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Abstract. Let (X,→) be an L-space, G : X × X → X and f : X → X be two operators. Let

fG : X → X be defined by fG(x) := G(x, f(x)). If the operator G satisfies the following conditions:

(A1) G(x, x) = x, ∀x ∈ X;

(A2) G(x, y) = x ⇒ y = x,

then we call fG admissible perturbation of f .

We introduce some iterative algorithms in terms of admissible perturbations. We suppose that
these algorithms are convergent.

In this paper we study the impact of this hypothesis on the theory of fixed point equations:
Gronwall lemmas (when (X,→,≤) is an ordered L-space), data dependence, stability and shadowing

property (when (X, d) is a metric space). Some open problems are presented.
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Introduction

The iterative approximation of fixed points is one of the basic tools in the theory
of equations. Various aspects of the theory of iterative algorithms appear in subjects
such as:

• Numerical analysis in abstract spaces ([2], [3], [5], [6], [1], [17], . . . ).
• Difference equations ([22], [21], [31], [4], [23], [34], . . . ).
• Dynamical systems ([16], [25], [18], [14], [30], . . . ).
• Operator theory ([2], [3], [5], [6], [39], [45], [42], [46], [1], [8], [13], [26], [29],

[39], [43], . . . ).
The weakly Picard operator theory (see [32], [33] and [39]) offers a solution for the

following problem: which properties have the solutions of a fixed point equation for
which the Picard iteration converges. In [41] we have studied a similar problem in
the case of the Krasnoselskii iteration. In this paper we shall study the same problem
corresponding to some general iterative algorithms.
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The plan of the paper is the following:
1. The admissible perturbation of an operator
2. Iterative algorithms in terms of admissible perturbations
3. Gronwall lemmas
4. Comparison lemmas
5. Data dependence
6. Stability of an iterative algorithm
7. Open problems

1. The admissible perturbation of an operator

Let X be a nonempty set and G : X ×X → X be an operator. We suppose that:
(A1) G(x, x) = x, ∀x ∈ X;
(A2) x, y ∈ X, G(x, y) = x imply y = x.

Let f : X → X be an operator. Then we consider the operator fG : X → X defined
by

fG(x) := G(x, f(x)).
We remark that FfG

= Ff := {x ∈ X | f(x) = x}. In general (see, for example,
Remark 3.1 in [41]) Ffn

G
6= Ffn , n ≥ 2. We call fG the admissible perturbation of f

corresponding to G.

Example 1.1. Let (V,+,R) be a vectorial space, X ⊂ V a convex subset, λ ∈]0, 1[,
f : X → X and G : X×X → X be defined by G(x, y) := (1−λ)x+λy. Then fG is an
admissible perturbation of f . We shall denote fG by fλ and call it the Krasnoselskii
perturbation of f .

Example 1.2. Let (V,+,R) be a vectorial space, X ⊂ V a convex subset, χ : X×X →
]0, 1[, f : X → X and G(x, y) := (1− χ(x, y))x+ χ(x, y)y. Then fG is an admissible
perturbation of f .

Example 1.3. Let X be a nonempty set endowed with an F -convex structure of
Gudder (see [11]), where F : [0, 1] × X × X → X is an operator satisfying some
conditions. Let Y ⊂ X be an F -convex set, λ ∈]0, 1[ and f : Y → Y . We consider the
operator G : Y × Y → Y , defined by G(x, y) := F (λ, x, y). Then fG is an admissible
perturbation of f .

Example 1.4. Let (X, d) be a metric space endowed with a W -convex structure of
Takahashi (see [45]). Here W : X ×X × [0, 1] → X is an operator with the following
property

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y), ∀x, y, u ∈ X, λ ∈ [0, 1].

We additionally suppose that λ ∈]0, 1[, W (x, y, λ) = x implies y = x.
Now, let λ ∈]0, 1[, Y ⊂ X a W -convex set, f : Y → Y and G(x, y) := W (x, y, λ).

