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1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H with inner
product 〈·, ·〉 and norm ‖ · ‖. Let G : C → H be a nonlinear mapping. In 2008
Takahashi and Takahashi [21] and Peng and Yao [14, 15] considered the following
generalized equilibrium problem: Find x ∈ C such that

F (x, y) + 〈Gx, y − x〉 ≥ 0 for all y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by GEP (F,G). In the case of G = 0, then the
problem (1.1) becomes the following equilibrium problem is to find x ∈ C such that

F (x, y) ≥ 0 for all y ∈ C. (1.2)
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The set of solutions of (1.2) is denoted by EP(F). If F = 0 for all x, y ∈ C, then the
problem (1.1) becomes the following variational inequality problem is to find x ∈ C
such that

〈Gx, y − x〉 ≥ 0 for all y ∈ C. (1.3)
The set of solutions of (1.3) is denoted by VI(C,G). The problem (1.1) is very general
in the sense that it includes, as special cases, optimization problems, variational
inequalities, minimax problems, Nash equilibrium problems in noncooperative games
and others; see for instance [2, 3, 6, 11, 21]. Recently, many authors considered
the problem of finding a common element of the set of solutions to the equilibrium
problem (1.2) and variational inequality problem (1.3) and of the set of fixed points
of nonexpansive mapping in Hilbert spaces; see, for example, [2, 16, 11, 12, 14, 15, 21]
and the references therein.

Recall that T : C → C is nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C.
We denote the set of fixed points of T by F (T ), that is F (T ) = {x ∈ C : x = Tx}.
A family T = {T (t) : t ≥ 0} of mappings of C into itself is called a nonexpansive
semigroup on C if it satisfies the following conditions:
(i) T (0)x = x for all x ∈ C;
(ii) T (s + t) = T (s)T (t) for all s, t ≥ 0;
(iii) ‖T (s)x− T (s)y‖ ≤ ‖x− y‖ for all x, y ∈ C and s ≥ 0;
(iv) for all x ∈ C, s 7→ T (s)x is continuous.

We denote by F (T ) the set of all common fixed points of T , that is,

F (T ) =
∞⋂

t=0

F (T (t)) = {x ∈ C : T (t)x = x, 0 ≤ t < ∞}.

It is know that F (T ) is closed and convex.
In 1953, Mann [10] introduced the iteration as follows: a sequence {xn} defined by

xn+1 = αnxn + (1− αn)Txn (1.4)

where the initial guess element x0 ∈ C is arbitrary and {αn} is a real sequence in [0, 1].
The Mann iteration has been extensively investigated for nonexpansive mappings.
One of the fundamental convergence results is proved by Reich [17]. In an infinite-
dimensional Hilbert space, the Mann iteration can conclude only weak convergence
[8]. Attempts to modify the Mann iteration method (1.4) so that strong convergence
is guaranteed have recently been made. Generally speaking, the algorithm suggested
by Takahashi and Toyoda [22] is based on two well-known types of methods, namely,
on the projection-type methods for solving variational inequality problems and so-
called hybrid or outer-approximation methods for solving fixed point problems. The
idea of “hybrid” or “outer-approximation” types of methods was originally introduced
by Haugazeau in 1968; see [1] for more details.

In 2002, Suzuki [19] was the first one to introduced the following implicit iteration
process in Hilbert spaces:

xn = αnu + (1− αn)T (tn)(xn), n ≥ 1, (1.5)

for the nonexpansive semigroup. In 2007, Xu [24] established a Banach space version
of the sequence (1.5) of Suzuki [19]. In [4], Chen and He considered the viscosity
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approximation process for a nonexpansive semigroup and proved another strong con-
vergence theorem for a nonexpansive semigroup in Banach spaces, which is defined
by

xn+1 = αnf(xn) + (1− αn)T (tn)xn, ∀n ∈ N, (1.6)
where, f : C → C be a fixed contractive mapping. Korpelevich [9] introduced the
following so-called extragradient method also:

x0 = x ∈ C,

yn = PC(xn − λAxn),

xn+1 = PC(xn − λAyn),
(1.7)

for all n ≥ 0, where λ ∈ (0, 1
k ), C is a closed convex subset of Rn and A is a monotone

and k-Lipschitz continuous mapping of C into Rn. He proved that if V I(C,A) is
nonempty, then the sequences {xn} and {yn}, generated by (1.7), converge to the
same point z ∈ V I(C,A).

