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Abstract. We consider a self map T on union of p subsets, A1, A2, ..., Ap, (p ≥ 2) of a metric space,

which is a contraction under the condition T (Ai) ⊆ Ai+1, 1 ≤ i ≤ p, (Ap+1 = A1). We give sufficient
conditions for the existence of a unique best proximity point of T , that is, a point ξ ∈ Ai, such that

d(ξ, T ξ) = dist(Ai, Ai+1) and approximation of this point by a Picard type iterative method.
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1. Introduction

Kirk, Srinivasan and Veeramani in [3], introduced the notion of contractions under
cyclical conditions. They defined a self map T , on union of nonempty subsets A and
B of a metric space X, such that,

(1) T (A) ⊆ B and T (B) ⊆ A
(2) For some k ∈ (0, 1), d(Tx, Ty) ≤ kd(x, y), x ∈ A, y ∈ B.

Further, they extended this notion to p sets, p ≥ 2, and obtained the following
result.

Theorem 1.1. Let A1, A2, ..., Ap be non empty closed subsets of a complete metric
space X. Let T :

⋃p
i=1 Ai →

⋃p
i=1 Ai satisfy the following conditions:

(1) T (Ai) ⊆ Ai+1, 1 ≤ i ≤ p, where Ap+1 = A1

(2) For some k ∈ (0, 1), d(Tx, Ty) ≤ kd(x, y), x ∈ Ai, y ∈ Ai+1;
then there exists a unique fixed point of T .

Actually, condition (2) imply the sets to intersect and T restricted to the inter-
section is a Banach contraction. Hence there exists a unique fixed point of T in the
intersection. When the sets do not intersect, Eldred and Veeramani in [1], weak-
ened the contraction condition for two sets and obtained the following result of best
proximity point.

Theorem 1.2. Let A and B be nonempty, closed and convex subsets of a uniformly
convex Banach space. Let T : A ∪B → A ∪B be such that
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(1) T (A) ⊆ B and T (B) ⊆ A
(2) For some k ∈ (0, 1), ‖Tx− Ty‖ ≤ k‖x− y‖+ (1− k)dist(A,B), x ∈ A,

y ∈ B;
then there exists a unique best proximity point x ∈ A (that is with ‖x − Tx‖ =
dist(A,B)). Further, if x0 ∈ A and xn+1 = Txn, then {x2n} converges to the best
proximity point.

In this paper, as an extension of cyclic contraction (for two sets), we define a map
p-cyclic contraction (Definition 3.1) on the union of p sets (p ≥ 2). The p-cyclic
contraction differs from the cyclic contraction, in the sense that, for 1 ≤ i ≤ p, the
image of Ai is contained in Ai+1 and the image of Ai+1 is contained in Ai+2 and not
in Ai. The image of Ap is contained in A1. It is interesting to note that the distances
between the adjacent sets are equal under p-cyclic contraction (Lemma 3.2). This
fact plays an important role in obtaining a best proximity point. It is remarkable to
note that the obtained best proximity point is also a periodic point with period p. In
addition, if z ∈ Ai is a best proximity point, then T jz is a best proximity point in
Ai+j , for j = 1,2,...,(p-1).

2. Preliminaries

It is well known that if X0 is a convex subset of a strictly convex normed linear
space X, and x ∈ X, then a best approximation of x from X0, if it exists, is unique.

We use the following lemmas proved in [1].

Lemma 2.1. Let A be a nonempty closed and convex subset, and B be a nonempty,
closed subset of a uniformly convex Banach space. Let {xn} and {zn} be sequences
in A and {yn} be a sequence in B satisfying:

(1) ‖zn − yn‖ −→ dist(A,B),
(2) For every ε > 0 there exists N0 ∈ N, such that for all m > n ≥ N0,

‖xm − yn‖ ≤ dist(A,B) + ε;
then for every ε > 0, there exists N1 ∈ N, such that for all m > n ≥ N1,

‖xm − zn‖ ≤ ε.

Lemma 2.2. Let A be a nonempty closed and convex subset and B be a nonempty
closed subset of a uniformly convex Banach space, let {xn} and {zn} be sequences in
A and {yn} be a sequence in B satisfying:

(1) ‖xn − yn‖ −→ dist(A,B)
(2) ‖zn − yn‖ −→ dist(A,B);

then ‖xn − zn‖ −→ 0.

