1)

A point x ∈ K is called a fixed point of T if Tx = x. The set of fixed points of T is
the set F (T ) := {x ∈ K : Tx = x}.
Construction of fixed points of nonexpansive mappings is an important subject in
nonlinear operator theory and its applications; in particular, in image recovery and
signal processing (see, for example, [3, 6, 12]). Many authors have worked extensively
on the approximation of fixed points of nonexpansive mappings. For example, the
reader can consult the recent monographs of Berinde [1] and Chidume [4].
Very recently, Yao et al. [11] proved path convergence for a nonexpansive mapping
in a real Hilbert space. In particular, they proved the following theorem.
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Theorem 1.1. (Yao et al., [11]) Let K be a nonempty closed convex subset of a real
Hilbert space H. Let T : K → K be a nonexpansive mapping with F (T ) 6= ∅. For
t ∈ (0, 1), let the net {xt} be generated by xt = TPK [(1− t)xt], then as t → 0, the net
{xt} converges strongly to a fixed point of T .
Furthermore, they applied Theorem 1.1 to prove the following theorem.
Theorem 1.2. (Yao et al., [11]) Let K be a nonempty closed convex subset of a real
Hilbert space H. Let T : K → K be a nonexpansive mapping such that F (T ) 6= ∅. Let
{αn}∞n=1 and {βn}∞n=1 be two real sequences in (0, 1). For arbitrary x1 ∈ K, let the
sequence {xn}∞n=1 be generated iteratively by{

yn = PK [(1− αn)xn]
xn+1 = (1− βn)xn + βnTyn, n ≥ 1,

(2)

Suppose the following conditions are satisfied:

(a) lim αn = 0 and
∞∑

n=1
αn = ∞

(b) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1. Then the sequence {xn}∞n=1 generated by (2)

converges strongly to a fixed point of T .
Motivated by the results of Yao et al. [11], we introduce two approximation schemes
(implicit and explicit) for finding a fixed point of a nonexpansive mapping and prove
strong convergence of the schemes under the condition that E either admits weakly
sequentially continuous duality map j or T is demicompact where E is uniformly
smooth and uniformly convex real Banach space. Our results extend the results of
Yao et al. [11] from real Hilbert spaces to Banach spaces considered here.

2. Preliminaries

Let E be a real Banach space and let S := {x ∈ E : ‖x‖ = 1}. E is said to have a
Gâteaux differentiable norm (and E is called smooth) if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x, y ∈ S; E is said to have a uniformly Gâteaux differentiable norm if
for each y ∈ S the limit is attained uniformly for x ∈ S. Also, E is said to have a
Fréchet differentiable norm if for all x ∈ S the limit exists and is attainable uniformly
in y ∈ S. In this case there exists an increasing function b : [0,∞) → [0,∞) with
lim

t→0+
b(t) = 0 such that

1
2
||x||2 + 〈h, j(x)〉 ≤ 1

2
||x + h||2 ≤ 1

2
||x||2 + 〈h, j(x)〉+ b(||h||),∀x, h ∈ E.

Furthermore, E is said to be uniformly smooth if the limit exists uniformly for (x, y) ∈
S × S. It is well known that if E is uniformly smooth, then the norm of E is Fréchet
differentiable. The modulus of smoothness of E is defined by

ρE(τ) := sup
{‖x + y‖+ ‖x− y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = τ

}
; τ > 0.

E is equivalently said to be smooth if ρE(τ) > 0, ∀ τ > 0.
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Let dimE ≥ 2. The modulus of convexity of E is the function δE : (0, 2] → [0, 1]
defined by

δE(ε) := inf
{

1−
∣∣∣∣∣∣x + y

2

∣∣∣∣∣∣ : ||x|| = ||y||; ε = ||x− y||
}

.