In 2008, Saejung [18] proved the strong convergence theorems for nonexpansive
semigroups without Bochner integrals in Hilbert spaces. The sequence {xn} defined
by  yn = αnxn + (1− αn)T (tn)xn,

Cn+1 = {z ∈ Cn | ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, ∀n ≥ 0,

(1.8)

and 
yn = αnxn + (1− αn)T (tn)xn,
Cn = {z ∈ C | ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C | 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0, ∀n ≥ 0,

(1.9)

where {tn} is a real sequence, {αn} ⊂ [0, 1) and {T (t) : t ≥ 0} is a nonexpansive
semigroup on C.

In the same year, Takahashi and Takahashi [21] introduced an iterative method
for finding a common element of the set of solutions of a generalized equilibrium
problem and the set of fixed points of a nonexpansive mapping in a Hilbert space.
The sequence {xn} defined by: u, x1 ∈ C and{

F (un, y) + 〈Axn, y − un〉+ 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = βnxn + (1− βn)S[αnu + (1− αn)un]
(1.10)

for all n ≥ 0. Where F is a bifunction from C × C into R, A : C → H are an
inverse-strongly monotone mapping and S is a nonexpansive mapping of C into itself.
They proved some strong convergence theorems under suitable conditions.

In this paper, we prove the strong convergence theorems of modified mann itera-
tive algorithms for finding a common element of the set of solutions of a generalized
equilibrium problem, the set of solutions of two variational inequalities and the set of
solutions of nonexpansive semigroups in a Hilbert space under some appropriate con-
trol conditions by using the new hybrid-extragradient methods in the mathematical
programming. The results presented in this paper extend and improve the corre-
sponding ones announced by Saejung [18], Takahashi and Takahashi [21] and many
others.
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2. Preliminaries

Let H be a real Hilbert space with norm ‖ · ‖ and inner product 〈·, ·〉 and let C be
a closed convex subset of H. Then

‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉 (2.1)

and
‖λx + (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2 (2.2)

for all x, y ∈ H and λ ∈ R.
A space X is said to satisfy Opial’s condition [13], if for each sequence {xn} in X

which converges weakly to a point x ∈ X, we have

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖, ∀y ∈ X, y 6= x.

Recall that, for every point x ∈ H, there exists a unique nearest point in C, denoted
by PCx, such that

‖x− PCx‖ ≤ ‖x− y‖ for all y ∈ C.

PC is called the metric projection of H onto C. It is well known that PC is a nonex-
pansive mapping of H onto C and satisfies

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2 (2.3)

for every x, y ∈ H. Moreover, PCx is characterized by the following properties: PCx ∈
C and

〈x− PCx, y − PCx〉 ≤ 0, (2.4)
‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2 (2.5)

for all x ∈ H, y ∈ C.
Hilbert space H satisfies the Kadec-Klee property [7, 20], that is, for any sequence

{xn} with xn ⇀ x and ‖xn‖ → ‖x‖ together imply ‖xn − x‖ → 0.
For solving the equilibrium problem, let us give the following assumptions for the

bifunction F : C × C → R satisfies the following condition:
(A1) F (x, x) = 0 for all x ∈ C;
(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;
(A3) for each x, y, z ∈ C, limt→0 F (tz + (1− t)x, y) ≤ F (x, y);
(A4) for each x ∈ C, y 7→ F (x, y) is convex and lower semicontinuous.
We need the following lemmas for proving our main results.

Lemma 2.1. (Blum and Oettli [3]) Let C be a nonempty closed convex subset of H
and let F be a bifunction from C × C into R satisfies (A1)-(A4). Let r > 0 and
z ∈ H. Then, there exists x ∈ C such that

F (x, y) +
1
r
〈y − x, x− z〉 ≥ 0, ∀y ∈ C. (2.6)

Lemma 2.2. (Combettes and Hirstoaga [5]) Let C be a nonempty closed convex
subset of H. Let F : C × C → R be a bifunction satisfies (A1)-(A4). For r > 0 and
z ∈ H, define a mapping Tr : H → C as follows:

Tr(z) = {x ∈ C : F (x, y) +
1
r
〈y − x, x− z〉 ≥ 0, ∀y ∈ C}
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for all z ∈ H. Then, the following hold:
(1) Tr is single-valued;
(2) Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

‖Trx− Try‖2 ≤ 〈Trx− Try, x− y〉;
(3) F (Tr) = EP (F );
(4) EP (F ) is closed and convex.

Remark 2.3. Replacing z with z − rGz ∈ H in (2.6), then there exists x ∈ C, such
that F (x, y) + 〈Gz, y − x〉+ 1

r 〈y − x, x− z〉 ≥ 0, ∀y ∈ C.

3. Main results

In this section, we prove strong convergence theorems for finding a common element
of the set of solutions of a generalized equilibrium problem, the set of solutions of two
variational inequalities and the set of fixed points for a nonexpansive semigroup in a
real Hilbert space.

