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Abstract. Recently, Bucur, Guran and Petruşel presented some results on fixed point of multivalued

operators on generalized metric spaces which extended some old fixed point theorems to the multi-

valued case ([1]). In this paper, we shall give some results on fixed points of multivalued operators
on ordered generalized metric spaces by providing different conditions in respect to [1].
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1. Introduction

There are many works about fixed points of multivalued mappings (see for example,
[2]–[4]) and weakly Picard maps (see for example, [6]–[8]). Let (X, ρ) be a metric
space. We shall denote the set of all nonempty closed subsets of X by Pcl(X). Also,
we shall denote the set of fixed points of a multifunction T by Fix(T ). Let X be
a nonempty set and consider the space Rm

+ endowed with the usual component-wise
partial order. The mapping d : X ×X → Rm

+ which satisfies all the usual axioms of
the metric is called a generalized metric space in the sense of Perov ([1]). If v, r ∈ Rm,
v := (v1, v2, · · · , vm) and r := (r1, r2, · · · , rm), then by v ≤ r we mean vi ≤ ri, for
each i ∈ {1, 2, · · · ,m}, while v < r stands for vi < ri, for each i ∈ {1, 2, · · · ,m}.
Also, |v| := (|v1|, |v2|, · · · , |vm|), max(v, r) := (max(v1, r1), · · · ,max(vm, rm)), and if
c ∈ R, then v ≤ c means vi ≤ c, for each i ∈ {1, 2, · · · ,m}. In a generalized metric
space in the sense of Perov, the concepts of Cauchy sequence, convergent sequence and
completeness are similar defined as those in a metric space. We denote by Mm,m(R+)
the set of all m × m matrices with positive elements and by I the identity m × m
matrix. A matrix A ∈ Mm,m(R+) is said to be convergent to zero whenever An → 0.
We appeal next result in the following which has been proved in ([5]).

Theorem 1.1. Let A ∈ Mm,m(R+). The following are equivalents:
(i) An → 0;
(ii) The eigenvalues of A are in the open unit disc, i.e. |λ| < 1, for all λ ∈ C with
det(A− λI) = 0;
(iii) The matrix I −A is non-singular and (I −A)−1 = I + A + · · ·+ An + · · · ;
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(iv) The matrix I −A is non-singular and (I −A)−1 has nonnegative elements;
(v) Anq → 0 and qAn → 0, for all q ∈ Rm.

If (X,≤) is a partially ordered set, then we define

X≤ = {(x, y) ∈ X ×X : x ≤ y or y ≤ x}.
Let X be a nonempty set and T : X → P (X) be a multivalued operator. We set

(T × T )(x, y) = {(u, v) : u ∈ Tx, v ∈ Ty},
for all x, y ∈ X. Note that, for each x ∈ X there exists bx ∈ Rm

+ such that bx ≤ d(x, y)
for all y ∈ Tx. At least, we can set bx = 0. Now, for each x ∈ X we denote
largest of these vectors by d(x, Tx), that is, d(x, Tx) is a vector in Rm

+ such that
d(x, Tx) ≤ d(x, y) for all y ∈ Tx and bx ≤ d(x, Tx) for all bx ∈ Rm

+ with bx ≤ d(x, y)
for all y ∈ Tx.

2. Main Results

We say that (X, d,≤) is an ordered generalized metric space whenever (X, d) is a
generalized metric space in Perov’ sense, and (X,≤) is a partially ordered set.

Theorem 2.1. Let (X, d,≤) be a complete ordered generalized metric space, A a
matrix in Mm,m(R+) convergent to zero and T : X → Pcl(X) a multivalued operator.
Suppose that (T × T )(X≤) ⊆ X≤ and
(i) For each (x, y) ∈ X≤ and u ∈ T (x) there exist v ∈ T (y) and L(x, y) ∈ Ax,y such
that d(u, v) ≤ A L(x, y), where Ax,y = {d(x, y), d(x, Tx), d(y, Ty)},
(ii) For each sequence {xn}n≥1 in X with xn → x, there exists a subsequence {xnk

}k≥1

of {xn}n≥1 such that (xnk
, x) ∈ X≤ for all k ≥ 1,

(iii) There exist x0, x1 ∈ X such that (x0, x1) ∈ X≤ and x1 ∈ Tx0.
Then T has a fixed point.

