Fixed Point Theory, 13(2012), No. 1, 173-178 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

FIXED POINT OF MULTIVALUED OPERATORS ON ORDERED GENERALIZED METRIC SPACES

SH. REZAPOUR AND P. AMIRI

Department of Mathematics, Azarbaidjan University of Tarbiat Moallem Azarshahr, Tabriz, Iran E-mail: sh.rezapour@azaruniv.edu

Abstract. Recently, Bucur, Guran and Petruşel presented some results on fixed point of multivalued operators on generalized metric spaces which extended some old fixed point theorems to the multivalued case ([1]). In this paper, we shall give some results on fixed points of multivalued operators on ordered generalized metric spaces by providing different conditions in respect to [1]. **Key Words and Phrases:** Fixed point, multivalued operator, ordered generalized metric spaces. **2010 Mathematics Subject Classification:** 47H10, 54H25.

1. INTRODUCTION

There are many works about fixed points of multivalued mappings (see for example, [2]-[4] and weakly Picard maps (see for example, [6]-[8]). Let (X, ρ) be a metric space. We shall denote the set of all nonempty closed subsets of X by $P_{cl}(X)$. Also, we shall denote the set of fixed points of a multifunction T by Fix(T). Let X be a nonempty set and consider the space \mathbb{R}^m_+ endowed with the usual component-wise partial order. The mapping $d: X \times X \to \mathbb{R}^m_+$ which satisfies all the usual axioms of the metric is called a generalized metric space in the sense of Perov ([1]). If $v, r \in \mathbb{R}^m$, $v := (v_1, v_2, \cdots, v_m)$ and $r := (r_1, r_2, \cdots, r_m)$, then by $v \leq r$ we mean $v_i \leq r_i$, for each $i \in \{1, 2, \dots, m\}$, while v < r stands for $v_i < r_i$, for each $i \in \{1, 2, \dots, m\}$. Also, $|v| := (|v_1|, |v_2|, \cdots, |v_m|)$, $\max(v, r) := (\max(v_1, r_1), \cdots, \max(v_m, r_m))$, and if $c \in \mathbb{R}$, then $v \leq c$ means $v_i \leq c$, for each $i \in \{1, 2, \cdots, m\}$. In a generalized metric space in the sense of Perov, the concepts of Cauchy sequence, convergent sequence and completeness are similar defined as those in a metric space. We denote by $M_{m,m}(\mathbb{R}_+)$ the set of all $m \times m$ matrices with positive elements and by I the identity $m \times m$ matrix. A matrix $A \in M_{m,m}(\mathbb{R}_+)$ is said to be convergent to zero whenever $A^n \to 0$. We appeal next result in the following which has been proved in ([5]).

Theorem 1.1. Let $A \in M_{m,m}(\mathbb{R}_+)$. The following are equivalents: (i) $A^n \to 0$;

(ii) The eigenvalues of A are in the open unit disc, i.e. $|\lambda| < 1$, for all $\lambda \in C$ with $det(A - \lambda I) = 0$;

(iii) The matrix I - A is non-singular and $(I - A)^{-1} = I + A + \dots + A^n + \dots$;

(iv) The matrix I - A is non-singular and $(I - A)^{-1}$ has nonnegative elements; (v) $A^n q \to 0$ and $qA^n \to 0$, for all $q \in \mathbb{R}^m$.

If (X, \leq) is a partially ordered set, then we define

 $X_{\leq} = \{(x, y) \in X \times X : x \leq y \text{ or } y \leq x\}.$

Let X be a nonempty set and $T: X \to P(X)$ be a multivalued operator. We set

 $(T \times T)(x, y) = \{(u, v) : u \in Tx, v \in Ty\},\$

for all $x, y \in X$. Note that, for each $x \in X$ there exists $b_x \in \mathbb{R}^m_+$ such that $b_x \leq d(x, y)$ for all $y \in Tx$. At least, we can set $b_x = 0$. Now, for each $x \in X$ we denote largest of these vectors by d(x, Tx), that is, d(x, Tx) is a vector in \mathbb{R}^m_+ such that $d(x, Tx) \leq d(x, y)$ for all $y \in Tx$ and $b_x \leq d(x, Tx)$ for all $b_x \in \mathbb{R}^m_+$ with $b_x \leq d(x, y)$ for all $y \in Tx$.