3.1. The hybrid method.

Theorem 3.1. Let C be a nonempty bounded closed convex subset of a real Hilbert
space H. Let {S(t) : t ≥ 0} be a nonexpansive semigroup on C, let F be a bifunction
of C × C into real numbers R satisfying (A1) − (A4) and let G, A,B : C → H be
three α, β, λ-inverse-strongly monotone mappings, respectively. Suppose that Ω :=
(∩∞t=0F (S(t))) ∩ V I(C,A) ∩ V I(C,B) ∩ GEP (F,G) 6= ∅. Let {αn} ⊂ [0, a) ⊂ [0, 1),
{βn} ⊂ [b, b′] ⊂ (0, 2β), {λn} ⊂ [l, l′] ⊂ (0, 2λ), {rn} ⊂ [r, r′] ⊂ (0, 2α) and {tn} ⊂
[0,∞) satisfying lim infn tn = 0, lim sup tn > 0, and limn(tn+1− tn) = 0. For x0 ∈ H,
let the sequences {xn}, {un}, {vn}, {yn} and {zn} be generated by un ∈ C and

F (un, y) + 〈Gxn, y − un〉+ 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

vn = PC(un − λnBun),
zn = PC(vn − βnAvn),
yn = αnun + (1− αn)S(tn)zn,
Cn = {z ∈ C | ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C | 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0, ∀n ≥ 0.

(3.1)

Then the sequence {xn} converges strongly to PΩx0.

Proof. It is obvious that Cn and Qn are closed and convex for all n ≥ 0. Thus that
Cn ∩ Qn is closed and convex for all n ≥ 0. Let x∗ ∈ Ω and {Trn

} be a sequence of
mappings defined as in Lemma 2.2 then, x∗ = Trn(x∗− rnGx∗) = PC(x∗−βnAx∗) =
PC(x∗−λnBx∗) and un = Trn(xn− rnGxn) ∈ C. Note that I − rnG is nonexpansive
for all n ≥ 0, for all u, v ∈ C and {rn} ⊂ (0, 2α), we have

‖(I − rnG)u− (I − rnG)v‖2 = ‖(u− v)− rn(Gu−Gv)‖2

= ‖u− v‖2 − 2rn〈u− v,Gu−Gv〉+ r2
n‖Gu−Gv‖2

≤ ‖u− v‖2 + rn(rn − 2α)‖Gu−Gv‖2 ≤ ‖u− v‖2. (3.2)
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By the same method, we obtain that

‖(I − βnA)u− (I − βnA)v‖ ≤ ‖u− v‖
and

‖(I − λnB)u− (I − λnB)v‖ ≤ ‖u− v‖.
We note that

‖un − x∗‖ = ‖Trn(xn − rnGxn)− Trn(x∗ − rnGx∗)‖
≤ ‖(xn − rnGxn)− (x∗ − rnGx∗)‖
≤ ‖xn − x∗‖ (3.3)

and

‖vn − x∗‖ = ‖PC(un − λnBun)− PC(x∗ − λnBx∗)‖
≤ ‖(un − λnBun)− (x∗ − λnBx∗)‖
≤ ‖un − x∗‖
≤ ‖xn − x∗‖ (3.4)

hence

‖zn − x∗‖ = ‖PC(vn − βnAvn)− PC(x∗ − βnAx∗)‖
≤ ‖(vn − βnAvn)− (x∗ − βnAx∗)‖
≤ ‖vn − x∗‖
≤ ‖xn − x∗‖. (3.5)

It follows by (3.3), we obtain

‖yn − x∗‖ = ‖αnun + (1− αn)S(tn)zn − x∗‖
≤ αn‖un − x∗‖+ (1− αn)‖S(tn)zn − x∗‖
≤ αn‖un − x∗‖+ (1− αn)‖zn − x∗‖
≤ αn‖un − x∗‖+ (1− αn)‖un − x∗‖
= ‖un − x∗‖
≤ ‖xn − x∗‖. (3.6)

Therefore, Ω ⊂ Cn for all n ≥ 0.
By induction, we show that Ω ⊂ Cn ∩Qn for all n ≥ 0. Form x1 = PCx0, we have

〈x1 − y, x0 − x1〉 ≥ 0 for all y ∈ C,

and hence Q1 = C. So, we have Ω ⊂ Q1. Then, Ω ⊂ C1 ∩ Q1. Suppose that
Ω ⊂ Ck ∩Qk for some k ≥ 0. From xk+1 = PCk∩Qk

x0, we have

〈xk+1 − y, x0 − xk+1〉 ≥ 0 for all y ∈ Ck ∩Qk.