E is uniformly convex if for any ε ∈ (0, 2], there exists a δ = δ(ε) > 0 such that if x, y ∈
E with ||x|| ≤ 1, ||y|| ≤ 1 and ||x− y|| ≥ ε, then || 12 (x + y)|| ≤ 1− δ. Equivalently, E
is uniformly convex if and only if δE(ε) > 0 for all ε ∈ (0, 2]. E is called strictly convex
if for all x, y ∈ E, x 6= y, ||x|| = ||y|| = 1, we have ||λx + (1− λ)y|| < 1, ∀λ ∈ (0, 1).
It is known that every uniformly convex Banach space is reflexive.
Let E∗ be the dual of E. We denote by J the normalized duality mapping from E to
2E∗

defined by

Jx := {f∗ ∈ E∗ : 〈x, f∗〉 = ||x||2 = ||f∗||2},

where 〈., .〉 denotes the generalized duality pairing between members of E and E∗.
It is well known that if E is uniformly smooth then J is single-valued and norm-
to-weak∗ uniformly continuous on bounded sets (see, e.g., [4, 9]). Also, it is known
that a Banach space E is Fréchet differentiable if and only if the duality mapping
J is single-valued and norm-to-norm continuous. In the sequel, we shall denote the
single-valued normalized duality mapping by j.
Let K ⊂ E be closed convex and Q be a mapping of E onto K. Then Q is said to
be sunny if Q(Q(x) + t(x − Q(x))) = Q(x) for all x ∈ E and t ≥ 0. A mapping
Q of E into E is said to be a retraction if Q2 = Q. If a mapping Q is a retraction,
then Q(z) = (z) for every z ∈ R(Q), range of Q. A subset K of E is said to be a
sunny nonexpansive retract of E if there exists a sunny nonexpansive retraction of E
onto K and it is said to be a nonexpansive retract of E if there exists a nonexpansive
retraction of E onto K. If E = H, the metric projection PK is a sunny nonexpansive
retraction from H to any closed convex subset of H. But this is not true in a general
Banach spaces. We note that if E is smooth and Q is retraction of K onto F (T ),
then Q is sunny and nonexpansive if and only if for each x ∈ K and z ∈ F (T ) we
have 〈Qx− x, J(Qx− z)〉 ≤ 0, (see [8] for more details).
A mapping T with domain D(T ) and range R(T ) in E is said to be demiclosed at p
if whenever {xn}∞n=1 is a sequence in D(T ) such that xn ⇀ x ∈ D(T ) and Txn → p
then Tx = p.
A mapping T : K → E is said to be demicompact at h if for any bounded sequence
{xn}∞n=1 in K such that (xn − Txn) → h as n → ∞, there exists a subsequence say
{xnj

} of {xn}∞n=1 and x∗ ∈ K such that {xnj
} converges strongly to some x∗ in K

and x∗ − Tx∗ = h.
We need the following lemmas in the sequel.
Lemma 2.1. (Browder, [2]) Let E be a real uniformly convex Banach space, K a
nonempty closed convex subset of E and T : K → K a nonexpansive mapping such
that F (T ) 6= ∅. Then, I − T is demiclosed at zero.
Lemma 2.2. (Suzuki, [7]) Let {xn}∞n=1 and {yn}∞n=1 be bounded sequences in a
Banach space X and let {βn}∞n=1 be a sequence in [0,1] with 0 < lim inf

n→∞
βn ≤
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lim sup
n→∞

βn < 1. Suppose xn+1 = (1 − βn)yn + βnxn for all integers n ≥ 1 and

lim sup
n→∞

(
||yn+1 − yn|| − ||xn+1 − xn||

)
≤ 0. Then, lim

n→∞
||yn − xn|| = 0.

Lemma 2.3. ( Xu, [10]) Let {an} be a sequence of nonnegative real numbers satisfying
the following relation:

an+1 ≤ (1− αn)an + αnσn, n ≥ 1,

where {an}∞n=1 ⊂ [0, 1] and {σn}∞n=1 is a sequence in R satisfying:
(i)

∑
αn = ∞;

(ii) lim supσn ≤ 0 or
∑
|αnσn| < ∞.

Then, an → 0 as n →∞.
Lemma 2.4. (Cholamjiak and Suantai, [5]) Let E be a real Banach space with Fréchet
differentiable norm. For x ∈ E, let β∗(t) be defined for 0 < t < ∞ by

β∗(t) = sup
x∈S

∣∣∣ ||x + ty||2 − ||x||2

t
− 2〈y, j(x)〉

∣∣∣. (3)

Then, limt→0+ β∗(t) = 0 and

||x + h||2 ≤ ||x||2 + 2〈h, j(x)〉+ ||h||β∗(||h||)

for all h ∈ E \ {0}.
Remark 2.5. In a real Hilbert space, we see that β∗(t) = t for t > 0.
In our more general setting, throughout this paper, we will assume that

β∗(t) ≤ 2t,

where β∗ is the function appearing in (3).