In the above conditions, the operator fG is an admissible perturbation of the operator
f .
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2. Iterative algorithms in terms of admissible perturbations

Recall first two important abstract concepts, see [32].

Definition 2.1. Let (X, d) be a metric space. An operator f : X → X is Picard
operator (briefly PO) if:

(i) Ff = {x∗};
(ii) (fn(x))n∈N → x∗ as n→∞, for all x ∈ X.

Definition 2.2. Let (X, d) be a metric space. An operator f : X → X is weakly
Picard operator (briefly WPO) if the sequence (fn(x))n∈N converges for all x ∈ X
and the limit (which may depend on x) is a fixed point of f .

Let (X,→) be an L-space (see [32], [39], [42]), f : X → X and G,Gn : X×X → X,
n ∈ N.

Example 2.1 (GK-algorithm). We consider the iterative algorithm

x0 ∈ X, xn+1 = G(xn, f(xn)), n ∈ N.

By definition, this iterative process is convergent iff

xn → x∗(x0) ∈ Ff as n→∞, for all x0 ∈ X.

We remark that xn = fn
G(x0). So, this algorithm is convergent if and only if fG is

WPO. If fG is WPO and an admissible perturbation of f , then f∞G : X → Ff is a
set retraction. We call this algorithm, Krasnoselskii algorithm corresponding to G or
GK-algorithm.

For the particular case given in Example 1.1, see [2], [3] and [5]. For the impact
of this algorithm on the theory of fixed point equations see [41].

Example 2.2 (GM -algorithm). We consider the iterative method

x0 ∈ X, xn+1 = fGn
(xn), n ∈ N.

We suppose that fGn
is an admissible perturbation of f for all n ∈ N and that

xn → x∗(x0) ∈ Ff as n→∞.

In the above conditions, we consider the operator, f∞G : X → Ff , defined by
f∞G (x) := x∗(x). We observe that f∞G : X → Ff is a set retraction. We call this
algorithm Mann algorithm corresponding to G = (Gn)n∈N or GM -algorithm.

In the particular case when X is a convex subset of a Banach space B and
Gn(x, y) := (1 − λn)x + λny with λn ∈]0, 1[ and n ∈ N, we have the classical Mann
iterative method ([2], [5], . . . ).

Example 2.3 (GH-algorithm). Let u ∈ X. We consider the operator fGn,u
: X → X

defined by
fGn,u

(x) := Gn(u, f(x)), n ∈ N.
Let us consider the iterative process

x0 ∈ X, xn+1 = Gn(u, f(xn)), n ∈ N.
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We suppose that fGn is an admissible perturbation for all n ∈ N and that the algorithm
is convergent, i.e.,

xn → x∗(u, x0) ∈ Ff as n→∞.

Now we define the operator f∞GH : X → Ff , f
∞
GH(x) := x∗(x, x). We remark that

f∞GH : X → Ff is a set retraction. Indeed, by the definition of f∞GH , f∞GH(X) ⊂ Ff .
Let us prove that f∞GH(x) = x, for all x ∈ Ff . For u := x and x0 := x we have:

x1 = G0(x, f(x)) = G1(x, x) = x,

x2 = G1(x, f(x1)) = G2(x, f(x)) = G2(x, x) = x,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

By induction, we have that xn = x, ∀n ∈ N. So, f∞GH(x) = x, ∀x ∈ Ff .
We call this algorithm, Halpern algorithm corresponding to G = (Gn)n∈N or GH-

algorithm. For some particular cases of this algorithm see [2], [3] and [6].

Example 2.4 (G1G2I-algorithm). Let (X,→) be an L-space, G1n, G2n : X×X → X,
n ∈ N and f : X → X. We suppose that G1n, G2n are admissible perturbations of f
for all n ∈ N, and that the algorithm

x0 ∈ X, xn+1 = G2n(xn, f(G1n(xn, f(xn)))), n ∈ N

is convergent, i.e.,
xn → x∗(x0) ∈ Ff as n→∞.