Since Ω ⊂ Ck ∩Qk, we have

〈xk+1 − u, x0 − xk+1〉 ≥ 0 for all u ∈ Ω,

and hence Ω ⊂ Qk+1. Since Ω ⊂ Cn for all n ≥ 0, we have Ω ⊂ Ck+1 ∩Qk+1. So, we
have that Ω ⊂ Cn ∩Qn for all n ≥ 0. Then, {xn} is well-defined.
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Let z0 = PΩx0. From xn+1 = PCn∩Qnx0 and z0 ∈ Ω ⊂ Cn ∩Qn, we have

‖xn+1 − x0‖ ≤ ‖z0 − x0‖ (3.7)

for all n ≥ 0. Therefore, {xn} is bounded. So, {un}, {vn}, {yn} and {zn} are also
bounded.

Since xn+1 ∈ Cn ∩Qn ⊂ Qn and xn = PQn
x0, we have ‖xn − x0‖ ≤ ‖xn+1 − x0‖,

for all n ≥ 0. It follows that {xn} in nondecreasing and from {xn} bounded. So there
exists the limit of ‖xn − x0‖.

Since xn = PQnx0 and xn+1 ∈ Qn, we have 〈x0 − xn, xn − xn+1〉 ≥ 0 and hence

‖xn − xn+1‖2 = ‖xn − x0 + x0 − xn+1‖2

= ‖xn − x0‖2 + 2〈xn − x0, x0 − xn+1〉+ ‖x0 − xn+1‖2

= ‖xn − x0‖2 + 2〈xn − x0, x0 − xn + xn − xn+1〉
+‖x0 − xn+1‖2

= ‖xn − x0‖2 + 2〈xn − x0, x0 − xn〉+ 2〈xn − x0, xn − xn+1〉
+‖x0 − xn+1‖2

≤ ‖xn − x0‖2 + 2〈xn − x0, x0 − xn〉+ ‖x0 − xn+1‖2

≤ ‖xn − x0‖2 − 2‖xn − x0‖2 + ‖x0 − xn+1‖2

≤ −‖xn − x0‖2 + ‖x0 − xn+1‖2.

Since limn→∞ ‖x0 − xn‖ exists, implies that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.8)

Since xn+1 ∈ Cn, we have

‖xn − yn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖ ≤ 2‖xn+1 − xn‖ → 0 as n →∞. (3.9)

By (3.2) and (3.6), we obtain

‖yn − x∗‖2 ≤ ‖un − x∗‖2 ≤ ‖xn − x∗‖2 + rn(rn − 2α)‖Gxn −Gx∗‖2,

therefore,

r(2α− r′)‖Gxn −Gx∗‖2 ≤ rn(2α− rn)‖Gxn −Gx∗‖2

≤ ‖xn − x∗‖2 − ‖yn − x∗‖2

≤ (‖xn − x∗‖+ ‖yn − x∗‖)‖xn − yn‖.

It follows from (3.9) and since {xn} and {yn} are bounded that

lim
n→∞

‖Gxn −Gx∗‖ = 0. (3.10)

By the same method, we have

lim
n→∞

‖Avn −Ax∗‖ = 0, (3.11)

and

lim
n→∞

‖Bun −Bx∗‖ = 0. (3.12)
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For x∗ ∈ Ω, from Lemma 2.2, we have

‖un − x∗‖2 = ‖Trn(xn − rnGxn)− Trn(x∗ − rnGx∗)‖2

≤ 〈Trn(xn − rnGxn)− Trn(x∗ − rnGx∗),
(xn − rnGxn)− (x∗ − rnGx∗)〉

=
1
2
{‖un − x∗‖2 + ‖(xn − rnGxn)− (x∗ − rnGx∗)‖2

−‖(xn − rnGxn)− (x∗ − rnGx∗)− (un − x∗)‖2}

≤ 1
2
{‖un − x∗‖2 + ‖xn − x∗‖2 − ‖(xn − un)

−rn(Gxn −Gx∗)‖2}

=
1
2
{‖un − x∗‖2 + ‖xn − x∗‖2 − ‖xn − un‖2

+2rn〈Gxn −Gx∗, xn − un〉 − r2
n‖Gxn −Gx∗‖2},

hence,

‖un − x∗‖2 ≤ ‖xn − x∗‖2 − ‖xn − un‖2 + 2rn〈Gxn −Gx∗, xn − un〉.