3. Main results

Let E be a uniformly smooth and uniformly convex real Banach space and let K
be a nonempty, closed and convex sunny nonexpansive retract of E with QK as the
sunny nonexpansive retraction. Let T : K → K be a nonexpansive mapping such that
F (T ) 6= ∅. For tn ∈ (0, 1), n ≥ 1, such that lim

n→∞
tn = 0, we define a map Tn : K → K

by

Tnx := TQK [(1− tn)x], x ∈ K. (4)

We show that Tn is a contraction.
For each x, y ∈ K, we have from (4) that

||Tnx− Tny|| ≤ ||QK(1− tn)x−QK(1− tn)y||
≤ (1− tn)||x− y||. (5)

which implies that Tn is a contraction. Therefore, by the Banach contraction mapping
principle, there exists a unique fixed point zn of Tn in K. That is,

zn = TQK [(1− tn)zn], ∀n ≥ 1. (6)
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Next, we prove that {zn}∞n=1 is bounded. Let x∗ ∈ F (T ), then using (6), we have

||zn − x∗|| = ||TQK(1− tn)zn − TQKx∗||
≤ ||QK(1− tn)zn −QKx∗||
≤ ||(1− tn)zn − tnx∗ + tnx∗ − x∗|| = ||(1− tn)(zn − x∗)− tnx∗||
≤ (1− tn)||zn − x∗||+ tn||x∗||.

Hence, ||zn − x∗|| ≤ ||x∗||. This implies that {zn}∞n=1 is bounded.
We next show that ||zn − Tzn|| → 0, n →∞.

||zn − Tzn|| = ||TQK(1− tn)zn − TQKzn||
≤ ||QK(1− tn)zn −QKzn|| ≤ ||(1− tn)zn − zn||
≤ tn||zn|| → 0, ( since tn → 0, n → ∞).

We now prove the following theorem in a uniformly smooth and uniformly convex
real Banach space using (6).
Theorem 3.1. Let E be a uniformly smooth and uniformly convex real Banach
space and let K be a nonempty, closed and convex sunny nonexpansive retract of E
with QK as the sunny nonexpansive retraction. Let T : K → K be a nonexpansive
mapping with F (T ) 6= ∅. For tn ∈ (0, 1), n ≥ 1, let {zn}∞n=1 be generated by (6) then
as lim

n→∞
tn = 0, {zn}∞n=1 converges strongly to a fixed point of T if E admits weak

sequential continuous duality map j.
Proof. Since {zn}∞n=1 is bounded, there exists a subsequence, say {znk

} of {zn}∞n=1

that converges weakly to some point z∗ ∈ K. Using the demiclosedness principle of
(I − T ) at 0 (see Lemma 2.1) and the fact that ||znk

− Tznk
|| → 0, as k → ∞, we

obtain that z∗ ∈ F (T ). From (6), we get for z∗ ∈ F (T ),

||znk
− z∗||2 = ||TQK [(1− tnk

)znk
]− TQKz∗||2

≤ ||(1− tnk
)znk

− z∗||2 = ||znk
− z∗ − tnk

znk
||2

≤ ||znk
− z∗||2 − 2tnk

〈znk
, j(znk

− z∗)〉+ tnk
||znk

||β∗(tnk
||znk

||)
≤ ||znk

− z∗||2 − 2tnk
〈znk

, j(znk
− z∗)〉+ 2t2nk

||znk
||2

= ||znk
− z∗||2 − 2tnk

〈znk
− z∗, j(znk

− z∗)〉 − 2tnk
〈z∗, j(znk

− z∗)〉+ 2t2nk
||znk

||2

≤ ||znk
− z∗||2 − 2tnk

||znk
− z∗||2 − 2tnk

〈z∗, j(znk
− z∗)〉+ 2t2nk

||znk
||2.

This implies that

||znk
− z∗||2 ≤ 〈z∗, j(z∗ − znk

)〉+ tnk
||znk

||2.