In the above conditions, we consider the operator f∞G1G2
: X → Ff , f

∞
G1G2

(x) :=
x∗(x). We remark that f∞G1G2

: X → Ff is a set retraction. We call this algorithm
Ishikawa algorithm corresponding to G1 = (G1n)n∈N and G2 = (G2n)n∈N, or, G1G2I-
algorithm.

For some particular cases of this algorithm see [2], [3] and [6] and the references
therein.

Remark 2.1. In the above example and throughout the paper in G1n and G2n 1 and
n, 2 and n are indices.

3. Gronwall lemmas

There are many results in the abstract theory of Gronwall lemmas (see [24], [32],
[33], [37], [39], [41], [7], [8], [29], [43] and the references therein). For the basic
problems of this theory see [37]. In this section we shall present Gronwall lemmas
corresponding to an iterative process.

3.1. The case of GK-algorithm. Let (X,→,≤) be an ordered L-space, f : X → X
be an operator and fG be an admissible perturbation of f . Then the following results
hold.

Lemma 3.1. We suppose that:
(i) fG is a PO;

(ii) the operators G and f are increasing.
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Then Ff = {x∗} and
(a) x ∈ X, x ≤ f(x) ⇒ x ≤ x∗;
(b) x ∈ X, x ≥ f(x) ⇒ x ≥ x∗.

Proof. Since fG is an admissible perturbation of f , we have that FfG
= Ff . From

(i) it follows that FfG
= {x∗}. So, Ff = {x∗}. The condition (ii) implies that the

operator fG is increasing. From x ≤ f(x) it follows that x ≤ fG(x). Now the proofs
for (a) and (b) follow from Gronwall lemma for POs (see [32], [33] and [37]). �

Lemma 3.2. We suppose that:
(i) fG is a WPO;

(ii) the operator G and f are increasing.
Then:

(a) x ∈ X, x ≤ f(x) ⇒ x ≤ f∞G (x);
(b) x ∈ X, x ≥ f(x) ⇒ x ≥ f∞G (x).

3.2. The case of GM-algorithm. Let (X,→,≤) be an ordered L-space, f : X → X
be an operator and fGn

, n ∈ N, be admissible perturbations of f . Then, we have the
following result.

Lemma 3.3. We suppose that:
(i) the GM -algorithm is convergent;

(ii) the operators f and Gn, n ∈ N are increasing.
Then:

(a) x ∈ X, x ≤ f(x) ⇒ x ≤ f∞G (x);
(b) x ∈ X, x ≥ f(x) ⇒ x ≥ f∞G (x).

Proof. Let us prove, for example, (a). Let x ∈ X be such that x ≤ f(x). From (ii)
we have that fGn is increasing for all n ∈ N. This implies that

x ≤ fGn
◦ fGn−1 ◦ . . . ◦ fG0(x), ∀n ∈ N.

Since (X,→,≤) is an ordered L-space, from (i) it follows that, x ≤ f∞G (x). �

3.3. The case of GH-algorithm. Let (X,→,≤) be an ordered L-space, f : X → X
be an operator and fGn , n ∈ N, be admissible perturbations of the operator f . Then,
we have the following result.

Lemma 3.4. We suppose that:
(i) the GH-algorithm is convergent;

(ii) the operators f , Gn n ∈ N are increasing.
Then:

(a) x ∈ X, x ≤ f(x) ⇒ x ≤ f∞GH(x);
(b) x ∈ X, x ≥ f(x) ⇒ x ≥ f∞GH(x).

Proof. (a). Let x ∈ X be such that x ≤ f(x). From (ii) it follows that
x ≤ G0(x, f(x)) ≤ G1(x,G0(x, f(x))) ≤ . . . ≤ Gn(x, xn(x, x)) = xn+1(x, x) →
f∞GH(x). �
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3.4. The case of G1G2I-algorithm. In a similar way we have (see Example 2.4)
the following result.