By (3.6), it follows that

‖yn − x∗‖2 ≤ ‖un − x∗‖2 ≤ ‖xn − x∗‖2 − ‖xn − un‖2 + 2rn〈Gxn −Gx∗, xn − un〉,

therefore,

‖xn − un‖2 ≤ ‖xn − x∗‖2 − ‖yn − x∗‖2 + 2rn〈Gxn −Gx∗, xn − un〉
≤ (‖xn − x∗‖+ ‖yn − x∗‖)‖xn − yn‖

+2rn‖Gxn −Gx∗‖‖xn − un‖.

From (3.9) and (3.10), we obtain

lim
n→∞

‖xn − un‖ = 0. (3.13)

For x∗ ∈ Ω, from (2.3) and (3.4), we have

‖zn − x∗‖2 = ‖PC(vn − βnAvn)− PC(x∗ − βnAx∗)‖2

≤ 〈(vn − βnAvn)− (x∗ − βnAx∗), zn − x∗〉

=
1
2
{‖zn − x∗‖2 + ‖(vn − βnAvn)− (x∗ − βnAx∗)‖2

−‖(vn − βnAvn)− (x∗ − βnAx∗)− (zn − x∗)‖2}

≤ 1
2
{‖zn − x∗‖2 + ‖vn − x∗‖2 − ‖(vn − zn)− βn(Avn −Ax∗)‖2}

≤ 1
2
{‖zn − x∗‖2 + ‖xn − x∗‖2 − ‖vn − zn‖2

+2βn〈Avn −Ax∗, vn − zn〉 − r2
n‖Avn −Ax∗‖2},

hence,

‖zn − x∗‖2 ≤ ‖xn − x∗‖2 − ‖vn − zn‖2 + 2βn〈Avn −Ax∗, vn − zn〉.
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By (3.5), it follows that

‖un − x∗‖2 ≤ ‖zn − x∗‖2 ≤ ‖xn − x∗‖2 − ‖vn − zn‖2 + 2βn〈Avn −Ax∗, vn − zn〉,
therefore,

‖vn − zn‖2 ≤ ‖xn − x∗‖2 − ‖un − x∗‖2 + 2βn〈Avn −Ax∗, vn − zn〉
≤ (‖xn − x∗‖+ ‖un − x∗‖)‖xn − un‖

+2βn‖Avn −Ax∗‖‖vn − zn‖.
From (3.11) and (3.13), we obtain

lim
n→∞

‖vn − zn‖ = 0. (3.14)

By the same way, using (3.12) and (3.14) we get

lim
n→∞

‖vn − un‖ = 0. (3.15)

Since yn−xn = αnun +(1−αn)S(tn)zn−xn = αn(un−xn)+(1−αn)(S(tn)zn−xn),
it follows that

‖xn − S(tn)zn‖ =
αn

1− αn
‖un − xn‖+

1
1− αn

‖xn − yn‖ → 0 as n →∞. (3.16)

Since S(tn) is a nonexpansive mapping, we have

‖xn − S(tn)xn‖ ≤ ‖xn − S(tn)zn‖+ ‖S(tn)zn − S(tn)xn‖
≤ ‖xn − S(tn)zn‖+ ‖zn − xn‖
≤ ‖xn − S(tn)zn‖+ ‖zn − vn‖+ ‖vn − un‖+ ‖un − xn‖.

From (3.13), (3.14), (3.15) and (3.16), we obtain

lim
n→∞

‖xn − S(tn)xn‖ = 0. (3.17)

Since {xn} is bounded, we choose subsequence {xni
} of {xn} and assume that

xni
⇀ x′. Let us show that x′ ∈ Ω. First, we show that x′ ∈ ∩∞t=0F (S(t)). Suppose

that x′ /∈ ∩∞t=0F (S(t)), that is x′ 6= S(t)x′. From Opial’s condition and (3.17), we
have
lim infi→∞‖xni

− x′‖ < lim infi→∞‖xni
− S(t)x′‖

≤ lim infi→∞(‖xni
− S(t)xni

‖+ ‖S(t)xni
− S(t)x′‖)

≤ lim infi→∞‖xni
− x′‖.

This is a contradiction. Thus, we obtain x′ ∈ ∩∞t=0F (S(t)).
Next, let us show x′ ∈ GEP (F,G). Since un = Trn(xn − rnGxn) and

F (un, y) + 〈Gxn, y − un〉+
1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C.

From (A2), we also have

〈Gxn, y − un〉+
1
rn
〈y − un, un − xn〉 ≥ F (y, un), ∀y ∈ C,

and hence

〈Gxn, y − un〉+ 〈y − uni
,
uni

− xni

rni

〉 ≥ F (y, uni
), ∀y ∈ C. (3.18)
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From (3.13), we get uni ⇀ x′. For t with 0 < t ≤ 1 and y ∈ C, put yt = ty +(1− t)x′.
Since y ∈ C and x′ ∈ C, we have yt ∈ C. So, from (3.18), we have and hence

〈Gyt, yt − uni〉 ≥ 〈Gyt, yt − uni〉 − 〈Gxni , yt − uni〉 − 〈yt − uni ,
uni − xni

rni

〉

+F (yt, uni
)

= 〈Gyt −Guni
, yt − uni

〉+ 〈Guni
−Gxni

, yt − uni
〉

−〈yt − uni
,
uni

− xni

rni

〉+ F (yt, uni
).

