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Abstract. The paper contains some fixed point theorems (Theorem 12, Theorem 13, Theorem 15)
and a selection theorem (Theorem 11). Theorem 13 seems to be one of the main results for non-
expansive mappings and it is a far extension of Browder-Gohde-Kirk result even for uniformly convex
spaces. What is more its proof is simple and natural (cp. the monograph of Dugundji and Granas
[1, p. 52]); the shortest way to the proof of this theorem is directly by Definition 7. In addition we
give a more thorough investigation of the properties of discus spaces (extension of uniformly convex
spaces) which seem to be of importance.
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Let us recall two definitions.

Definition 1 ([2, Def. 1]). A metric space (X,d) is a discus space if there exists a
mapping p : [0,00) x (0,00) — [0,00) such that

p(B,7) < p(0,7) =7, B,r >0,
p(-, 1) is nonincreasing, v > 0,
p(0,-) is upper semicontinuous, 6 > 0,
for each z,y € X, r e > 0 there exists a z € X such
that B(x,r) N B(y,r) C B(z, p(d(z,y),r) +¢€).

Definition 2 ([2, Def. 5]). Let (X,d) be a metric space and A a nonempty subset
of X. An x € X is a central point for A if

r(A) == inf{t € (0,00] : there exists a z € X with (5)
AC B(z,t)} =inf{t € (0,00] : A C B(z,t)}.

The centre c(A) for A is the set of all central points for A, and r(A) is the radius
of A.

The lemma to follow extends [2, Lemma 6].
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Lemma 3. Let (X,d) be a discus space and let A C X be nonempty and bounded.
Then c(A) consists of at most one point. If in addition (X,d) is complete then c(A)
is a singleton.

Proof. Let ¢ > 0 be arbitrary and Let (ry)nen decrease to r = r(A) while
A C B(zy,ry). Suppose (zn)nen is not a Cauchy sequence, ie. d(x,,zr) > 6 >0
for infinitely many k < n. We have
A C B(zp,rn) N B(xg, k) C Bz, k) N B(xk, )

C B(Zn,ka p(d(xna xk)v rk) + 6) - B(Zn,ka p(ﬁa Tk) + 6)
(see (4),(2)). Set 2v = r — p(B,r) = p(0,r) — p(B,7) > 0 (see (1)). We have
p(B,1r) +€ < p(B,r)+~ for sufficiently large k& and small € (see (3)). Now we obtain
p(B,r) +e€<p(B,7)+~v=r—2y+~v=r—+ and consequently

A C B(znk, p(B;7k) + €) C B(zng, 7 — 7))

which means r = r(A) < r(A) —~, a contradiction. Therefore (x,)nen is a Cauchy
sequence. If (X,d) is complete then (x,)nen converges, say to x. Then for any
8 > 0 we have B(z,,r,) C B(z,r + () for all sufficiently large n, which means
A C B(z,r+ () for all §> 0 and consequently x € ¢(A4). Suppose z,y € ¢(A) and
d(z,y) > > 0. Then by (4) for v defined above we obtain

AC B(z,7)NB(y,r) C B(z,p(B,r) +¢€) C B(z,7 )
for a v > 0, a contradiction. O
For complete spaces condition (4) is too general

Lemma 4 ([2, Lemma 4]). If (X,d) is a complete discus space then (4) can be
replaced by

for each z,y € X and r > 0 there ezxists a z € X (6)
such that B(z,r) N B(y,r) C B(z, p(d(z,y),r)).
Definition 5. Let (X,d) be a metric space and A = {A, :n € N} a family of
nonempty subsets of X. An x € X is a central point for A if
r(A) :=inf{t € (0,00] : there exists ng such that for each n > nyg
there is a z € Xwith A,, C B(z,t)} = inf{t € (0,00] : (7)
there exists ng such that A, C B(z,t) for each n > ng}.

The centre c(A) for A is the set of all central points for A, and r(A) is the radius
of A.