Lemma 3.5. Let (X,→,≤) be an ordered L-space. We suppose that:
(i) the G1G2I-algorithm is convergent;

(ii) the operators f , G1n, G2n, n ∈ N are increasing.
Then:

(a) x ∈ X, x ≤ f(x) ⇒ x ≤ f∞G1G2
(x);

(b) x ∈ X, x ≥ f(x) ⇒ x ≥ f∞G1G2
(x).

Remark 3.1. The above results are partial answers for Problem 1 and Problem 2 in
[37]:

Problem 1. Let (X,≤) be an ordered set and f : X → X be an operator. If
Ff = {x∗}, in which conditions we have that:

(a) x ∈ X, x ≤ f(x) ⇒ x ≤ x∗ ?
(b) x ∈ X, x ≥ f(x) ⇒ x ≥ x∗ ?

Problem 2. If Ff 6= ∅, in which conditions there exists a set retraction r : X → Ff

such that:
(a) x ∈ X, x ≤ f(x) ⇒ x ≤ r(x) ?
(b) x ∈ X, x ≥ f(x) ⇒ x ≥ r(x) ?

Remark 3.2. In some particular cases there are conditions which imply condition
(i) in the above lemmas (see [2], [3], [6] and the references therein). For example see
Remark 4.3 in [41].

4. Comparison lemmas

In this section we present some comparison lemmas corresponding to an iterative
algorithm. For the case of Picard iteration see [32], [33], [39], [41] and [24]. We have
the following two lemmas.

Lemma 4.1. Let (X,→,≤) be an ordered L-space and f, g, h : X → X be three
operators. We suppose that:

(i) fG, gG and hG are WPOs;
(ii) G and g are increasing;

(iii) f ≤ g ≤ h.
Then, the following implication holds:

x, y, z ∈ X, x ≤ y ≤ z ⇒ f∞G (x) ≤ g∞G (y) ≤ h∞G (z).

Proof. The condition (ii) implies that gG is increasing. The conditions (ii) and (iii)
imply that fG ≤ gG ≤ hG. Now the proof follows from the corresponding lemma for
WPOs (see [32] and [33]). �

Lemma 4.2. Let (X,→,≤) be an ordered L-space, f, g, h : X → X be three operators
and fGn

, gGn
and hGn

the corresponding admissible perturbations. We suppose that:
(i) the GM -algorithms corresponding to f , g and h are convergent;

(ii) the operators f , Gn, n ∈ N, are increasing;
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(iii) f ≤ g ≤ h.
Then, the following implication holds:

x, y, z ∈ X, x ≤ y ≤ z ⇒ f∞G (x) ≤ g∞G (y) ≤ h∞G (z).

Proof. We have

x ≤ y ≤ z ⇒fGn
◦ fGn−1 ◦ . . . ◦ fG0(x) ≤ gGn

◦ gGn−1 ◦ . . . ◦ gG0(x)

≤ gGn
◦ gGn−1 ◦ . . . ◦ gG0(y) ≤ gGn

◦ gGn−1 ◦ . . . ◦ gG0(z)

≤ hGn ◦ hGn−1 ◦ . . . ◦ hG0(z).

Since (X,→,≤) is an ordered L-space, from

fGn ◦ fGn−1 ◦ . . . ◦ fG0(x) ≤ gGn ◦ gGn−1 ◦ . . . ◦ gG0(y) ≤ hGn ◦ hGn−1 ◦ . . . ◦ hG0(z)

it follows that f∞G (x) ≤ g∞G (y) ≤ h∞G (z). �

We have similar results for GH-algorithm and for G1G2I-algorithm.

Remark 4.1. In some particular cases, we know conditions which imply condition
(i) in the above lemmas (see [2], [3], [6] and the references therein). For example the
following results are given in [19].

Theorem 4.1. Let Y be a compact convex subset of a Banach space X and f : Y → Y
be a nonexpansive operator. Let (λn) be a sequence in [0, b] for some b < 1 such

that
∞∑

n=0

λn = ∞. Then for any starting point x0 ∈ Y , the GM -algorithm, where

Gn(x, y) := (1− λn)x+ λny, converges.

