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Abstract. The paper contains some fixed point theorems (Theorem 12, Theorem 13, Theorem 15)

and a selection theorem (Theorem 11). Theorem 13 seems to be one of the main results for non-

expansive mappings and it is a far extension of Browder-Göhde-Kirk result even for uniformly convex
spaces. What is more its proof is simple and natural (cp. the monograph of Dugundji and Granas

[1, p. 52]); the shortest way to the proof of this theorem is directly by Definition 7. In addition we

give a more thorough investigation of the properties of discus spaces (extension of uniformly convex
spaces) which seem to be of importance.
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Let us recall two definitions.

Definition 1 ([2, Def. 1]). A metric space (X, d) is a discus space if there exists a
mapping ρ : [0,∞)× (0,∞) → [0,∞) such that

ρ(β, r) < ρ(0, r) = r, β, r > 0, (1)

ρ(·, r) is nonincreasing, r > 0, (2)

ρ(δ, ·) is upper semicontinuous, δ ≥ 0, (3)

for each x, y ∈ X, r, ε > 0 there exists a z ∈ X such (4)
that B(x, r) ∩B(y, r) ⊂ B(z, ρ(d(x, y), r) + ε).

Definition 2 ([2, Def. 5]). Let (X, d) be a metric space and A a nonempty subset
of X. An x ∈ X is a central point for A if

r(A) := inf{t ∈ (0,∞] : there exists a z ∈ X with (5)
A ⊂ B(z, t)} = inf{t ∈ (0,∞] : A ⊂ B(x, t)}.

The centre c(A) for A is the set of all central points for A, and r(A) is the radius
of A.

The lemma to follow extends [2, Lemma 6].
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Lemma 3. Let (X, d) be a discus space and let A ⊂ X be nonempty and bounded.
Then c(A) consists of at most one point. If in addition (X, d) is complete then c(A)
is a singleton.

Proof. Let ε > 0 be arbitrary and Let (rn)n∈N decrease to r = r(A) while
A ⊂ B(xn, rn). Suppose (xn)n∈N is not a Cauchy sequence, i.e. d(xn, xk) ≥ β > 0
for infinitely many k < n. We have

A ⊂ B(xn, rn) ∩B(xk, rk) ⊂ B(xn, rk) ∩B(xk, rk)
⊂ B(zn,k, ρ(d(xn, xk), rk) + ε) ⊂ B(zn,k, ρ(β, rk) + ε)

(see (4),(2)). Set 2γ = r − ρ(β, r) = ρ(0, r) − ρ(β, r) > 0 (see (1)). We have
ρ(β, rk) + ε ≤ ρ(β, r) + γ for sufficiently large k and small ε (see (3)). Now we obtain
ρ(β, rk) + ε ≤ ρ(β, r) + γ = r − 2γ + γ = r − γ and consequently

A ⊂ B(zn,k, ρ(β, rk) + ε) ⊂ B(zn,k, r − γ))

which means r = r(A) ≤ r(A)− γ, a contradiction. Therefore (xn)n∈N is a Cauchy
sequence. If (X, d) is complete then (xn)n∈N converges, say to x. Then for any
β > 0 we have B(xn, rn) ⊂ B(x, r + β) for all sufficiently large n, which means
A ⊂ B(x, r + β) for all β > 0 and consequently x ∈ c(A). Suppose x, y ∈ c(A) and
d(x, y) ≥ β > 0. Then by (4) for γ defined above we obtain

A ⊂ B(x, r) ∩B(y, r) ⊂ B(z, ρ(β, r) + ε) ⊂ B(z, r − γ)

for a γ > 0, a contradiction. �

For complete spaces condition (4) is too general

Lemma 4 ([2, Lemma 4]). If (X, d) is a complete discus space then (4) can be
replaced by

for each x, y ∈ X and r > 0 there exists a z ∈ X (6)
such that B(x, r) ∩B(y, r) ⊂ B(z, ρ(d(x, y), r)).

Definition 5. Let (X, d) be a metric space and A = {An : n ∈ N} a family of
nonempty subsets of X. An x ∈ X is a central point for A if

r(A) := inf{t ∈ (0,∞] : there exists n0 such that for each n > n0

there is a z ∈ Xwith An ⊂ B(z, t)} = inf{t ∈ (0,∞] : (7)
there exists n0 such that An ⊂ B(x, t) for each n > n0}.

The centre c(A) for A is the set of all central points for A, and r(A) is the radius
of A.