Proof. If x0 = x1, then x0 is a fixed point of T . Let x1 6= x0. By (i), there exist
x2 ∈ Tx1 and L(x0, x1) ∈ Ax0,x1 such that d(x1, x2) ≤ AL(x0, x1), where Ax0,x1 =
{d(x0, x1), d(x0, Tx0), d(x1, Tx1)}. If L(x0, x1) = d(x1, Tx1), then

d(x1, x2) ≤ Ad(x1, Tx1) ≤ Ad(x1, x2)

⇒ (I −A)d(x1, x2) ≤ 0 ⇒ d(x1, x2) = 0 ⇒ x1 = x2.

If L(x0, x1) = d(x0, x1) or L(x0, x1) = d(x0, Tx0), then

d(x1, x2) ≤ Ad(x0, x1). (1)

Since (x0, x1) ∈ X≤, x1 ∈ Tx0, (T × T )(X≤) ⊆ X≤ and x2 ∈ Tx1, (x1, x2) ∈ X≤.
Now, by using (i) there exist x3 ∈ Tx2 and L(x1, x2) ∈ Ax1,x2 such that

d(x2, x3) ≤ AL(x1, x2).

If L(x1, x2) = d(x2, Tx2), then

d(x2, x3) ≤ Ad(x2, Tx2) ≤ Ad(x2, x3) ⇒ x2 = x3.

If L(x1, x2) = d(x1, x2) or L(x0, x1) = d(x1, Tx1), then by using (1) we have

d(x2, x3) ≤ Ad(x1, x2) ≤ A2d(x0, x1).
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Now by induction, we construct a sequence {xn}n≥0 in X which has the following
properties:
(a) xn+1 ∈ Txn for all n ≥ 0,
(b) (xn, xn+1) ∈ X≤ for all n ≥ 0,
(c) d(xn, xn+1) ≤ And(x0, x1) for all n ≥ 0.
Now, by using these properties and Theorem 1.1 we obtain

d(xn, xn+p) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+p−1, xn+p)

≤ And(x0, x1) + An+1d(x0, x1) + · · ·+ An+p−1d(x0, x1)

≤ An(I + A + A2 + · · ·+ Ap−1)d(x0, x1)

≤ An(I −A)−1d(x0, x1) −→ 0 (n →∞).
Hence, {xn}n≥0 is a Cauchy sequence in the complete metric space (X, d). Choose
x∗ ∈ X such that xn → x∗. By (ii), there exists a subsequence {xnk

}k≥1 of {xn}n≥0

such that (xnk
, x∗) ∈ X≤ for all k ≥ 1. But, xnk

∈ Txnk−1, (xnk−1, x
∗) ∈ X≤ for all

n ≥ 1. Thus by using (i), for each k ≥ 1 there exist vnk
∈ Tx∗ and L(xnk−1, x

∗) ∈
Axnk−1,x∗ such that

d(vnk
, xnk

) ≤ AL(xnk−1, x
∗).

If L(xnk−1, x
∗) = d(xnk−1, x

∗), then d(vnk
, xnk

) ≤ Ad(xnk−1, x
∗). Hence,

d(vnk
, x∗) ≤ d(vnk

, xnk
) + d(xnk

, x∗) ≤ Ad(xnk−1, x
∗) + d(xnk−1, x

∗) → 0 (k →∞).

If L(xnk−1, x
∗) = d(xnk−1, Txnk−1), then d(vnk

, xnk
) ≤ Ad(xnk−1, xnk

). Hence,

d(vnk
, x∗) ≤ d(vnk

, xnk
) + d(xnk

, x∗) ≤ Ad(xnk−1, xnk
) + d(xnk

, x∗) → 0 (k →∞).