Corresponding to this Ishikawa’s theorem we have

Theorem 4.2. Let f , g and h : Y → Y be as in Theorem 4.1. Let X be an ordered
Banach space. We suppose that:

(i) g is an increasing operator;
(ii) f ≤ g ≤ h.

Then, the following implication holds:

x, y, z ∈ Y, x ≤ y ≤ z ⇒ f∞G (x) ≤ g∞G (y) ≤ h∞G (z).

5. Data dependence

Now we shall study the data dependence of the fixed points in the case of GK-
algorithm. For the case of Picard iterations see [2], [32], [39], [36], [42], [1], . . .

Let (X, d) be a metric space and f, g : X → X be two operators. Let fG and gG

be corresponding admissible perturbations. We have the following results.

Lemma 5.1. We suppose that:
(i) fG is a ψ-PO with respect to d;

(ii) there exists η > 0 such that

d(f(x), g(x)) ≤ η, ∀x ∈ X;
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(iii) there exists l2 > 0 such that

d(G(x, y), G(x, z)) ≤ l2d(y, z), ∀x, y, z ∈ X;

(iv) Fg 6= ∅.
If we denote by x∗f the unique fixed point of f , we have

d(x∗f , x
∗
g) ≤ ψ(l2η), ∀x∗g ∈ Fg.

Proof. From (i) we have that

d(x, x∗f ) ≤ ψ(d(x, fG(x))), ∀x ∈ X.

From (ii) and (iii) it follows

d(fG(x), gG(x)) = d(G(x, f(x)), G(x, g(x))) ≤ l2d(f(x), g(x)) ≤ l2η.

So,
d(x∗g, x

∗
f ) ≤ ψ(d(x∗g, fG(x∗g))) = ψ(d(gG(x∗g), fG(x∗g))) ≤ ψ(l2η).

�

In a similar way we obtain the following lemma.

Lemma 5.2. We suppose that:
(i) fG and gG are ψ-WPOs;

(ii) there exists η > 0 such that

d(f(x), g(x)) ≤ η, ∀x ∈ X;

(iii) there exists l2 > 0 such that

d(G(x, y), G(x, z)) ≤ l2d(y, z), ∀x, y, z ∈ X.
Then,

Hd(Ff , Fg) ≤ ψ(l2η).

Remark 5.1. Let f be as in Lemma 5.1. Then the equation x = fG(x) is generalized
Ulam-Hyers stable (see [38], [40]). For the case of classical Krasnoselskii iteration see
Remark 6.2 in [41].

6. Stability of an iterative algorithm

There are very many hypostasis of data dependence some of them called stability
([2], [13], [16], [15], [28], [38], [40], [47], [36], [27], [9], [25], [20], [22], [21], [30], [12],
[44], [31], . . . ). Taking account of the notions of stability in Difference equations,
Dynamical systems, Differential equations, Operator theory and Numerical analysis,
we try to unify these notions by the following definitions.

Let (X, d) be a metric space, f : X → X be an operator and G,Gn, G1n, G2n :
X×X → X be such that fG, fGn , fG1n and fG2n , n ∈ N, are admissible perturbations
of f .
Definition 6.1a. The operator f has stable Picard iterates at x0 ∈ X if for every
ε > 0, there exists δ(ε) > 0 such that

x ∈ X, d(x, x0) < δ(ε) ⇒ d(fn(x), fn(x0)) < ε, ∀n ∈ N.
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The operator f has stable Picard iterates on Y ⊂ X if it has stable Picard iterates
at all x0 ∈ Y .

The operator f has attractive iterates at x0 ∈ X if there exists δ > 0 such that

x ∈ X, d(x, x0) < δ ⇒ d(fn(x), fn(x0)) → 0 as n→∞.