2. Main Results

We say that (X, d, \leq) is an ordered generalized metric space whenever (X, d) is a generalized metric space in Perov' sense, and (X, \leq) is a partially ordered set.

Theorem 2.1. Let (X, d, \leq) be a complete ordered generalized metric space, A a matrix in $M_{m,m}(\mathbb{R}_+)$ convergent to zero and $T: X \to P_{cl}(X)$ a multivalued operator. Suppose that $(T \times T)(X_{\leq}) \subseteq X_{\leq}$ and

(i) For each $(x, y) \in X_{\leq}$ and $u \in T(x)$ there exist $v \in T(y)$ and $L(x, y) \in \mathcal{A}_{x,y}$ such that $d(u, v) \leq A L(x, y)$, where $\mathcal{A}_{x,y} = \{d(x, y), d(x, Tx), d(y, Ty)\},\$

(ii) For each sequence $\{x_n\}_{n\geq 1}$ in X with $x_n \to x$, there exists a subsequence $\{x_{n_k}\}_{k\geq 1}$ of $\{x_n\}_{n\geq 1}$ such that $(x_{n_k}, x) \in X_{\leq}$ for all $k \geq 1$,

(iii) There exist $x_0, x_1 \in X$ such that $(x_0, x_1) \in X_{\leq}$ and $x_1 \in Tx_0$. Then T has a fixed point.

Proof. If $x_0 = x_1$, then x_0 is a fixed point of T. Let $x_1 \neq x_0$. By (i), there exist $x_2 \in Tx_1$ and $L(x_0, x_1) \in \mathcal{A}_{x_0, x_1}$ such that $d(x_1, x_2) \leq AL(x_0, x_1)$, where $\mathcal{A}_{x_0, x_1} = \{d(x_0, x_1), d(x_0, Tx_0), d(x_1, Tx_1)\}$. If $L(x_0, x_1) = d(x_1, Tx_1)$, then

$$d(x_1, x_2) \le Ad(x_1, Tx_1) \le Ad(x_1, x_2)$$

$$\Rightarrow (I - A)d(x_1, x_2) \le 0 \Rightarrow d(x_1, x_2) = 0 \Rightarrow x_1 = x_2.$$

If $L(x_0, x_1) = d(x_0, x_1)$ or $L(x_0, x_1) = d(x_0, Tx_0)$, then

$$d(x_1, x_2) \le Ad(x_0, x_1).$$
(1)

Since $(x_0, x_1) \in X_{\leq}$, $x_1 \in Tx_0$, $(T \times T)(X_{\leq}) \subseteq X_{\leq}$ and $x_2 \in Tx_1$, $(x_1, x_2) \in X_{\leq}$. Now, by using (i) there exist $x_3 \in Tx_2$ and $L(x_1, x_2) \in \mathcal{A}_{x_1, x_2}$ such that

$$d(x_2, x_3) \le AL(x_1, x_2).$$

If $L(x_1, x_2) = d(x_2, Tx_2)$, then

$$d(x_2, x_3) \le Ad(x_2, Tx_2) \le Ad(x_2, x_3) \Rightarrow x_2 = x_3.$$

If $L(x_1, x_2) = d(x_1, x_2)$ or $L(x_0, x_1) = d(x_1, Tx_1)$, then by using (1) we have $d(x_2, x_3) \le Ad(x_1, x_2) \le A^2 d(x_0, x_1).$

Now by induction, we construct a sequence $\{x_n\}_{n\geq 0}$ in X which has the following properties:

(a) $x_{n+1} \in Tx_n$ for all $n \ge 0$, (b) $(x_n, x_{n+1}) \in X_{\le}$ for all $n \ge 0$, (c) $d(x_n, x_{n+1}) \le A^n d(x_0, x_1)$ for all $n \ge 0$.