If L(xnk−1, x
∗) = d(x∗, Tx∗), then d(vnk

, xnk
) ≤ Ad(vnk

, x∗). Hence,

d(vnk
, x∗) ≤ d(vnk

, xnk
) + d(xnk

, x∗) ≤ Ad(vnk
, x∗) + d(xnk

, x∗)

⇒ (I −A)d(vnk
, x∗) ≤ d(xnk

, x∗) → 0 (k →∞).
Therefore, vnk

→ x∗ (k → ∞). Since unk
∈ Tx∗ for all k ≥ 1 and Tx∗ is a closed

subset of X, x∗ ∈ Tx∗. �

Example 2.1. Let X = [−2,−1] ∪ [1, 2] ∪ {0}, r = 4
5 , A = rI2×2, k > 0 and

d : X × X → R2 defined by d(x, y) = (|x − y|, k|x − y|) for all x, y ∈ X. Then
(X, d) is a generalized metric space. Define the multivalued mapping T : X → X by
Tx = [−x

4 + 2, 5
2 ] whenever x ∈ [−2,−1), Tx = {0} whenever x ∈ {−1, 0, 1} and

Tx = [ 32 ,−x
4 + 2] whenever x ∈ (1, 2]. We show that T satisfies the assumptions of

Theorem 2.1 while it does not satisfy the assumptions of [7; Theorem 3.3]. In this way,
note that if x ∈ {−1, 0, 1}, then d(x, Tx) = (|x|, k|x|) and if x ∈ [−2,−1) or x ∈ (1, 2],
then d(x, Tx) = (| 5x−8

4 |, k| 5x−8
4 |). Let x, y ∈ [−2,−1), x ≤ y and u ∈ Tx. Then, for

each v ∈ Ty we have |u− v| ≤ |y+2|
4 ≤ 1

5
|5y−8|

4 ≤ r |5y−8|
4 , and so d(u, v) ≤ Ad(y, Ty).

Let x ∈ [−2,−1), y ∈ {−1, 0, 1} and u ∈ Tx. Then, for each v ∈ Ty we have
|u − v| ≤ 5

2 ≤
13
5 ≤ r |5x−8|

4 , and so d(u, v) ≤ Ad(x, Tx). Let x ∈ [−2,−1), y ∈ (1, 2]
and u ∈ Tx. Then, for each v ∈ Ty we have |u−v| ≤ 1 ≤ 1

2 |x−y| ≤ 4
5 |x−y| = r|x−y|,

and so d(u, v) ≤ Ad(x, y). Therefore T satisfies the assumptions of Theorem 2.1. If
x = − 3

2 and y = −1, then Tx = [198 , 5
2 ], Ty = {0} and for each u ∈ [ 198 , 5

2 ] and
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v = 0, we have |u− v| � r|x− y| ⇒ d(u, v) � Ad(x, y). Hence, T does not satisfy the
assumptions of [7; Theorem 3.3].

Theorem 2.2. Let (X, d) be a complete generalized metric space, θ ∈ (0, 1) and
T : X → Pcl(X) a multivalued operator. Suppose that ϕ : Rm

+ → Rm
+ is an increasing

sublinear function such that ϕ(0) = 0, ϕ(t) < t and
∞∑

n=1
ϕn(t) < ∞ for all t = (ti)m

i=1 ∈

Rm
++. Also, suppose that for each x, y ∈ X and u ∈ T (x) there exist v ∈ T (y) and

M(x, y) ∈ Bx,y such that
d(u, v) ≤ ϕ(M(x, y)), (∗)

where

Bx,y = {d(x, y), d(x, Tx), θd(y, Ty),
d(x, Tx) + d(y, Ty)

2
,
d(x, Ty) + d(y, Tx)

2
}.

Then T has a fixed point.