Lemma 6. Let (X,d) be a discus space and let A= {A, :n € N} be a decreasing
family of nonempty and bounded subsets of X. Then ¢(A) consists of at most one
point. If{xn} = c(An),n € N then (zn)nen s a Cauchy sequence and lim, oo, =
means {x} = c(A). In particular if (X,d) is a complete discus space then c(A) is a
singleton. If A consists of compact sets then for A=A c¢(A) =c(A), r(A) =r(A)
hold.
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Proof. Set r = r(A). We have A, 11 C A, and therefore there exist a decreasing
sequence (1, )nen convergent to r and a sequence (x,)nen such that A, C B(z,,r,)
for all n € N (in particular {x,} = ¢(4,) if nonempty). Suppose (z,)ncn is not a
Cauchy sequence, i.e. d(x,,z) > > 0 for infinitely many k < n. We have

An C An N Ak: - B(xnark:) N B(xkarkr) C B(Zn,knp(ﬁark) + 6)

for k < n and consequently A, C B(zpx,r—"y) for a v > 0 (see the proof of Lemma
3), a contradiction. Now let (z,)nen converge to z. We obtain A, C B(z,r + ()
for any 8 > 0 and sufficiently large n. Consequently, x € ¢(.A). The uniqueness of
x € ¢(A) can be obtained as in the proof of Lemma 3. We obviously have r(A) < r(A),
and on the other hand for z € ¢(A) we obtain A, C B(z,7(A)+ 3) for any 8 >0
and large n € N, A, being compact. Thus r(A) = r(A) holds (c¢(A) = ¢(A) is
trivial). O

Now we are going to present a lemma which concerns mappings.

Let 2% be the family of all subsets of X and let F: X — 2% being a multivalued
mapping mean that F(z) # 0,z € X.

The following is equivalent to [2, Def. 7] as for F:Y — 2¥ we have F"(Y) C
(F™)(Y) for all n > ng

Definition 7. Let (X,d) be a metric space, 0 #Y C X and F: Y — 2¥ a mapping.
An x € X is a central point for F if
r(F) :=inf{t € (0,00] : F*(Y) C B(z,t) for a z € X and (8)
an € N} =inf{t e (0,00]: F*(Y) C B(x,t) for an € N}.
The centre ¢(F) for F is the set of all central points for F, and r(F) is the radius
of F.
From Lemma 6 we obtain the following extension of [2, Lemma 8]

Lemma 8. Let (X,d) be a discus space. If ) #Y C X is bounded and F:Y — 2V
is a mapping then c(F) consists of at most one point. If ¢(F™*(Y)) ={x,},n € N
then (zp)nen s a Cauchy sequence and lim, .oz, = x means c(F) = {z}. In
particular if (X,d) is a complete discus space then c¢(F) is a singleton.

Proof. We apply Lemma 6 to A,, = F"™(Y). O
Now we present an analog of Lemma 6 for the Hausdorff distance D.

Lemma 9. Let (X,d) be a discus space and let A = {A,:n € N} be a family
of nonempty and bounded subsets of X such that lim,, ,—oo D(Am,A,) = 0. Then
c(A) consists of at most one point. If {x,} = ¢(A,),n € N then (xp)nen s a
Cauchy sequence, and lim, ..oz, = x means {z} = c(A). In particular if (X,d)
is a complete discus space then c(A) is a singleton. If A =1lim, A, in (2%,D)

then c(A) =c(A), r(A) =r(A) hold.

Proof. Let us consider C,, = |J;—,, Ak. Clearly C = {C,, : n € N} is a decreasing
family of nonempty and bounded subsets of X. In view of Lemma 6 ¢(C) consists
of at most one point. On the other hand we have ¢(C) = ¢(A) and 7(C) = r(A)
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(see Definition 5). Clearly one can use {z,} = c¢(4,) in place of {z,} = ¢(C,)
for the respectively defined (r,)nen. If {2} = ¢(A) and r = r(A) then we have
A, C B(xz,r+3), n>ng and for x,,r, as above we get A C B(xy,r,+ ), n > ng
which imply ¢(A4) = ¢(A) and r(A) = r(A). O

In what follows if {z} = ¢(F(z)) then we adopt (co F)(z) ==z .