Now, by using these properties and Theorem 1.1 we obtain

$$d(x_n, x_{n+p}) \leq d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{n+p-1}, x_{n+p})$$

$$\leq A^n d(x_0, x_1) + A^{n+1} d(x_0, x_1) + \dots + A^{n+p-1} d(x_0, x_1)$$

$$\leq A^n (I + A + A^2 + \dots + A^{p-1}) d(x_0, x_1)$$

$$\leq A^n (I - A)^{-1} d(x_0, x_1) \longrightarrow 0 \quad (n \to \infty).$$

Hence, $\{x_n\}_{n\geq 0}$ is a Cauchy sequence in the complete metric space (X, d). Choose $x^* \in X$ such that $x_n \to x^*$. By (ii), there exists a subsequence $\{x_{n_k}\}_{k\geq 1}$ of $\{x_n\}_{n\geq 0}$ such that $(x_{n_k}, x^*) \in X_{\leq}$ for all $k \geq 1$. But, $x_{n_k} \in Tx_{n_k-1}, (x_{n_k-1}, x^*) \in X_{\leq}$ for all $n \geq 1$. Thus by using (i), for each $k \geq 1$ there exist $v_{n_k} \in Tx^*$ and $L(x_{n_k-1}, x^*) \in \mathcal{A}_{x_{n_k-1},x^*}$ such that

$$\begin{aligned} d(v_{n_k}, x_{n_k}) &\leq AL(x_{n_k-1}, x^*). \end{aligned}$$

If $L(x_{n_k-1}, x^*) = d(x_{n_k-1}, x^*)$, then $d(v_{n_k}, x_{n_k}) \leq Ad(x_{n_k-1}, x^*).$ Hence,
 $d(v_{n_k}, x^*) \leq d(v_{n_k}, x_{n_k}) + d(x_{n_k}, x^*) \leq Ad(x_{n_k-1}, x^*) + d(x_{n_k-1}, x^*) \to 0 \ (k \to \infty).$
If $L(x_{n_k-1}, x^*) = d(x_{n_k-1}, Tx_{n_k-1}),$ then $d(v_{n_k}, x_{n_k}) \leq Ad(x_{n_k-1}, x_{n_k}).$ Hence,
 $d(v_{n_k}, x^*) \leq d(v_{n_k}, x_{n_k}) + d(x_{n_k}, x^*) \leq Ad(x_{n_k-1}, x_{n_k}) + d(x_{n_k}, x^*) \to 0 \ (k \to \infty).$
If $L(x_{n_k-1}, x^*) = d(x^*, Tx^*),$ then $d(v_{n_k}, x_{n_k}) \leq Ad(v_{n_k}, x^*) \to 0 \ (k \to \infty).$
If $L(x_{n_k, x^*}) \leq d(v_{n_k}, x_{n_k}) + d(x_{n_k}, x^*) \leq Ad(v_{n_k}, x^*) + d(x_{n_k}, x^*) = d(v_{n_k}, x_{n_k}) \leq Ad(v_{n_k}, x^*).$ Hence,
 $d(v_{n_k}, x^*) \leq d(v_{n_k}, x_{n_k}) + d(x_{n_k}, x^*) \leq Ad(v_{n_k}, x^*) + d(x_{n_k}, x^*) = d(v_{n_k}, x^*) \leq d(v_{n_k}, x^*) \leq d(v_{n_k}, x^*) = d(v_{n_k}, x^*) \leq d(v_{n_k}, x^*) = d(v_{n_k}, x^*) = d(v_{n_k}, x^*) \leq d(v_{n_k}, x^*) = d(v_{n_k}, x^*) \leq d(v_{n_k}, x^*) = d(v_{n_k}, x^*) = d(v_{n_k}, x^*) \leq d(v_{n_k}, x^*) = d(v_{n_k}, x^*) = d(v_{n_k}, x^*) \leq d(v_{n_k}, x^*) = d(v_{n_k}, x^*) = d(v_{n_k}, x^*) \leq d(v_{n_k}, x^*) = d(v_{n_k}, x^*) = d(v_{n_k}, x^*) \leq d(v_{n_k}, x^*) = d(v_{n_k}, x^*) =$

Therefore, $v_{n_k} \to x^*$ $(k \to \infty)$. Since $u_{n_k} \in Tx^*$ for all $k \ge 1$ and Tx^* is a closed subset of $X, x^* \in Tx^*$.