From ‖uni
− xni

‖ → 0, we obtain ‖Guni
− Gxni

‖ → 0. By the α-inverse-strongly
monotonicity of G, we know that 〈Gyt − Guni

, yt − uni
〉 ≥ 0. Since uni

−xni

rni
→ 0, it

follows by (A4) that

F (yt, x
′) ≤ lim

i→∞
F (yt, uni

) ≤ lim
i→∞

〈Gyt, yt − uni
〉 = 〈Gyt, yt − x′〉.

So, from (A1) and (A4), we have
0 = F (yt, yt) ≤ tF (yt, y) + (1 − t)F (yt, x

′) ≤ tF (yt, y) + (1 − t)〈Gyt, yt − x′〉 ≤
tF (yt, y) + (1− t)t〈Gyt, y − x′〉, and hence

F (yt, y) + (1− t)〈Gyt, y − x′〉 ≥ 0.

Letting t → 0, we have for each y ∈ C, F (x′, y) + 〈Gx′, y − x′〉 ≥ 0. This implies
that x′ ∈ GEP (F,G).

Next, let us show that x′ ∈ V I(C,B). Let

Uy =
{

By + NCy, y ∈ C,
∅, y /∈ C.

Then U is maximal monotone. Let (y, w) ∈ G(U). Since w−By ∈ NCy and vn ∈ C,
we have 〈y − vn, w − By〉 ≥ 0. On the other hand, from vn = PC(un − λnBun), we
have 〈y − vn, vn − (un − λnBun)〉 ≥ 0, that is, 〈y − vn, vn−un

λn
+ Bun〉 ≥ 0.

Therefore, we have

〈y − vni
, w〉 ≥ 〈y − vni

, By〉

≥ 〈y − vni
, By〉 − 〈y − vni

,
vni

− uni

λni

+ Buni
〉

= 〈y − vni
, By − vni

− uni

λni

−Buni
〉

= 〈y − vni
, By −Bvni

〉+ 〈y − vni
, Bvni

−Buni
〉

−〈y − vni ,
vni − uni

λni

〉

≥ 〈y − vni
, Bvni

〉 − 〈y − vni
,
vni − uni

λni

+ Buni
〉

≥ ‖y − vni
‖‖Bvni

−Buni
‖ − ‖y − vni

‖‖vni − uni

λni

‖. (3.19)

Notice that ‖vni − uni‖ → 0 as i → ∞ and B is Lipschitz continuous, hence from
(3.19), we obtain 〈y − x′, w〉 ≥ 0 as i → ∞. Since U is maximal monotone, we
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have x′ ∈ U−10, and hence x′ ∈ V I(C,B). In the same manner as the proof of
x′ ∈ V I(C,B), we obtain x′ ∈ V I(C,A). Therefore x′ ∈ Ω.

Finally, we will show that xn → PΩx0. Since x′ ∈ Ω, we have

‖PΩx0 − x0‖ ≤ ‖x′ − x0‖ ≤ lim inf
i→∞

‖xni − x0‖ ≤ lim sup
i→∞

‖xni − x0‖ ≤ ‖PΩx0 − x0‖.

Thus, we obtain that limi→∞ ‖xni
− x0‖ = ‖x′ − x0‖ = ‖PΩx0 − x0‖. Using the

Kadec-Klee property of H, we obtain that limi→∞ xni
= x′ = PΩx0. Hence the whole

sequence must converge to x′ = PΩx0. This completes the proof. �

Corollary 3.2. [18, Theorem 2.2] Let C be a nonempty bounded closed convex subset
of a real Hilbert space H. Let {S(t) : t ≥ 0} be a nonexpansive semigroup on C and let
F be a bifunction of C ×C into real numbers R satisfying (A1)− (A4). Suppose that
Ω := (∩∞t=0F (S(t))) ∩ EP (F ) 6= ∅. Let {αn} ⊂ [0, a) ⊂ [0, 1), {rn} ⊂ [r, r′] ⊂ (0, 2α)
and {tn} ⊂ [0,∞) satisfying lim infn tn = 0, lim sup tn > 0, and limn(tn+1 − tn) = 0.
For x0 ∈ H, let the sequences {xn}, {un} and {yn} are generated by un ∈ C and

F (un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = αnun + (1− αn)S(tn)un,
Cn = {z ∈ C | ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C | 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn

x0, ∀n ≥ 0.