Definition 6.1b. The operator f has stable GK-sequence at x0 if for every ε > 0,
there exists δ(ε) > 0 such that:

x0 ∈ X, xn+1 = G(xn, f(xn)), n ∈ N
y0 ∈ X, yn+1 = G(yn, f(yn)), n ∈ N

and
d(x0, y0) < δ(ε), imply that d(xn, yn) < ε, for all n ∈ N.

The operator f has stable GK-sequences on Y ⊂ X if it has stable GK-sequence
at all x0 ∈ Y .

The operator f has attractive GK-sequence at x0 if there exists δ > 0 such that:

d(x0, y0) < δ ⇒ d(xn, yn) → 0 as n→∞.

Definition 6.1c. The operator f has stable GM -sequence at x0 if for every ε > 0,
there exists δ(ε) > 0 such that:

x0 ∈ X, xn+1 = fGn
(xn), n ∈ N

y0 ∈ X, yn+1 = fGn(yn), n ∈ N

and
d(x0, y0) < δ(ε), imply that d(xn, yn) < ε, for all n ∈ N.

The operator f has stable GM -sequences on Y ⊂ X if it has stable GM -sequence
at all x0 ∈ Y .

The operator f has attractive GM -sequence at x0 if there exists δ > 0 such that:

d(x0, y0) < δ ⇒ d(xn, yn) → 0 as n→∞.

Definition 6.1d. The operator f has stable GH-sequence at x0 if for every ε > 0,
there exists δ(ε) > 0 such that:

x0 ∈ X, xn+1 = Gn(x0, f(xn)), n ∈ N
y0 ∈ X, yn+1 = Gn(y0, f(yn)), n ∈ N

and
d(x0, y0) < δ(ε), imply that d(xn, yn) < ε, for all n ∈ N.

The operator f has stable GH-sequences on Y ⊂ X if it has stable GH-sequence
at all x0 ∈ Y .

The operator f has attractive GH-sequence at x0 if there exists δ > 0 such that

d(x0, y0) < δ ⇒ d(xn, yn) → 0 as n→∞.
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Definition 6.1e. The operator f has stable G1G2I-sequence at x0 if for every ε > 0,
there exists δ(ε) > 0 such that:

x0 ∈ X, xn+1 = G2n(xn, f(G1n(xn, f(xn)))), n ∈ N
y0 ∈ X, yn+1 = G2n(yn, f(G1n(yn, f(yn)))), n ∈ N

and
d(x0, y0) < δ(ε), imply that d(xn, yn) < ε, for all n ∈ N.

The operator f has stable G1G2I-sequences on Y ⊂ X if it has stable G1G2I-
sequence at all x0 ∈ Y .

The operator f has attractive G1G2I-sequence at x0 if there exists δ > 0 such that

d(x0, y0) < δ ⇒ d(xn, yn) → 0 as n→∞.

Definition 6.1. The operator f has asymptotically stable sequence at x0, generated
by an algorithm, if this sequence is stable and attractive.

Definition 6.2a. The operator f has the limit shadowing property with respect to
Picard algorithm (i.e. Picard iteration) if

yn ∈ X, n ∈ N, d(yn+1, f(yn)) → 0 as n→∞
imply that there exists x0 ∈ X such that d(yn, f

n(x0)) → 0 as n→∞.
Definition 6.2b. The operator f has the limit shadowing property with respect to
GK-algorithm if

yn ∈ X, n ∈ N, d(yn+1, G(yn, f(yn))) → 0 as n→∞
imply that there exists x0 ∈ X such that

d(yn, f
n
G(x0)) → 0 as n→∞.

Definition 6.2c. The operator f has the limit shadowing property with respect to
GM -algorithm if

yn ∈ X, n ∈ N, d(yn+1, fGn
(yn)) → 0 as n→∞

imply that there exists x0 ∈ X such that

d(yn, fGn ◦ fGn−1 ◦ . . . ◦ fG0(x0)) → 0 as n→∞.

