Fixed Point Theory, 13(2012), No. 1, 147-151 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

ON DISCUS SPACES

LECH PASICKI

Faculty of Applied Mathematics AGH University of Science and Technology Al. Mickiewicza 30, 30-059 Kraków, Poland E-mail: pasicki@agh.edu.pl

Abstract. The paper contains some fixed point theorems (Theorem 12, Theorem 13, Theorem 15) and a selection theorem (Theorem 11). Theorem 13 seems to be one of the main results for non-expansive mappings and it is a far extension of Browder-Göhde-Kirk result even for uniformly convex spaces. What is more its proof is simple and natural (cp. the monograph of Dugundji and Granas [1, p. 52]); the shortest way to the proof of this theorem is directly by Definition 7. In addition we give a more thorough investigation of the properties of discus spaces (extension of uniformly convex spaces) which seem to be of importance.

Key Words and Phrases: Discus space, multivalued mapping, fixed point, selection, non-expansive mapping.

2010 Mathematics Subject Classification: 54H25, 54E35, 54C65, 47H10.

Let us recall two definitions.

Definition 1 ([2, Def. 1]). A metric space (X, d) is a discus space if there exists a mapping $\rho : [0, \infty) \times (0, \infty) \to [0, \infty)$ such that

$$\rho(\beta, r) < \rho(0, r) = r, \ \beta, r > 0,$$
(1)

$$\rho(\cdot, r) \text{ is nonincreasing, } r > 0, \tag{2}$$

$$\rho(\delta, \cdot) \text{ is upper semicontinuous, } \delta \ge 0,$$
(3)

for each
$$x, y \in X, r, \epsilon > 0$$
 there exists a $z \in X$ such (4)

that $B(x,r) \cap B(y,r) \subset B(z,\rho(d(x,y),r) + \epsilon).$

Definition 2 ([2, Def. 5]). Let (X, d) be a metric space and A a nonempty subset of X. An $x \in X$ is a central point for A if

$$r(A) := \inf\{t \in (0, \infty] : \text{ there exists } a \ z \in X \text{ with}$$

$$A \subset B(z, t)\} = \inf\{t \in (0, \infty] : A \subset B(x, t)\}.$$
(5)

The centre c(A) for A is the set of all central points for A, and r(A) is the radius of A.

The lemma to follow extends [2, Lemma 6].

147

LECH PASICKI

Lemma 3. Let (X,d) be a discus space and let $A \subset X$ be nonempty and bounded. Then c(A) consists of at most one point. If in addition (X,d) is complete then c(A) is a singleton.

Proof. Let $\epsilon > 0$ be arbitrary and Let $(r_n)_{n \in N}$ decrease to r = r(A) while $A \subset B(x_n, r_n)$. Suppose $(x_n)_{n \in N}$ is not a Cauchy sequence, i.e. $d(x_n, x_k) \ge \beta > 0$ for infinitely many k < n. We have

$$A \subset B(x_n, r_n) \cap B(x_k, r_k) \subset B(x_n, r_k) \cap B(x_k, r_k)$$
$$\subset B(z_{n,k}, \rho(d(x_n, x_k), r_k) + \epsilon) \subset B(z_{n,k}, \rho(\beta, r_k) + \epsilon)$$

(see (4),(2)). Set $2\gamma = r - \rho(\beta, r) = \rho(0, r) - \rho(\beta, r) > 0$ (see (1)). We have $\rho(\beta, r_k) + \epsilon \leq \rho(\beta, r) + \gamma$ for sufficiently large k and small ϵ (see (3)). Now we obtain $\rho(\beta, r_k) + \epsilon \leq \rho(\beta, r) + \gamma = r - 2\gamma + \gamma = r - \gamma$ and consequently

$$\mathbf{A} \subset B(z_{n,k}, \rho(\beta, r_k) + \epsilon) \subset B(z_{n,k}, r - \gamma))$$

which means $r = r(A) \leq r(A) - \gamma$, a contradiction. Therefore $(x_n)_{n \in N}$ is a Cauchy sequence. If (X, d) is complete then $(x_n)_{n \in N}$ converges, say to x. Then for any $\beta > 0$ we have $B(x_n, r_n) \subset B(x, r + \beta)$ for all sufficiently large n, which means $A \subset B(x, r + \beta)$ for all $\beta > 0$ and consequently $x \in c(A)$. Suppose $x, y \in c(A)$ and $d(x, y) \geq \beta > 0$. Then by (4) for γ defined above we obtain

$$A \subset \overline{B}(x,r) \cap \overline{B}(y,r) \subset \overline{B}(z,\rho(\beta,r)+\epsilon) \subset \overline{B}(z,r-\gamma)$$

for a $\gamma > 0$, a contradiction.