Lemma 6. Let (X, d) be a discus space and let A = {An : n ∈ N} be a decreasing
family of nonempty and bounded subsets of X. Then c(A) consists of at most one
point. If {xn} = c(An), n ∈ N then (xn)n∈N is a Cauchy sequence and limn→∞xn = x
means {x} = c(A). In particular if (X, d) is a complete discus space then c(A) is a
singleton. If A consists of compact sets then for A =

⋂
A c(A) = c(A), r(A) = r(A)

hold.
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Proof. Set r = r(A). We have An+1 ⊂ An and therefore there exist a decreasing
sequence (rn)n∈N convergent to r and a sequence (xn)n∈N such that An ⊂ B(xn, rn)
for all n ∈ N (in particular {xn} = c(An) if nonempty). Suppose (xn)n∈N is not a
Cauchy sequence, i.e. d(xn, xk) ≥ β > 0 for infinitely many k < n. We have

An ⊂ An ∩Ak ⊂ B(xn, rk) ∩B(xk, rk) ⊂ B(zn,k, ρ(β, rk) + ε)

for k < n and consequently An ⊂ B(zn,k, r−γ) for a γ > 0 (see the proof of Lemma
3), a contradiction. Now let (xn)n∈N converge to x. We obtain An ⊂ B(x, r + β)
for any β > 0 and sufficiently large n. Consequently, x ∈ c(A). The uniqueness of
x ∈ c(A) can be obtained as in the proof of Lemma 3. We obviously have r(A) ≤ r(A),
and on the other hand for x ∈ c(A) we obtain An ⊂ B(x, r(A) + β) for any β > 0
and large n ∈ N , An being compact. Thus r(A) = r(A) holds ( c(A) = c(A) is
trivial). �

Now we are going to present a lemma which concerns mappings.
Let 2X be the family of all subsets of X and let F: X → 2X being a multivalued

mapping mean that F (x) 6= ∅, x ∈ X.
The following is equivalent to [2, Def. 7] as for F: Y → 2Y we have Fn(Y ) ⊂

(Fn0)(Y ) for all n > n0

Definition 7. Let (X, d) be a metric space, ∅ 6= Y ⊂ X and F: Y → 2Y a mapping.
An x ∈ X is a central point for F if

r(F ) := inf{t ∈ (0,∞] : Fn(Y ) ⊂ B(z, t) for a z ∈ X and (8)
a n ∈ N} = inf{t ∈ (0,∞] : Fn(Y ) ⊂ B(x, t) for a n ∈ N}.

The centre c(F ) for F is the set of all central points for F , and r(F ) is the radius
of F .

From Lemma 6 we obtain the following extension of [2, Lemma 8]

Lemma 8. Let (X, d) be a discus space. If ∅ 6= Y ⊂ X is bounded and F: Y → 2Y

is a mapping then c(F ) consists of at most one point. If c(Fn(Y )) = {xn}, n ∈ N
then (xn)n∈N is a Cauchy sequence and limn→∞xn = x means c(F ) = {x}. In
particular if (X, d) is a complete discus space then c(F ) is a singleton.

Proof. We apply Lemma 6 to An = Fn(Y ). �

Now we present an analog of Lemma 6 for the Hausdorff distance D.

Lemma 9. Let (X, d) be a discus space and let A = {An : n ∈ N} be a family
of nonempty and bounded subsets of X such that limm,n→∞D(Am, An) = 0. Then
c(A) consists of at most one point. If {xn} = c(An), n ∈ N then (xn)n∈N is a
Cauchy sequence, and limn→∞xn = x means {x} = c(A). In particular if (X, d)
is a complete discus space then c(A) is a singleton. If A = limn→∞An in (2X , D)
then c(A) = c(A), r(A) = r(A) hold.

Proof. Let us consider Cn =
⋃∞

k=n Ak. Clearly C = {Cn : n ∈ N} is a decreasing
family of nonempty and bounded subsets of X. In view of Lemma 6 c(C) consists
of at most one point. On the other hand we have c(C) = c(A) and r(C) = r(A)
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(see Definition 5). Clearly one can use {xn} = c(An) in place of {zn} = c(Cn)
for the respectively defined (rn)n∈N . If {x} = c(A) and r = r(A) then we have
An ⊂ B(x, r +β), n > n0 and for xn, rn as above we get A ⊂ B(xn, rn +β), n > n0

which imply c(A) = c(A) and r(A) = r(A). �

In what follows if {x} = c(F (z)) then we adopt (c ◦ F )(z) = x .