Example 2.1. Let $X = [-2, -1] \cup [1, 2] \cup \{0\}$, $r = \frac{4}{5}$, $A = rI_{2\times 2}$, k > 0 and $d : X \times X \to \mathbb{R}^2$ defined by d(x, y) = (|x - y|, k|x - y|) for all $x, y \in X$. Then (X, d) is a generalized metric space. Define the multivalued mapping $T : X \to X$ by $Tx = [-\frac{x}{4} + 2, \frac{5}{2}]$ whenever $x \in [-2, -1)$, $Tx = \{0\}$ whenever $x \in \{-1, 0, 1\}$ and $Tx = [\frac{3}{2}, -\frac{x}{4} + 2]$ whenever $x \in (1, 2]$. We show that T satisfies the assumptions of Theorem 2.1 while it does not satisfy the assumptions of [7; Theorem 3.3]. In this way, note that if $x \in \{-1, 0, 1\}$, then d(x, Tx) = (|x|, k|x|) and if $x \in [-2, -1)$ or $x \in (1, 2]$, then $d(x, Tx) = (|\frac{5x-8}{4}|, k|\frac{5x-8}{4}|)$. Let $x, y \in [-2, -1)$, $x \leq y$ and $u \in Tx$. Then, for each $v \in Ty$ we have $|u - v| \leq \frac{|y+2|}{4} \leq \frac{1}{5}\frac{|5y-8|}{4} \leq r\frac{|5y-8|}{4}$, and so $d(u, v) \leq Ad(y, Ty)$. Let $x \in [-2, -1)$, $y \in \{-1, 0, 1\}$ and $u \in Tx$. Then, for each $v \in Ty$ we have $|u - v| \leq \frac{5}{2} \leq \frac{13}{5} \leq r\frac{|5x-8|}{4}$, and so $d(u, v) \leq Ad(x, Tx)$. Let $x \in [-2, -1)$, $y \in (1, 2]$ and $u \in Tx$. Then, for each $v \in Ty$ we have $|u - v| \leq \frac{5}{2} \leq \frac{13}{5} \leq r\frac{|5x-8|}{4}$, and so $d(u, v) \leq Ad(x, Tx)$. Let $x \in [-2, -1)$, $y \in (1, 2]$ and $u \in Tx$. Then, for each $v \in Ty$ we have $|u - v| \leq \frac{5}{2} \leq \frac{13}{5} \leq r\frac{|5x-8|}{4}$, and so $d(u, v) \leq Ad(x, Tx)$. Let $x \in [-2, -1)$, $y \in (1, 2]$ and $u \in Tx$. Then, for each $v \in Ty$ we have $|u - v| \leq \frac{5}{2} \leq \frac{13}{5} \leq r\frac{|5x-8|}{4}$, and so $d(u, v) \leq Ad(x, Tx)$. Therefore T satisfies the assumptions of Theorem 2.1. If $x = -\frac{3}{2}$ and y = -1, then $Tx = [\frac{19}{8}, \frac{5}{2}]$, $Ty = \{0\}$ and for each $u \in [\frac{19}{8}, \frac{5}{2}]$ and

v = 0, we have $|u - v| \leq r |x - y| \Rightarrow d(u, v) \leq Ad(x, y)$. Hence, T does not satisfy the assumptions of [7; Theorem 3.3].

Theorem 2.2. Let (X, d) be a complete generalized metric space, $\theta \in (0, 1)$ and $T: X \to P_{cl}(X)$ a multivalued operator. Suppose that $\varphi : \mathbb{R}^m_+ \to \mathbb{R}^m_+$ is an increasing sublinear function such that $\varphi(0) = 0$, $\varphi(t) < t$ and $\sum_{n=1}^{\infty} \varphi^n(t) < \infty$ for all $t = (t_i)_{i=1}^m \in \mathbb{R}^m_{++}$. Also, suppose that for each $x, y \in X$ and $u \in T(x)$ there exist $v \in T(y)$ and $M(x, y) \in \mathcal{B}_{x,y}$ such that

$$d(u,v) \le \varphi(M(x,y)), \ (*)$$

where

$$\mathcal{B}_{x,y} = \{ d(x,y), d(x,Tx), \theta d(y,Ty), \frac{d(x,Tx) + d(y,Ty)}{2}, \frac{d(x,Ty) + d(y,Tx)}{2} \}.$$

Then T has a fixed point.