Using the fact that j is weakly sequentially continuous, then from the last inequality,
we have that {znk

} converges strongly to z∗. We now show that {zn}∞n=1 actually
converges to z∗. Suppose there is another subsequence {znj} of {zn}∞n=1 such that
znj → x∗, j → ∞. Then since ||znj − Tznj || → 0, as j → ∞ and T is uniformly
continuous, we have that x∗ ∈ F (T ).
Claim. z∗ = x∗

Suppose for contradiction that x∗ 6= z∗. Using (6), we obtain using similar argument
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as above that

||znj
− z∗||2 ≤ 〈z∗, j(z∗ − znj

)〉+
tnj

2
||znj

||2

Thus,

||x∗ − z∗||2 ≤ 〈z∗, j(z∗ − x∗)〉 (7)

Interchanging x∗ and z∗, we obtain

||z∗ − x∗||2 ≤ 〈x∗, j(x∗ − z∗)〉 (8)

Adding (7) and (8) yields

2||x∗ − z∗||2 ≤ ||x∗ − z∗||2.

This implies that x∗ = z∗. This completes the proof.
Corollary 3.2. Let E := lp, 1 < p < ∞ and let K be a nonempty, closed and convex
sunny nonexpansive retract of E with QK as the sunny nonexpansive retraction. Let
T : K → K be a nonexpansive mapping with F (T ) 6= ∅. For tn ∈ (0, 1), n ≥ 1,
let {zn}∞n=1 be generated by (6) then as lim

n→∞
tn = 0, {zn}∞n=1 converges strongly to a

fixed point of T .
Theorem 3.3. Let E be a uniformly smooth and uniformly convex real Banach
space and let K be a nonempty, closed and convex sunny nonexpansive retract of E
with QK as the sunny nonexpansive retraction. Let T : K → K be a nonexpansive
mapping with F (T ) 6= ∅. For tn ∈ (0, 1), n ≥ 1, let {zn}∞n=1 be generated by (6) then
as lim

n→∞
tn = 0, {zn}∞n=1 converges strongly to a fixed point of T if T is demicompact.

Proof. Since T is demicompact and lim ||zn − Tzn|| = 0, there exists a subsequence
{znk

} of {zn}∞n=1 that converges strongly to some point z∗ ∈ K. By continuity of T
and the fact that lim ||znk

− Tznk
|| = 0, we have that z∗ ∈ F (T ).

Suppose there exists another subsequence {znj
} of {zn} that converges strongly to u∗,

say, then following the argument of the last part of Theorem 3.1, we get that {zn}∞n=1

converges strongly to z∗ ∈ F (T ). This completes the proof.
Corollary 3.4. Let E be a uniformly smooth and uniformly convex real Banach
space and let K be a compact convex and nonempty sunny nonexpansive retract of E
with QK as the sunny nonexpansive retraction. Let T : K → K be a nonexpansive
mapping with F (T ) 6= ∅. For tn ∈ (0, 1), n ≥ 1, let {zn}∞n=1 be generated by (6) then
as lim

n→∞
tn = 0, {zn}∞n=1 converges strongly to a fixed point of T .

Proof. Compactness of K implies that {zn}∞n=1 has a subsequence {znk
} which con-

verges strongly to some z∗ ∈ K. The rest of the proof follows as in the proof of
Theorem 3.3.
We now prove strong convergence theorem using an explicit iterative scheme in a
uniformly smooth and uniformly convex real Banach space.
Theorem 3.5. Let E be a uniformly smooth and uniformly convex real Banach space
and let K be a nonempty, closed and convex sunny nonexpansive retract of E with QK

as the sunny nonexpansive retraction. Let T : K → K be a nonexpansive mapping
such that F (T ) 6= ∅. Let {αn}∞n=1 and {βn}∞n=1 be two real sequences in (0, 1). For
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arbitrary x1 ∈ K, let the sequence {xn}∞n=1 be generated iteratively by{
yn = QK [(1− αn)xn]
xn+1 = (1− βn)xn + βnTyn, n ≥ 1.