(3.20)

Then the sequence {xn} converges strongly to PΩx0.

Proof. If G, A,B ≡ 0, in Theorem 3.1, we obtain the desired result. �

Corollary 3.3. Let C be a nonempty bounded closed convex subset of a real Hilbert
space H. Let {S(t) : t ≥ 0} be a nonexpansive semigroup on C. Suppose that Ω :=
∩∞t=0F (S(t)) 6= ∅. Let {αn} ⊂ [0, a) ⊂ [0, 1) and {tn} ⊂ [0,∞) satisfying lim infn tn =
0, lim sup tn > 0, and limn(tn+1 − tn) = 0. For x0 ∈ H, let the sequences {xn} and
{yn} are generated by

yn = αnxn + (1− αn)S(tn)xn,
Cn = {z ∈ C | ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C | 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0, ∀n ≥ 0.

(3.21)

Then the sequence {xn} converges strongly to PΩx0.

Proof. If F (x, y) ≡ 0 for all x, y ∈ C and G, A,B ≡ 0, by Theorem 3.1 we obtain the
desired result. �

Corollary 3.4. Let C be a nonempty bounded closed convex subset of a real Hilbert
space H. Let {S(t) : t ≥ 0} be a nonexpansive semigroup on C and let G, A,B :
C → H be three α, β, λ-inverse-strongly monotone mappings, respectively. Suppose
that Ω := (∩∞t=0F (S(t))) ∩ V I(C,A) ∩ V I(C,B) ∩ V I(C,G) 6= ∅. Let {αn} ⊂ [0, a) ⊂
[0, 1), {βn} ⊂ [b, b′] ⊂ (0, 2β), {λn} ⊂ [l, l′] ⊂ (0, 2λ), {rn} ⊂ [r, r′] ⊂ (0, 2α) and
{tn} ⊂ [0,∞) satisfying lim infn tn = 0, lim sup tn > 0, and limn(tn+1 − tn) = 0. For
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x0 ∈ H, let the sequences {xn}, {un}, {yn} and {zn} are generated by un ∈ C and

un = PC(xn − rnGxn),
vn = PC(un − λnBun),
zn = PC(vn − βnAvn),
yn = αnun + (1− αn)S(tn)zn,
Cn = {z ∈ C | ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C | 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn

x0, ∀n ≥ 0.

(3.22)

Then the sequence {xn} converges strongly to PΩx0.

Proof. If F ≡ 0, then un = PC(xn − rnGxn) for all n ≥ 0, by Theorem 3.1, we obtain
the desired result. �

3.2. The shrinking projection method.

Theorem 3.5. Let C be a nonempty bounded closed convex subset of a real Hilbert
space H. Let {S(t) : t ≥ 0} be a nonexpansive semigroup on C, let F be a bifunction
of C × C into real numbers R satisfying (A1) − (A4) and let G, A,B : C → H be
three α, β, λ-inverse-strongly monotone mappings, respectively. Suppose that Ω :=
(∩∞t=0F (S(t))) ∩ V I(C,A) ∩ V I(C,B) ∩ GEP (F,G) 6= ∅. Let {αn} ⊂ [0, a) ⊂ [0, 1),
{βn} ⊂ [b, b′] ⊂ (0, 2β), {λn} ⊂ [l, l′] ⊂ (0, 2λ), {rn} ⊂ [r, r′] ⊂ (0, 2α) and {tn} ⊂
[0,∞) satisfying lim infn tn = 0, lim sup tn > 0, and limn(tn+1− tn) = 0. For x0 ∈ H,
C1 = C, x1 = PC1x0, let the sequences {xn}, {un}, {vn}, {yn} and {zn} are generated
by un ∈ C and

F (un, y) + 〈Gxn, y − un〉+ 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

vn = PC(un − λnBun),
zn = PC(vn − βnAvn),
yn = αnun + (1− αn)S(tn)zn,
Cn+1 = {z ∈ Cn | ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, ∀n ≥ 0.

(3.23)

Then the sequence {xn} converges strongly to PΩx0.