Proof. Let $x_0 \in X$ be arbitrary and take $x_1 \in Tx_0$. If $x_0 = x_1$, then x_0 is a fixed point of T. Let $x_1 \neq x_0$. By (*), there exist $x_2 \in Tx_1$ and $M(x_0, x_1) \in \mathcal{B}_{x_0, x_1}$ such that $d(x_1, x_2) \leq \varphi(M(x_0, x_1))$. If $x_1 = x_2$, then x_1 is a fixed point of T. Let $x_1 \neq x_2$. We show that $d(x_1, x_2) \leq \varphi(d(x_0, x_1))$. If $M(x_0, x_1) = d(x_0, x_1)$, then

$$d(x_1, x_2) \le \varphi(d(x_0, x_1)).$$
 (2)

If $M(x_0, x_1) = d(x_0, Tx_0)$, then (2) holds because $x_1 \in Tx_0$. We claim that $M(x_0, x_1) \neq \theta d(x_1, Tx_1)$. In fact, if $M(x_0, x_1) = \theta d(x_1, Tx_1)$, then

$$d(x_1, x_2) \le \varphi(\theta d(x_1, Tx_1)) \le \varphi(\theta d(x_1, x_2)) < \theta d(x_1, x_2),$$

which is a contradiction. If $M(x_0, x_1) = \frac{d(x_0, Tx_0) + d(x_1, Tx_1)}{2}$, then

$$\begin{aligned} d(x_1, x_2) &\leq \varphi(\frac{d(x_0, Tx_0) + d(x_1, Tx_1)}{2}) \leq \frac{1}{2}\varphi(d(x_0, x_1)) + \frac{1}{2}\varphi(d(x_1, x_2)) \\ &< \frac{1}{2}\varphi(d(x_0, x_1)) + \frac{1}{2}d(x_1, x_2), \end{aligned}$$

because $x_1 \in Tx_0, x_2 \in Tx_1$ and φ is sublinear. Hence, $d(x_1, x_2) < \varphi(d(x_0, x_1))$. If $M(x_0, x_1) = \frac{d(x_0, Tx_1) + d(x_1, Tx_0)}{2} = \frac{d(x_0, Tx_1)}{2}$, then by a similar way we obtain $d(x_1, x_2) \leq \varphi(d(x_0, x_1))$. Thus, $d(x_1, x_2) \leq \varphi(d(x_0, x_1))$ holds. Now by (*), there exists $x_3 \in Tx_2$ and $M(x_1, x_2) \in \mathcal{B}_{x_1, x_2}$ such that $d(x_2, x_3) \leq \varphi(M(x_1, x_2))$. If $x_2 = x_3$, then x_2 is a fixed point of T. Suppose that $x_2 \neq x_3$. Now, we show that $d(x_2, x_3) \leq \varphi^2(d(x_0, x_1))$. If $M(x_1, x_2) = d(x_1, x_2)$, then by using (2) we obtain

$$d(x_2, x_3) \le \varphi(d(x_1, x_2)) \le \varphi^2(d(x_0, x_1)).$$
(3)

If $M(x_1, x_2) = d(x_1, Tx_1)$, then (3) holds because $x_2 \in Tx_1$. We claim that $M(x_1, x_2) \neq \theta d(x_2, Tx_2)$. In fact, if $M(x_1, x_2) = \theta d(x_2, Tx_2)$, then

$$d(x_2, x_3) \le \varphi(\theta d(x_2, Tx_2)) \le \varphi(\theta d(x_2, x_3)) < \theta d(x_2, x_3),$$

which is a contradiction. If $M(x_1, x_2) = \frac{d(x_1, Tx_1) + d(x_2, Tx_2)}{2}$, then

$$d(x_2, x_3) \le \varphi(\frac{d(x_1, Tx_1) + d(x_2, Tx_2)}{2}) \le \frac{1}{2}\varphi(d(x_1, x_2)) + \frac{1}{2}\varphi(d(x_2, x_3))$$

$$<\frac{1}{2}\varphi(d(x_1,x_2))+\frac{1}{2}d(x_2,x_3)$$

because $x_2 \in Tx_1, x_3 \in Tx_2$ and φ is sublinear. Hence,

$$d(x_2, x_3) < \varphi(d(x_1, x_2)) \le \varphi^2(d(x_0, x_1)).$$

If
$$M(x_1, x_2) = \frac{d(x_1, Tx_2) + d(x_2, Tx_1)}{2}$$
, then by a similar way we obtain

$$d(x_2, x_3) \le \varphi(d(x_1, x_2)) \le \varphi^2(d(x_0, x_1)).$$

Thus, $d(x_2, x_3) \leq \varphi^2(d(x_0, x_1))$ holds. Now, by induction we construct a sequence $\{x_n\}_{n\geq 0}$ in X which has the following properties:

(a)
$$x_{n+1} \in Tx_n$$
 for all $n \ge 0$,

(b) $d(x_n, x_{n+1}) \leq \varphi^n(d(x_0, x_1))$ for all $n \geq 0$.