For complete spaces condition (4) is too general

Lemma 4 ([2, Lemma 4]). If (X, d) is a complete discus space then (4) can be replaced by

for each
$$x, y \in X$$
 and $r > 0$ there exists a $z \in X$ (6)
such that $B(x,r) \cap B(y,r) \subset B(z,\rho(d(x,y),r)).$

Definition 5. Let (X,d) be a metric space and $\mathcal{A} = \{A_n : n \in N\}$ a family of nonempty subsets of X. An $x \in X$ is a central point for \mathcal{A} if

$$r(\mathcal{A}) := \inf\{t \in (0,\infty] : \text{ there exists } n_0 \text{ such that for each } n > n_0 \\ \text{ there is a } z \in X \text{ with } A_n \subset B(z,t)\} = \inf\{t \in (0,\infty] : \\ \text{ there exists } n_0 \text{ such that } A_n \subset B(x,t) \text{ for each } n > n_0\}.$$

$$(7)$$

The centre c(A) for A is the set of all central points for A, and r(A) is the radius of A.

Lemma 6. Let (X,d) be a discus space and let $\mathcal{A} = \{A_n : n \in N\}$ be a decreasing family of nonempty and bounded subsets of X. Then $c(\mathcal{A})$ consists of at most one point. If $\{x_n\} = c(A_n), n \in N$ then $(x_n)_{n \in N}$ is a Cauchy sequence and $\lim_{n \to \infty} x_n = x$ means $\{x\} = c(\mathcal{A})$. In particular if (X,d) is a complete discus space then $c(\mathcal{A})$ is a singleton. If \mathcal{A} consists of compact sets then for $A = \bigcap \mathcal{A} \ c(A) = c(\mathcal{A}), \ r(A) = r(\mathcal{A})$ hold.

148

Proof. Set $r = r(\mathcal{A})$. We have $A_{n+1} \subset A_n$ and therefore there exist a decreasing sequence $(r_n)_{n \in N}$ convergent to r and a sequence $(x_n)_{n \in N}$ such that $A_n \subset B(x_n, r_n)$ for all $n \in N$ (in particular $\{x_n\} = c(A_n)$ if nonempty). Suppose $(x_n)_{n \in N}$ is not a Cauchy sequence, i.e. $d(x_n, x_k) \geq \beta > 0$ for infinitely many k < n. We have

$$A_n \subset A_n \cap A_k \subset B(x_n, r_k) \cap B(x_k, r_k) \subset B(z_{n,k}, \rho(\beta, r_k) + \epsilon)$$

for k < n and consequently $A_n \subset B(z_{n,k}, r-\gamma)$ for a $\gamma > 0$ (see the proof of Lemma 3), a contradiction. Now let $(x_n)_{n \in N}$ converge to x. We obtain $A_n \subset B(x, r+\beta)$ for any $\beta > 0$ and sufficiently large n. Consequently, $x \in c(\mathcal{A})$. The uniqueness of $x \in c(\mathcal{A})$ can be obtained as in the proof of Lemma 3. We obviously have $r(A) \leq r(\mathcal{A})$, and on the other hand for $x \in c(A)$ we obtain $A_n \subset B(x, r(A) + \beta)$ for any $\beta > 0$ and large $n \in N$, A_n being compact. Thus $r(A) = r(\mathcal{A})$ holds ($c(A) = c(\mathcal{A})$ is trivial).

Now we are going to present a lemma which concerns mappings.

Let 2^X be the family of all subsets of X and let $F: X \to 2^X$ being a multivalued mapping mean that $F(x) \neq \emptyset, x \in X$.