(9)

Suppose the following conditions are satisfied:

(a) lim αn = 0 and
∞∑

n=1
αn = ∞;

(b) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Then the sequence {xn}∞n=1 converges strongly to a fixed point of T if either
(i) E admits weakly sequentially continuous duality mapping j or
(ii) T is demicompact.
Proof. First we show that the sequence {xn}∞n=1 is bounded. Let x∗ ∈ F (T ), we have
from (9),

||xn+1 − x∗|| = ||(1− βn)(xn − x∗) + βn(Tyn − x∗)||
≤ (1− βn)||xn − x∗||+ βn||Tyn − x∗||
≤ (1− βn)||xn − x∗||+ βn[(1− αn)||xn − x∗||+ αn||x∗||]
= (1− αnβn)||xn − x∗||+ αnβn||x∗||
≤ max{||xn − x∗||, ||x∗||}
...
≤ max{||x1 − x∗||, ||x∗||}

Hence, {xn}∞n=1 is bounded and {Txn} is bounded. Set un = Tyn, n ≥ 1. It follows
that

||un+1 − un|| = ||Tyn+1 − Tyn||
≤ ||yn+1 − yn|| ≤ ||(1− αn+1)xn+1 − (1− αn)xn||
≤ ||xn+1 − xn||+ αn+1||xn+1||+ αn||xn||.

Hence, lim sup
n→∞

(||un+1−un||−||xn+1−xn||) ≤ 0. This together with Lemma 2.2 imply

that lim
n→∞

||un − xn|| = 0. Thus,

lim
n→∞

||xn+1 − xn|| = lim
n→∞

βn||xn − un|| = 0.

||xn − Txn|| ≤ ||xn − xn+1||+ ||xn+1 − Txn||
≤ ||xn − xn+1||+ (1− βn)||xn − Txn||+ βn||Tyn − Txn||
≤ ||xn − xn+1||+ (1− βn)||xn − Txn||+ βn||yn − xn||
≤ ||xn − xn+1||+ (1− βn)||xn − Txn||+ αn||xn||,

that is,

||xn − Txn|| ≤
1
βn
{||xn − xn+1||+ αn||xn||} → 0, n →∞.
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Let {zn}∞n=1 be defined by (6), then zn → x∗ ∈ F (T ), n → ∞. (This is guaranteed
either by condition (i) or condition (ii) above). Next, we show that

lim sup
n→∞

〈x∗, j(x∗ − xn)〉 ≤ 0.

For each integer n ≥ 1, let tn ∈ (0, 1) be such that

tn → 0,
||Txn − xn||

tn
→ 0, n →∞.

It then follows from (6) that

||zn − xn||2 = ||zn − Txn + Txn − xn||2

≤ ||zn − Txn||2+2〈Txn − xn, j(zn − Txn)〉+||Txn − xn||β∗(||Txn−xn||)
≤ ||zn − Txn||2 + 2〈Txn − xn, j(zn − Txn)〉+ 2||Txn − xn||2

≤ ||zn − Txn||2 + 2||Txn − xn||||zn − Txn||+ 2||Txn − xn||2

≤ ||zn − Txn||2 + M ||Txn − xn||
≤ ||TQK(1− tn)zn − Txn||2 + M ||Txn − xn||
≤ ||QK(1− tn)zn − xn||2 + M ||Txn − xn||
= ||(1− tn)zn − xn||2 + M ||Txn − xn||
= ||zn − xn − tnzn||2 + M ||Txn − xn||
≤ ||zn − xn||2−2tn〈zn, j(zn − xn)〉+tn||zn||β∗(tn||zn||)+M ||Txn − xn||
≤ ||zn − xn||2 − 2tn〈zn, j(zn − xn)〉+ 2t2n||zn||2 + M ||Txn − xn||
≤ ||zn − xn||2 − 2tn〈zn, j(zn − xn)〉+ t2nM1 + M ||Txn − xn||

for some M > 0 and M1 > 0. Thus, 〈zn, j(zn − xn)〉 ≤ M1tn

2 + M
2tn

||Txn − xn||.
Therefore, lim sup

n→∞
〈zn, j(zn − xn)〉 ≤ 0. Moreover,

〈−zn, j(xn − zn)〉 = 〈−x∗, j(xn − x∗)〉+ 〈−x∗, j(xn − zn)〉
−〈−x∗, j(xn − x∗)〉+ 〈x∗ − zn, j(xn − zn)〉