Definition 6.2d. The operator f has the limit shadowing property with respect to
GH-algorithm if

yn ∈ X, n ∈ N, d(yn+1, Gn(y0, f(yn))) → 0 as n→∞
imply that there exists x0 ∈ X such that

d(yn, Gn(x0, f(·)) ◦ . . . ◦G0(x0, f(x0))) → 0 as n→∞.

Definition 6.2e. The operator f has the limit shadowing property with respect to
G1G2I-algorithm if

yn ∈ X, n ∈ N, d(yn+1, fG2nG1n(yn)) → 0 as n→∞
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imply that there exists x0 ∈ X such that

d(yn, fG2n
◦ fG1nG1n

◦ fG2n−1G1n−1 ◦ . . . ◦ fG20G10(x0)) → 0 as n→∞.

Here fG2kG1k
(x) := G2k(x, f(G1k(x, f(x)))).

Definition 6.3. An iterative algorithm (Picard algorithm, GK-algorithm, GM -
algorithm, GH-algorithm, G1G2I-algorithm, . . .) is stable with respect to an operator
f if it is convergent with respect to f and the operator f has the limit shadowing
property with respect to this algorithm.

Remark 6.1. For a better understanding of the above definition, please look to the
following definitions, remarks and examples.

Definition 6.4 ([9], [47]). Let (X, d) be a metric space and f : X → X be an operator.
By definition, the sequence (fn(x0))n∈N of iterates of x0 ∈ X is stable if for every
ε > 0, there exists δ > 0 such that d(fn(x), fn(x0)) < ε for every n = 1, 2, . . .,
whenever x ∈ X and d(x, x0) < δ.
Definition 6.5 ([15], [28], [27]). Let (X, d) be a complete metric space and T be a
self mapping of X. Let xn+1 = f(T, xn) be some iteration procedure in X. Suppose
that F (T ), the fixed point set of T , is nonempty and that xn converges to a point
q ∈ F (T ). Let {yn} ⊂ X, and define, εn = d(yn+1, f(T, yn)). If lim

n→∞
εn = 0

implies that lim
n→∞

yn = q, then the iteration procedure, xn+1 = f(T, xn), is said to be
T -stable.

Remark 6.2. For the stability of some classical algorithms see [2], [13], [16], [28],
[47], [27], [9], [10], [25], [20], [14], [44], . . .

Remark 6.3. For the shadowing property with respect to Picard iteration see [30],
[36], [35], [20], [12], . . .

Remark 6.4. For the stability of an invariant subset of f (fixed point, periodic orbit,
orbit, attractor, . . .) with respect to Picard iteration see [18], [13], [16], [10], [44], . . .

Remark 6.5. If xn+1 = f(T, xn) is stable as in Definition 6.5, and f(T, x) = x,
∀x ∈ FT , then FT = {x∗}. Indeed, let q, p ∈ FT . Let xn → q as n→∞ and yn = p,
∀n ∈ N. Since d(yn+1, yn) = 0, it follows that yn → q as n→∞, i.e., q = p.

Remark 6.6. In the bibliography of the iterative approximation of fixed points, we
find the following synonymous terms: method, process, procedure, algorithm.

Example 6.1. Let X = R, and f : R → R be defined by f(x) = x+ 1. In this case:
(a) Ff = ∅;
(b) f has stable iterates on R;
(c) f does not have the shadowing property with respect to the Picard algorithm.

Example 6.2. X = [0, 1] ∪ [2, 3], f(x) = 1
2x for x ∈ [0, 1] and f(x) = 1

2 (x − 2) + 2
for x ∈ [2, 3]. In this case:

(a) Ff = {0, 2};
(b) f has stable iterates on X;
(c) the Picard algorithm is stable with respect to f .
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Example 6.3. Let X = R, f(x) = −2x, x ∈ R and G(x, y) = 1
2x+ 1

2y. Then:

(a) Ff = {0};
(b) f does not have stable iterate on R;
(c) f does not have the limit shadowing property with respect to the Picard algo-

rithm;
(d) f has stable GK-sequence on R;
(e) the GK-algorithm is stable with respect to f .