Lemma 10. Let (Z,p) be a metric space and (X,d) a discus space. If F: (Z,p) >
z — F(z) € (2%, D) is a continuous mapping, F(z),z € Z are bounded and c(F(z)) #
0, z€ Z (e.g. if (X,d) is complete) then co F: Z — X is continuous.

Proof. By continuity of F from lim, 2z, = z follows lim, .. F(z,) = F(z) in
(2%, D) and then by Lemma 9 we have lim,,_,o.(co F)(z,) = (c o F)(z) which means
the continuity of co F'. O

As a corollary from the previous lemma we obtain

Theorem 11. Let (Z,p) be a metric space and (X,d) a discus space.
If F: (Z,p) >z — F(z) € (2X,D) is a continuous mapping, F(z),z € Z are
bounded and () # c¢(F(z)) C F(2), 2 € Z then co F is a continuous selection for F.

Another consequence of Lemma 10 is the following

Theorem 12. Let X be a nonempty convex set in a discus normed space (Y| -|).
If F: X > 2 — F(x) € (2¥,D) is a continuous mapping, 0 # c(F(z)) C F(x),
x€X and {(coF)(z):x € X} CX is compact then F has a fixed point.

Proof. In view of Theorem 11 co F is a continuous selection for F. Consequently
coF: X — X is a compact map and by Schauder theorem it has a fixed point. [

In view of Lemma 8 the following theorem is an extension of [2, Th. 11] as for any
complete discus space (X, d) and its bounded nonempty subset ¥ the set c(fjy) is a
singleton. On the other hand our result extends the well known theorem of Browder-
Gohde-Kirk for Hilbert spaces [1, Th. (1.3), p. 52] and for uniformly convex spaces
([1, (C.1) (b), p. 76]). In addition we do not demand the space to be complete.

Theorem 13 (cp. [2, Th. 11]). Let (X,d) be a metric space and let f: X — X be
a mapping. Assume that O #Y C X s such that fy:Y —Y and c(fiy) = {z}
(a singleton). If the following

d(f(z), f(y)) < d(z,y) for ally €Y (9)
holds then x is a fixed point for f.

Proof. We have f(Y) C Y and Y is bounded (otherwise c(fjy) would not be a
singleton). If f"~1(Y) C B(x,t) then f*(Y) C f(YNB(z,t)) holds. For d(z,y) <t
we obtain d(f(x), f(y)) < d(z,y) <t (see (9)), which means f(y) € B(f(z),t) and
consequently f™(Y) C f(Y N B(x,t)) C B(f(x),t), which implies f(z) € c(fjy) (see
Definition 7). Now it is clear that f(x) = = as both belong to c(f}y) which is a
singleton. U
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The previous theorem is in fact a method of proving fixed point theorems (also for
the case of non-expansive mappings where condition (9) is satisfied for ¥ = X and
all € X). Tt is sufficient to investigate the properties of (X,d) and of Y under
which ¢(fjy) is a singleton.

One can note that Theorem 13 is a particular case of the following general statement
(details are the problem).

Observation 14. If x is the only point satisfying condition (W) and f(x) satisfies
(W) then we have f(x) = x.

Theorem 15. Let (X,d) be a metric space and let F: X — 2% be a mapping with
c(F(x)) C F(x), z € X. Assume that O #Y C X 1is such that for f = co F we have
fiv:Y =Y (eqg. if Fy:Y —2Y ) and c(fiy) = {x} (a singleton). If condition (9)
is satisfied then x is a fixed point for F.

Proof. In view of Theorem 13 the element x is a fixed point for f. We have x =
f(x) € c(F(x)) C F(z). O
Remark 16. Clearly for any set A in a discus space we have c(A) = c(4), r(A) =
r(A). For any symmetric bounded set A in a normed discus space we have c¢(A) C A.
The same holds for any bounded complete and convex set A in a normed discus space

whenever the sections of balls and hyperplanes are symmetric (e.g. in unitary space).

Problem 17. Let A be a bounded complete convexr set in a discus normed space.
Prove that c(A) C A.
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