Now, for each natural number
$$p$$
 we have
 $d(x, x, y) \le d(x, x, y) + d(x, y, x)$

$$d(x_n, x_{n+p}) \le d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{n+p-1}, x_{n+p})$$

$$\le \varphi^n(d(x_0, x_1)) + \varphi^{n+1}(d(x_0, x_1)) + \dots + \varphi^{n+p-1}(d(x_0, x_1)) = \sum_{k=n}^{n+p-1} \varphi^k(d(x_0, x_1)).$$

Hence, $\{x_n\}_{n\geq 0}$ is a Cauchy sequence in the complete metric space (X, d). Choose $x^* \in X$ such that $x_n \to x^*$. Let $n \geq 1$ be given. Since $x_n \in Tx_{n-1}$, by using (*) there exist $u_n \in Tx^*$ and $M(x_{n-1}, x^*) \in \mathcal{B}_{x_{n-1}, x^*}$ such that

$$d(u_n, x_n) \le \varphi(M(x_{n-1}, x^*)).$$

If $u_n = x^*$ for some $n \ge 1$, then x^* is a fixed point of T. Suppose that $u_n \ne x^*$ for all $n \ge 1$. Now, we show that $\lim_{n\to\infty} d(u_n, x^*) = 0$. If $M(x_{n-1}, x^*) = d(x_{n-1}, x^*)$, then $d(u_n, x_n) \le \varphi(d(x_{n-1}, x^*))$. Since

$$d(u_n, x^*) \le d(u_n, x_n) + d(x_n, x^*) \le \varphi(d(x_{n-1}, x^*)) + d(x_n, x^*),$$

 $d(u_n, x^*) \to 0.$ If $M(x_{n-1}, x^*) = d(x_{n-1}, Tx_{n-1})$, then $d(u_n, x_n) \le c(d(x_{n-1}, Tx_{n-1})) \le c(d(x_{n-1}, x_n)) \le c(d$

$$d(u_n, x_n) \le \varphi(d(x_{n-1}, Tx_{n-1})) \le \varphi(d(x_{n-1}, x_n)) \le \varphi^{n-1}(d(x_0, x_1)).$$

Hence, $d(u_n, x^*) \le \varphi^{n-1}(d(x_0, x_1)) + d(x_n, x^*)$ and so $d(u_n, x^*) \to 0.$

If $M(x_{n-1}, x^*) = \theta d(x^*, Tx^*)$, then

$$d(u_n, x_n) \le \varphi(\theta d(x^*, Tx^*)) \le \varphi(\theta d(x^*, u_n)) < \theta d(u_n, x^*).$$

Hence, $d(u_n, x^*) \leq \theta d(u_n, x^*) + d(x_n, x^*)$ and so $d(u_n, x^*) \leq (1-\theta)^{-1} d(x_n, x^*)$. Thus, $d(u_n, x^*) \to 0$.

If
$$M(x_{n-1}, x^*) = \frac{d(x_{n-1}, tx_{n-1}) + d(x^*, tx^*)}{2}$$
, then
 $d(u_n, x_n) \le \varphi(\frac{d(x_{n-1}, Tx_{n-1}) + d(x^*, Tx^*)}{2}) \le \frac{1}{2}\varphi(d(x_{n-1}, x_n)) + \frac{1}{2}\varphi(d(u_n, x^*))$
 $< \frac{1}{2}\varphi(d(x_{n-1}, x_n)) + \frac{1}{2}d(u_n, x^*).$

Hence,

$$d(u_n, x^*) \le d(u_n, x_n) + d(x_n, x^*) < \frac{1}{2}\varphi(d(x_{n-1}, x_n)) + \frac{1}{2}d(u_n, x^*) + d(x_n, x^*).$$