7. Open problems

The above considerations give rise to the following questions:

Problem 7.1. To apply the abstract results in §3, §4 and §5 to the differential and
integral equations for which the Picard algorithm is not convergent.

For the case of the Picard algorithm see, for example, [2], [32], [39], [31], [7], [8],
[26], [29], [43].

Problem 7.2. To study the data dependence (see §5) in the case of:

(a) GM -algorithm;
(b) GH-algorithm;
(c) G1G2I-algorithm.

Problem 7.3. To study the convergence of the following algorithms:

(a) GK-algorithm;
(b) GM -algorithm;
(c) GH-algorithm;
(d) G1G2I-algorithm.

Problem 7.4. To study the limit shadowing property of an operator with respect to:

(a) GK-algorithm;
(b) GM -algorithm;
(c) GH-algorithm;
(d) G1G2I-algorithm.

Problem 7.5. Given a convergent fixed point algorithm, the problem is to establish
the corresponding Gronwall lemma and comparison lemma.

For example, let us consider Baillon’s ergodic theorem (see [46], page 63) let
(H,+,R, 〈·, ·〉) be a Hilbert space, X ⊂ H be a nonempty bounded, closed and convex
subset of H and f : X → X be a nonexpansive operator. Let sn : X → X be defined

by, sf,n(x) := 1
n

n−1∑
k=0

fk(x). Then:

(a) Ff 6= ∅.
(b) ∀ x ∈ X, sf,n(x) ⇀ x∗(x) ∈ Ff as n→∞.
(c) the operator s∞f : X → Ff , s∞f (x) := x∗(x), is a nonexpansive retraction.
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Let (H,+,R, 〈·, ·〉) be a Hilbert space, (H,≤) be a partial ordered set and X ⊂ H be
a nonempty bounded, closed and convex subset. We suppose that (H,+,R,⇀,≤) is
an ordered linear L-space. Then, corresponding to the above convergent algorithm
we have the following results.

Theorem 7.1. Let f : X → X be an operator. We suppose that:
(i) f is nonexpansive;

(ii) f is increasing.
Then:

(a) Ff ⊂ Fsf,n
, ∀ n ∈ N∗;

(b) (LF )f ⊂ (LF )sf,n
and (UF )f ⊂ (UF )sf,n

, ∀ n ∈ N∗;
(c) x ≤ f(x) ⇒ x ≤ s∞f (x);
(d) x ≥ f(x) ⇒ x ≥ s∞f (x).

Theorem 7.2. Let f, g, h : X → X be such that:
(i) f , g and h are nonexpansive;

(ii) g is increasing;
(iii) f ≤ g ≤ h.

Then x, y, z ∈ X, x ≤ y ≤ z ⇒ s∞f (x) ≤ s∞g (y) ≤ s∞h (z).

Problem 7.6. In section 1 we gave some examples of operators G which satisfy the
conditions (A1) and (A2). The problem is to give other such examples.
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Babeş-Bolyai, Math., 51(2006), No. 3, 115-121.
[36] I.A. Rus, The theory of a metrical fixed point theorem: theoretical and applicative relevances,

Fixed Point Theory, 9(2008), No. 2, 541-559.

[37] I.A. Rus, Gronwall lemmas: ten open problems, Sci. Math. Jpn., 70(2009), No. 2, 221-228.
[38] I.A. Rus, Remarks on Ulam stability of the operatorial equations, Fixed Point Theory, 10(2009),

No. 2, 305-320.

[39] I.A. Rus, Some nonlinear functional differential and integral equations, via weakly Picard op-
erator theory: a survey, Carpathian J. Math., 26(2010), No. 2, 230-258.

[40] I.A. Rus, Ulam stability of the operatorial equations, Chapter 23 in Functional Equations in
Mathematical Analysis, T.M. Rassias and J. Brzdȩk (eds.), Springer, 2011.
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