Proof. Since for any x∗ ∈ Ω and let {Trn} be a sequence of mappings defined as in
Lemma 2.2. Then, we have x∗ = Trn

(x∗ − rnGx∗) and un = Trn
(xn − rnGxn) ∈ C

for all n ≥ 0. We already have (3.3), (3.4), (3.5) and (3.6). Thus, we get x∗ ∈ Cn+1.
This implies that Ω ⊂ Cn for all n ≥ 0. By using the same argument in the proof of
[23, Theorem 3.3 pp. 281–282] , we obtain that {xn} bounded and ‖xn+1 − xn‖ → 0
as n → ∞. As in the proofs of Theorem 3.1, we already have (3.17). Since {xn} is
bounded, we can choose subsequence {xni

} of {xn} and assume that xni
⇀ x′. In

the same time, as in the proof of Theorem 3.1, we also have x′ ∈ Ω.
Finally, we have to show that xn → PΩx0. Since x′ ∈ Ω, we have

‖PΩx0 − x0‖ ≤ ‖x′ − x0‖ ≤ lim inf
i→∞

‖xni − x0‖ ≤ lim sup
i→∞

‖xni − x0‖ ≤ ‖PΩx0 − x0‖.

Thus, we obtain that limi→∞ ‖xni − x0‖ = ‖x′ − x0‖ = ‖PΩx0 − x0‖. Using the
Kadec-Klee property of H, we obtain that limi→∞ xni = x′ = PΩx0. Hence the whole
sequence must converge to x′ = PΩx0. This completes the proof. �
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Corollary 3.6. Let C be a nonempty bounded closed convex subset of a real Hilbert
space H. Let {S(t) : t ≥ 0} be a nonexpansive semigroup on C and let F be a
bifunction of C × C into real numbers R satisfying (A1) − (A4). Suppose that Ω :=
(∩∞t=0F (S(t))) ∩ EP (F ) 6= ∅. Let {αn} ⊂ [0, a) ⊂ [0, 1), {rn} ⊂ [r, r′] ⊂ (0, 2α) and
{tn} ⊂ [0,∞) satisfying lim infn tn = 0, lim sup tn > 0, and limn(tn+1 − tn) = 0. For
x0 ∈ H, C1 = C, x1 = PC1x0, let the sequences {xn}, {un} and {yn} are generated
by un ∈ C and 

F (un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = αnun + (1− αn)S(tn)un,
Cn+1 = {z ∈ Cn | ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, ∀n ≥ 0.

(3.24)

Then the sequence {xn} converges strongly to PΩx0.

Proof. If G, A,B ≡ 0, by Theorem 3.1 we obtain the desired result. �

Corollary 3.7. [18, Theorem 2.1] Let C be a nonempty bounded closed convex subset
of a real Hilbert space H. Let {S(t) : t ≥ 0} be a nonexpansive semigroup on C.
Suppose that Ω := ∩∞t=0F (S(t)) 6= ∅. Let {αn} ⊂ [0, a) ⊂ [0, 1) and {tn} ⊂ [0,∞)
satisfying lim infn tn = 0, lim sup tn > 0, and limn(tn+1 − tn) = 0. For x0 ∈ H,
C1 = C, x1 = PC1x0, let the sequences {xn} and {yn} are generated by yn = αnxn + (1− αn)S(tn)xn,

Cn+1 = {z ∈ Cn | ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, ∀n ≥ 0.

(3.25)

Then the sequence {xn} converges strongly to PΩx0.

Proof. If F (x, y) ≡ 0 for all x, y ∈ C and G, A,B ≡ 0, by Theorem 3.1 we obtain the
desired result. �

Corollary 3.8. Let C be a nonempty bounded closed convex subset of a real Hilbert
space H. Let {S(t) : t ≥ 0} be a nonexpansive semigroup on C and let G, A,B :
C → H be three α, β, λ-inverse-strongly monotone mappings, respectively. Suppose
that Ω := (∩∞t=0F (S(t))) ∩ V I(C,A) ∩ V I(C,B) ∩ V I(C,G) 6= ∅. Let {αn} ⊂ [0, a) ⊂
[0, 1), {βn} ⊂ [b, b′] ⊂ (0, 2β), {λn} ⊂ [l, l′] ⊂ (0, 2λ), {rn} ⊂ [r, r′] ⊂ (0, 2α) and
{tn} ⊂ [0,∞) satisfying lim infn tn = 0, lim sup tn > 0, and limn(tn+1 − tn) = 0. For
x0 ∈ H, C1 = C, x1 = PC1x0, let the sequences {xn}, {un}, {vn}, {yn} and {zn} are
generated by 

un = PC(xn − rnGxn),
vn = PC(un − λnBun),
zn = PC(vn − βnAvn),
yn = αnun + (1− αn)S(tn)zn,
Cn+1 = {z ∈ Cn | ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, ∀n ≥ 0.

(3.26)

Then the sequence {xn} converges strongly to PΩx0.

Proof. If F ≡ 0, then un = PC(xn − rnGxn) for all n ≥ 0, by Theorem 3.1, we obtain
the desired result. �
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