Thus, $d(u_n, x^*) < \varphi(d(x_{n-1}, x_n)) + 2d(x_n, x^*)$ and so $d(u_n, x^*) \to 0.$

If
$$M(x_{n-1}, x^*) = \frac{d(x_{n-1}, Tx^*) + d(x^*, Tx_{n-1})}{2}$$
, then

$$d(u_n, x_n) \le \varphi(\frac{d(x_{n-1}, Tx^*) + d(x^*, Tx_{n-1})}{2}) \le \frac{1}{2}\varphi(d(x_{n-1}, u_n)) + \frac{1}{2}\varphi(d(x_n, x^*))$$

$$\le \frac{1}{2}\varphi(d(x_{n-1}, x^*)) + \frac{1}{2}\varphi(d(x^*, u_n)) + \frac{1}{2}\varphi(d(x_n, x^*))$$

$$< \frac{1}{2}\varphi(d(x_{n-1}, x^*)) + \frac{1}{2}\varphi(d(x^*, x_n)) + \frac{1}{2}d(u_n, x^*).$$

Hence,

$$d(u_n, x^*) \le d(u_n, x_n) + d(x_n, x^*)$$

$$< \frac{1}{2}\varphi(d(x_{n-1}, x^*)) + \frac{1}{2}\varphi(d(x_n, x^*)) + \frac{1}{2}d(u_n, x^*) + d(x_n, x^*)$$

* \

and so $d(u_n, x^*) \to 0$. Therefore, we proved that $\lim_{n\to\infty} d(u_n, x^*) = 0$. Since $u_n \in Tx^*$ for all $n \ge 1$ and Tx^* is a closed subset of $X, x^* \in Tx^*$.

1/

Corollary 2.3. Let (X,d) be a complete generalized metric space, $\theta, \alpha \in (0,1)$ and $T: X \to P_{cl}(X)$ a multivalued operator. Suppose that each $x, y \in X$ and $u \in T(x)$ there exist $v \in T(y)$ and $M(x, y) \in \mathcal{B}_{x,y}$ such that

$$d(u,v) \le AM(x,y),$$

where

$$\mathcal{B}_{x,y} = \{ d(x,y), d(x,Tx), \theta d(y,Ty), \frac{d(x,Tx) + d(y,Ty)}{2}, \frac{d(x,Ty) + d(y,Tx)}{2} \},$$

and
$$A \in M_{m \times m}(\mathbb{R}_+)$$
 is defined by $A = \alpha I$. Then T has a fixed point.

Acknowledgments. The authors express their gratitude to the referees for their helpful suggestions which improved final version of this paper.

References

- [1] A. Bucur, L. Guran, A. Petruşel, Fixed points for multivalued operators on a set endowed with vector-valued metrics and applications, Fixed Point Theory, 10(2009), no. 1, 19-34.
- [2] S. Czerwik, A fixed point theorem for a system of multivalued transformations, Proc. Amer. Math. Soc., 55(1976), 136-139.
- [3] D. O'Regan, N. Shahzad, R.P. Agarwal, Fixed point theory for generalized contractive maps on spaces with vector-valued metrics, Fixed Point Theory and Appl., (Eds. Y. J. Cho, J. K. Kim, S. M. Kang), Vol. 6, Nova Science Publ., New York, 2007, 143-149.
- [4] A. Petrusel, I.A. Rus, Fixed point theory for multivalued operators on a set with two metrics, Fixed Point Theory, 8(2007), no. 1, 97–104.
- [5] I.A. Rus, Principles and Applications of Fixed Point Theory, (in Romanian), Editura Dacia, Cluj-Napoca, 1979.
- [6] I.A. Rus, The theory of a metrical fixed point theory; theoretical and applicative relevances, Fixed Point Theory, 9(2008), no. 2, 541-559.
- [7] I.A. Rus, A. Petruşel, A. Sântamărian, Data dependence of the fixed point set of multivalued weakly Picard operators, Nonlinear Analysis, 52(2003), 1947-1959.
- [8] I.A. Rus, A. Petruşel, M.A. Şerban, Weakly Picard operators; equivalent definitions, applications and open problems, Fixed Point Theory, 7(2006), no. 1, 3-22.

Received: April 29, 2010; Accepted: May 30, 2011.