Lemma 10. Let (Z, ρ) be a metric space and (X, d) a discus space. If F: (Z, ρ) 3
z → F (z) ∈ (2X , D) is a continuous mapping, F (z), z ∈ Z are bounded and c(F (z)) 6=
∅, z ∈ Z (e.g. if (X, d) is complete) then c ◦ F: Z → X is continuous.

Proof. By continuity of F from limn→∞zn = z follows limn→∞F (zn) = F (z) in
(2X , D) and then by Lemma 9 we have limn→∞(c ◦ F )(zn) = (c ◦ F )(z) which means
the continuity of c ◦ F . �

As a corollary from the previous lemma we obtain

Theorem 11. Let (Z, ρ) be a metric space and (X, d) a discus space.
If F : (Z, ρ) 3 z → F (z) ∈ (2X , D) is a continuous mapping, F (z), z ∈ Z are

bounded and ∅ 6= c(F (z)) ⊂ F (z), z ∈ Z then c ◦ F is a continuous selection for F .

Another consequence of Lemma 10 is the following

Theorem 12. Let X be a nonempty convex set in a discus normed space (Y, ‖ · ‖).
If F : X 3 x → F (x) ∈ (2Y , D) is a continuous mapping, ∅ 6= c(F (x)) ⊂ F (x),
x ∈ X and {(c ◦ F )(x) : x ∈ X} ⊂ X is compact then F has a fixed point.

Proof. In view of Theorem 11 c ◦ F is a continuous selection for F . Consequently
c ◦ F: X → X is a compact map and by Schauder theorem it has a fixed point. �

In view of Lemma 8 the following theorem is an extension of [2, Th. 11] as for any
complete discus space (X, d) and its bounded nonempty subset Y the set c(f|Y ) is a
singleton. On the other hand our result extends the well known theorem of Browder-
Göhde-Kirk for Hilbert spaces [1, Th. (1.3), p. 52] and for uniformly convex spaces
([1, (C.1) (b), p. 76]). In addition we do not demand the space to be complete.

Theorem 13 (cp. [2, Th. 11]). Let (X, d) be a metric space and let f: X → X be
a mapping. Assume that ∅ 6= Y ⊂ X is such that f|Y : Y → Y and c(f|Y ) = {x}
(a singleton). If the following

d(f(x), f(y)) ≤ d(x, y) for all y ∈ Y (9)

holds then x is a fixed point for f .

Proof. We have f(Y ) ⊂ Y and Y is bounded (otherwise c(f|Y ) would not be a
singleton). If fn−1(Y ) ⊂ B(x, t) then fn(Y ) ⊂ f(Y ∩B(x, t)) holds. For d(x, y) < t
we obtain d(f(x), f(y)) ≤ d(x, y) < t (see (9)), which means f(y) ∈ B(f(x), t) and
consequently fn(Y ) ⊂ f(Y ∩B(x, t)) ⊂ B(f(x), t), which implies f(x) ∈ c(f|Y ) (see
Definition 7). Now it is clear that f(x) = x as both belong to c(f|Y ) which is a
singleton. �
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The previous theorem is in fact a method of proving fixed point theorems (also for
the case of non-expansive mappings where condition (9) is satisfied for Y = X and
all x ∈ X). It is sufficient to investigate the properties of (X, d) and of Y under
which c(f|Y ) is a singleton.

One can note that Theorem 13 is a particular case of the following general statement
(details are the problem).

Observation 14. If x is the only point satisfying condition (W) and f(x) satisfies
(W) then we have f(x) = x.

Theorem 15. Let (X, d) be a metric space and let F: X → 2X be a mapping with
c(F (x)) ⊂ F (x), x ∈ X. Assume that ∅ 6= Y ⊂ X is such that for f = c ◦ F we have
f|Y : Y → Y (e.g. if F|Y : Y → 2Y ) and c(f|Y ) = {x} (a singleton). If condition (9)
is satisfied then x is a fixed point for F.

Proof. In view of Theorem 13 the element x is a fixed point for f . We have x =
f(x) ∈ c(F (x)) ⊂ F (x). �

Remark 16. Clearly for any set A in a discus space we have c(A) = c(A), r(A) =
r(A). For any symmetric bounded set A in a normed discus space we have c(A) ⊂ A.
The same holds for any bounded complete and convex set A in a normed discus space
whenever the sections of balls and hyperplanes are symmetric (e.g. in unitary space).

Problem 17. Let A be a bounded complete convex set in a discus normed space.
Prove that c(A) ⊂ A .
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