= 〈−x∗, j(xn − x∗)〉+ 〈−x∗, j(xn − zn)− j(xn − x∗)〉
+〈x∗ − zn, j(xn − zn)〉,

and since j is norm-to-weak∗ uniformly continuous on bounded sets, we have
lim sup

n→∞
〈−x∗, j(xn − x∗)〉 ≤ 0.
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From (9), we have

||yn − x∗||2 = ||QK(1− tn)xn − x∗||2 ≤ ||(1− αn)xn − x∗||2

≤ ||xn − x∗ − αnxn||2 ≤ ||xn − x∗||2 − 2αn〈xn, j(xn − x∗)〉
+ αn||xn||β∗(αn||xn||)
≤ ||xn − x∗||2 − 2αn〈xn, j(xn − x∗)〉+ αn||xn||β∗(αn||xn||)
≤ ||xn − x∗||2 − 2αn〈xn, j(xn − x∗)〉+ 2α2

n||xn||2

= ||xn − x∗||2 + 2αn〈xn − x∗ + x∗, j(x∗ − xn)〉+ 2α2
n||xn||2

= ||xn − x∗||2 + 2αn〈x∗, j(x∗ − xn)〉 − 2αn〈x∗ − xn, j(x∗ − xn)〉
+ 2α2

n||xn||2

= ||xn − x∗||2 + 2αn〈x∗, j(x∗ − xn)〉+ α2
n||xn||2 − 2αn||xn − x∗||2

= (1− αn)||xn − x∗||2 + αn||xn − x∗||2 − 2αn||xn − x∗||2

+ 2αn〈x∗, j(x∗ − xn)〉+ 2α2
n||xn||2

≤ (1− αn)||xn − x∗||2 + 2αn〈x∗, j(x∗ − xn)〉
+ 2α2

n||xn||2. (10)

Furthermore, using (10) in (9), we obtain

||xn+1 − x∗||2 ≤ (1− βn)||xn − x∗||2 + βn||yn − x∗||2

≤ (1− βn)||xn − x∗||2 + βn[(1− αn)||xn − x∗||2

+2αn〈x∗, j(x∗ − xn)〉+ 2α2
n||xn||2]

≤ (1− αnβn)||xn − x∗||2 + 2αnβn〈x∗, j(x∗ − xn)〉+ α2
nM2

= (1− αnβn)||xn − x∗||2 + αnβn[2〈x∗, j(x∗ − xn)〉+
αn

βn
M2],

where M2 := sup
n≥1

||xn||2. Using Lemma 2.3, we get that {xn}∞n=1 converges strongly

to x∗ ∈ F (T ). This completes the proof.
Corollary 3.6. Let E = lp, 1 < p < ∞ and let K be a nonempty, closed and convex
sunny nonexpansive retract of E with QK as the sunny nonexpansive retraction. Let
T : K → K be a nonexpansive mapping such that F (T ) 6= ∅. Let {αn}∞n=1 and
{βn}∞n=1 be two real sequences in (0, 1). For arbitrary x1 ∈ K, let the sequence
{xn}∞n=1 be generated iteratively by{

yn = QK [(1− αn)xn]
xn+1 = (1− βn)xn + βnTyn, n ≥ 1.

(11)

Suppose the following conditions are satisfied:

(a) lim αn = 0 and
∞∑

n=1
αn = ∞;

(b) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Then the sequence {xn}∞n=1 converges strongly to a fixed point of T .
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Corollary 3.7. Let E be a real Banach space which is uniformly smooth and also
uniformly convex and let K be a compact convex and nonempty sunny nonexpansive
retract of E with QK as the sunny nonexpansive retraction. Let T : K → K be a
nonexpansive mapping such that F (T ) 6= ∅. Let {αn}∞n=1 and {βn}∞n=1 be two real
sequences in (0, 1). For arbitrary x1 ∈ K, let the sequence {xn}∞n=1 be generated
iteratively by {

yn = QK [(1− αn)xn]
xn+1 = (1− βn)xn + βnTyn, n ≥ 1.

(12)

Suppose the following conditions are satisfied:

(a) lim αn = 0 and
∞∑

n=1
αn = ∞;

(b) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Then the sequence {xn}∞n=1 converges strongly to a fixed point of T .
Remark 3.8. Our Corollary 3.2 extends the result of Yao et al. [10, Theorem 3.1]
to lp, 1 < p < ∞ while our Corollary 3.6 extends extends the result of Yao et al. [10,
Theorem 3.2] to lp, 1 < p < ∞.
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