Proof. Let x0 ∈ X be arbitrary and take x1 ∈ Tx0. If x0 = x1, then x0 is a fixed
point of T . Let x1 6= x0. By (∗), there exist x2 ∈ Tx1 and M(x0, x1) ∈ Bx0,x1 such
that d(x1, x2) ≤ ϕ(M(x0, x1)). If x1 = x2, then x1 is a fixed point of T . Let x1 6= x2.
We show that d(x1, x2) ≤ ϕ(d(x0, x1)). If M(x0, x1) = d(x0, x1), then

d(x1, x2) ≤ ϕ(d(x0, x1)). (2)

If M(x0, x1) = d(x0, Tx0), then (2) holds because x1 ∈ Tx0. We claim that
M(x0, x1) 6= θd(x1, Tx1). In fact, if M(x0, x1) = θd(x1, Tx1), then

d(x1, x2) ≤ ϕ(θd(x1, Tx1)) ≤ ϕ(θd(x1, x2)) < θd(x1, x2),

which is a contradiction. If M(x0, x1) = d(x0,Tx0)+d(x1,Tx1)
2 , then

d(x1, x2) ≤ ϕ(
d(x0, Tx0) + d(x1, Tx1)

2
) ≤ 1

2
ϕ(d(x0, x1)) +

1
2
ϕ(d(x1, x2))

<
1
2
ϕ(d(x0, x1)) +

1
2
d(x1, x2),

because x1 ∈ Tx0, x2 ∈ Tx1 and ϕ is sublinear. Hence, d(x1, x2) < ϕ(d(x0, x1)).
If M(x0, x1) = d(x0,Tx1)+d(x1,Tx0)

2 = d(x0,Tx1)
2 , then by a similar way we obtain

d(x1, x2) ≤ ϕ(d(x0, x1)). Thus, d(x1, x2) ≤ ϕ(d(x0, x1)) holds. Now by (∗), there
exists x3 ∈ Tx2 and M(x1, x2) ∈ Bx1,x2 such that d(x2, x3) ≤ ϕ(M(x1, x2)). If
x2 = x3, then x2 is a fixed point of T . Suppose that x2 6= x3. Now, we show that
d(x2, x3) ≤ ϕ2(d(x0, x1)). If M(x1, x2) = d(x1, x2), then by using (2) we obtain

d(x2, x3) ≤ ϕ(d(x1, x2)) ≤ ϕ2(d(x0, x1)). (3)

If M(x1, x2) = d(x1, Tx1), then (3) holds because x2 ∈ Tx1. We claim that
M(x1, x2) 6= θd(x2, Tx2). In fact, if M(x1, x2) = θd(x2, Tx2), then

d(x2, x3) ≤ ϕ(θd(x2, Tx2)) ≤ ϕ(θd(x2, x3)) < θd(x2, x3),

which is a contradiction. If M(x1, x2) = d(x1,Tx1)+d(x2,Tx2)
2 , then

d(x2, x3) ≤ ϕ(
d(x1, Tx1) + d(x2, Tx2)

2
) ≤ 1

2
ϕ(d(x1, x2)) +

1
2
ϕ(d(x2, x3))
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<
1
2
ϕ(d(x1, x2)) +

1
2
d(x2, x3)

because x2 ∈ Tx1, x3 ∈ Tx2 and ϕ is sublinear. Hence,

d(x2, x3) < ϕ(d(x1, x2)) ≤ ϕ2(d(x0, x1)).

If M(x1, x2) = d(x1,Tx2)+d(x2,Tx1)
2 , then by a similar way we obtain

d(x2, x3) ≤ ϕ(d(x1, x2)) ≤ ϕ2(d(x0, x1)).

Thus, d(x2, x3) ≤ ϕ2(d(x0, x1)) holds. Now, by induction we construct a sequence
{xn}n≥0 in X which has the following properties:
(a) xn+1 ∈ Txn for all n ≥ 0,
(b) d(xn, xn+1) ≤ ϕn(d(x0, x1)) for all n ≥ 0.
Now, for each natural number p we have

d(xn, xn+p) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+p−1, xn+p)

≤ ϕn(d(x0, x1)) + ϕn+1(d(x0, x1)) + · · ·+ ϕn+p−1(d(x0, x1)) =
n+p−1∑

k=n

ϕk(d(x0, x1)).

Hence, {xn}n≥0 is a Cauchy sequence in the complete metric space (X, d). Choose
x∗ ∈ X such that xn → x∗. Let n ≥ 1 be given. Since xn ∈ Txn−1, by using (∗) there
exist un ∈ Tx∗ and M(xn−1, x

∗) ∈ Bxn−1,x∗ such that

d(un, xn) ≤ ϕ(M(xn−1, x
∗)).