The following is equivalent to [2, Def. 7] as for $F: Y \to 2^Y$ we have $F^n(Y) \subset (F^{n_0})(Y)$ for all $n > n_0$

Definition 7. Let (X, d) be a metric space, $\emptyset \neq Y \subset X$ and $F: Y \to 2^Y$ a mapping. An $x \in X$ is a central point for F if

$$r(F) := \inf\{t \in (0,\infty] : F^n(Y) \subset B(z,t) \text{ for } a \ z \in X \text{ and}$$

$$a \ n \in N\} = \inf\{t \in (0,\infty] : F^n(Y) \subset B(x,t) \text{ for } a \ n \in N\}.$$
(8)

The centre c(F) for F is the set of all central points for F, and r(F) is the radius of F.

From Lemma 6 we obtain the following extension of [2, Lemma 8]

Lemma 8. Let (X,d) be a discus space. If $\emptyset \neq Y \subset X$ is bounded and $F: Y \to 2^Y$ is a mapping then c(F) consists of at most one point. If $c(F^n(Y)) = \{x_n\}, n \in N$ then $(x_n)_{n \in N}$ is a Cauchy sequence and $\lim_{n \to \infty} x_n = x$ means $c(F) = \{x\}$. In particular if (X,d) is a complete discus space then c(F) is a singleton.

Proof. We apply Lemma 6 to $A_n = F^n(Y)$.

$$\square$$

Now we present an analog of Lemma 6 for the Hausdorff distance D.

Lemma 9. Let (X,d) be a discus space and let $\mathcal{A} = \{A_n : n \in N\}$ be a family of nonempty and bounded subsets of X such that $\lim_{m,n\to\infty} D(A_m,A_n) = 0$. Then $c(\mathcal{A})$ consists of at most one point. If $\{x_n\} = c(A_n), n \in N$ then $(x_n)_{n\in N}$ is a Cauchy sequence, and $\lim_{n\to\infty} x_n = x$ means $\{x\} = c(\mathcal{A})$. In particular if (X,d)is a complete discus space then $c(\mathcal{A})$ is a singleton. If $A = \lim_{n\to\infty} A_n$ in $(2^X, D)$ then $c(\mathcal{A}) = c(\mathcal{A}), r(\mathcal{A}) = r(\mathcal{A})$ hold.

Proof. Let us consider $C_n = \bigcup_{k=n}^{\infty} A_k$. Clearly $\mathcal{C} = \{C_n : n \in N\}$ is a decreasing family of nonempty and bounded subsets of X. In view of Lemma 6 $c(\mathcal{C})$ consists of at most one point. On the other hand we have $c(\mathcal{C}) = c(\mathcal{A})$ and $r(\mathcal{C}) = r(\mathcal{A})$

(see Definition 5). Clearly one can use $\{x_n\} = c(A_n)$ in place of $\{z_n\} = c(C_n)$ for the respectively defined $(r_n)_{n \in \mathbb{N}}$. If $\{x\} = c(A)$ and r = r(A) then we have $A_n \subset B(x, r+\beta), n > n_0$ and for x_n, r_n as above we get $A \subset B(x_n, r_n+\beta), n > n_0$ which imply c(A) = c(A) and r(A) = r(A).

In what follows if $\{x\} = c(F(z))$ then we adopt $(c \circ F)(z) = x$.

Lemma 10. Let (Z, ρ) be a metric space and (X, d) a discus space. If $F: (Z, \rho) \ni z \to F(z) \in (2^X, D)$ is a continuous mapping, $F(z), z \in Z$ are bounded and $c(F(z)) \neq \emptyset$, $z \in Z$ (e.g. if (X, d) is complete) then $c \circ F: Z \to X$ is continuous.

Proof. By continuity of F from $\lim_{n\to\infty} z_n = z$ follows $\lim_{n\to\infty} F(z_n) = F(z)$ in $(2^X, D)$ and then by Lemma 9 we have $\lim_{n\to\infty} (c \circ F)(z_n) = (c \circ F)(z)$ which means the continuity of $c \circ F$.

As a corollary from the previous lemma we obtain

Theorem 11. Let (Z, ρ) be a metric space and (X, d) a discus space.

If $F: (Z, \rho) \ni z \to F(z) \in (2^X, D)$ is a continuous mapping, $F(z), z \in Z$ are bounded and $\emptyset \neq c(F(z)) \subset F(z), z \in Z$ then $c \circ F$ is a continuous selection for F.

Another consequence of Lemma 10 is the following

Theorem 12. Let X be a nonempty convex set in a discus normed space $(Y, \|\cdot\|)$. If $F: X \ni x \to F(x) \in (2^Y, D)$ is a continuous mapping, $\emptyset \neq c(F(x)) \subset F(x)$, $x \in X$ and $\overline{\{(c \circ F)(x) : x \in X\}} \subset X$ is compact then F has a fixed point.

Proof. In view of Theorem 11 $c \circ F$ is a continuous selection for F. Consequently $c \circ F: X \to X$ is a compact map and by Schauder theorem it has a fixed point. \Box

In view of Lemma 8 the following theorem is an extension of [2, Th. 11] as for any complete discus space (X, d) and its bounded nonempty subset Y the set $c(f|_Y)$ is a singleton. On the other hand our result extends the well known theorem of Browder-Göhde-Kirk for Hilbert spaces [1, Th. (1.3), p. 52] and for uniformly convex spaces ([1, (C.1) (b), p. 76]). In addition we do not demand the space to be complete.

Theorem 13 (cp. [2, Th. 11]). Let (X, d) be a metric space and let $f: X \to X$ be a mapping. Assume that $\emptyset \neq Y \subset X$ is such that $f_{|Y}: Y \to Y$ and $c(f_{|Y}) = \{x\}$ (a singleton). If the following

$$d(f(x), f(y)) \le d(x, y) \text{ for all } y \in Y$$
(9)

holds then x is a fixed point for f.

Proof. We have $f(Y) \subset Y$ and Y is bounded (otherwise $c(f_{|Y})$ would not be a singleton). If $f^{n-1}(Y) \subset B(x,t)$ then $f^n(Y) \subset f(Y \cap B(x,t))$ holds. For d(x,y) < t we obtain $d(f(x), f(y)) \leq d(x, y) < t$ (see (9)), which means $f(y) \in B(f(x), t)$ and consequently $f^n(Y) \subset f(Y \cap B(x,t)) \subset B(f(x), t)$, which implies $f(x) \in c(f_{|Y})$ (see Definition 7). Now it is clear that f(x) = x as both belong to $c(f_{|Y})$ which is a singleton.

150

The previous theorem is in fact a method of proving fixed point theorems (also for the case of non-expansive mappings where condition (9) is satisfied for Y = X and all $x \in X$). It is sufficient to investigate the properties of (X, d) and of Y under which $c(f|_Y)$ is a singleton.

One can note that Theorem 13 is a particular case of the following general statement (details are the problem).

Observation 14. If x is the only point satisfying condition (W) and f(x) satisfies (W) then we have f(x) = x.

Theorem 15. Let (X, d) be a metric space and let $F: X \to 2^X$ be a mapping with $c(F(x)) \subset F(x), x \in X$. Assume that $\emptyset \neq Y \subset X$ is such that for $f = c \circ F$ we have $f_{|Y}: Y \to Y$ (e.g. if $F_{|Y}: Y \to 2^Y$) and $c(f_{|Y}) = \{x\}$ (a singleton). If condition (9) is satisfied then x is a fixed point for F.

Proof. In view of Theorem 13 the element x is a fixed point for f. We have $x = f(x) \in c(F(x)) \subset F(x)$.

Remark 16. Clearly for any set A in a discus space we have $c(A) = c(\overline{A})$, $r(A) = r(\overline{A})$. For any symmetric bounded set A in a normed discus space we have $c(A) \subset A$. The same holds for any bounded complete and convex set A in a normed discus space whenever the sections of balls and hyperplanes are symmetric (e.g. in unitary space).

Problem 17. Let A be a bounded complete convex set in a discus normed space. Prove that $c(A) \subset A$.

References

- [1] A. Granas, J. Dugundji, Fixed Point Theory, Springer, 2003.
- [2] L. Pasicki, A basic fixed point theorem, Bull. Pol. Ac. Math., 54(2006), 85-88.

Received: November 24, 2010; Accepted: December 15, 2010.