If un = x∗ for some n ≥ 1, then x∗ is a fixed point of T . Suppose that un 6= x∗ for
all n ≥ 1. Now, we show that limn→∞ d(un, x∗) = 0. If M(xn−1, x

∗) = d(xn−1, x
∗),

then d(un, xn) ≤ ϕ(d(xn−1, x
∗)). Since

d(un, x∗) ≤ d(un, xn) + d(xn, x∗) ≤ ϕ(d(xn−1, x
∗)) + d(xn, x∗),

d(un, x∗) → 0. If M(xn−1, x
∗) = d(xn−1, Txn−1), then

d(un, xn) ≤ ϕ(d(xn−1, Txn−1)) ≤ ϕ(d(xn−1, xn)) ≤ ϕn−1(d(x0, x1)).

Hence, d(un, x∗) ≤ ϕn−1(d(x0, x1)) + d(xn, x∗) and so d(un, x∗) → 0.
If M(xn−1, x

∗) = θd(x∗, Tx∗), then

d(un, xn) ≤ ϕ(θd(x∗, Tx∗)) ≤ ϕ(θd(x∗, un)) < θd(un, x∗).

Hence, d(un, x∗) ≤ θd(un, x∗)+d(xn, x∗) and so d(un, x∗) ≤ (1−θ)−1d(xn, x∗). Thus,
d(un, x∗) → 0.

If M(xn−1, x
∗) = d(xn−1,Txn−1)+d(x∗,Tx∗)

2 , then

d(un, xn) ≤ ϕ(
d(xn−1, Txn−1) + d(x∗, Tx∗)

2
) ≤ 1

2
ϕ(d(xn−1, xn)) +

1
2
ϕ(d(un, x∗))

<
1
2
ϕ(d(xn−1, xn)) +

1
2
d(un, x∗).

Hence,

d(un, x∗) ≤ d(un, xn) + d(xn, x∗) <
1
2
ϕ(d(xn−1, xn)) +

1
2
d(un, x∗) + d(xn, x∗).

Thus, d(un, x∗) < ϕ(d(xn−1, xn)) + 2d(xn, x∗) and so d(un, x∗) → 0.
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If M(xn−1, x
∗) = d(xn−1,Tx∗)+d(x∗,Txn−1)

2 , then

d(un, xn) ≤ ϕ(
d(xn−1, Tx∗) + d(x∗, Txn−1)

2
) ≤ 1

2
ϕ(d(xn−1, un)) +

1
2
ϕ(d(xn, x∗))

≤ 1
2
ϕ(d(xn−1, x

∗)) +
1
2
ϕ(d(x∗, un)) +

1
2
ϕ(d(xn, x∗))

<
1
2
ϕ(d(xn−1, x

∗)) +
1
2
ϕ(d(x∗, xn)) +

1
2
d(un, x∗).

Hence,
d(un, x∗) ≤ d(un, xn) + d(xn, x∗)

<
1
2
ϕ(d(xn−1, x

∗)) +
1
2
ϕ(d(xn, x∗)) +

1
2
d(un, x∗) + d(xn, x∗)

and so d(un, x∗) → 0. Therefore, we proved that limn→∞ d(un, x∗) = 0.
Since un ∈ Tx∗ for all n ≥ 1 and Tx∗ is a closed subset of X, x∗ ∈ Tx∗. �

Corollary 2.3. Let (X, d) be a complete generalized metric space, θ, α ∈ (0, 1) and
T : X → Pcl(X) a multivalued operator. Suppose that each x, y ∈ X and u ∈ T (x)
there exist v ∈ T (y) and M(x, y) ∈ Bx,y such that

d(u, v) ≤ AM(x, y),

where

Bx,y = {d(x, y), d(x, Tx), θd(y, Ty),
d(x, Tx) + d(y, Ty)

2
,
d(x, Ty) + d(y, Tx)

2
},

and A ∈ Mm×m(R+) is defined by A = αI. Then T has a fixed point.
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