3. Main results

Definition 3.1. Let A1, A2, ...Ap be nonempty subsets of a metric space X, let
T :

⋃p
i=1 Ai −→

⋃p
i=1 Ai; T is called p-cyclic contraction, if it satisfies the following

condition:
(1) T (Ai) ⊆ Ai+1, 1 ≤ i ≤ p, where Ap+i = Ai
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(2) For some k, 0 < k < 1,
d(Tx, Ty) ≤ kd(x, y) + (1− k)dist(Ai, Ai+1), x ∈ Ai, y ∈ Ai+1, 1 ≤ i ≤ p.

A point x ∈ Ai is said to be a best proximity point, if d(x, Tx) = dist(Ai, Ai+1).

The following lemma shows that the distances between the adjacent sets are equal
under p-cyclic contraction.

Lemma 3.2. Let A1, A2, ..., Ap be nonempty closed subsets of a metric space X, let
T :

⋃p
i=1 Ai −→

⋃p
i=1 Ai be a p-cyclic contraction; then

dist(Ai, Ai+1) = dist(Ai+1, Ai+2),

for all i, i = 1,2,..,p, where Ap+i = Ai.

Proof. Let x ∈ Ai and y ∈ Ai+1; then,

dist(Ai+1, Ai+2) ≤ d(Tx, Ty)
≤ kd(x, y) + (1− k)dist(Ai, Ai+1)
≤ kd(x, y) + (1− k)d(x, y)
= d(x, y).

This implies that dist(Ai+1, Ai+2) ≤ dist(Ai, Ai+1) for all i = 1,2,.., p. Hence

dist(Ap, A1) ≤ dist(Ap−1, Ap) ≤ ... ≤ dist(A1, A2) ≤ dist(Ap, A1).

Therefore, dist(Ai, Ai+1) = dist(Ai+1, Ai+2) for all i, i = 1,2,..,p, where Ap+i = Ai.

Lemma 3.3. Let A1, A2, ..., Ap be nonempty closed subsets of a metric space X,
let T :

⋃p
i=1 Ai −→

⋃p
i=1 Ai be a p − cyclic contraction; then for every x, y ∈

Ai, for 1 ≤ i ≤ p,

(1) d(T pnx, T pn+1y) −→ dist(Ai, Ai+1) as n →∞
(2) d(T pn±px, T pn+1y) −→ dist(Ai, Ai+1) as n →∞.

Proof. To prove (1), Lemma 3.2 is repeatedly used.

dist(Ai, Ai+1) ≤ d(T pnx, T pn+1y)

≤ kd(T pn−1x, T pny) + (1− k)dist(Ai, Ai+1)

≤ k2d(T pn−2x, T pn−1y) + k(1− k)dist(Ai−1, Ai)

+ (1− k)dist(Ai, Ai+1)

= k2d(T pn−2x, T pn−1y) + (1− k2)dist(Ai, Ai+1),
≤ . . .

≤ kpnd(x, Ty) + (1− kpn)dist(Ai, Ai+1)

→ dist(Ai, Ai+1) as n →∞.

Similarly (2) can also be proved.

Remark 3.4. If X is a uniformly convex Banach space and if each Ai is convex,
then by Lemma 3.3, for x ∈ Ai, ‖T pnx − T pn+1x‖ −→ dist(Ai, Ai+1) as n → ∞
and ‖T pn±px − T pn+1x‖ −→ dist(Ai, Ai+1), as n → ∞. Then by Lemma 2.2,
‖T pnx−T pn±px‖ −→ 0. Similarly, ‖T pn+1x−T pn+2x‖ −→ dist(Ai, Ai+1) as n →∞
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and ‖T pn±p+1x − T pn+2x‖ −→ dist(Ai, Ai+1), as n → ∞. Then by Lemma 2.2,
‖T pn+1x− T pn±p+1x‖ −→ 0.

Theorem 3.5. Let A1, A2, ..., Ap be nonempty closed subsets of a metric space, let
T :

⋃p
i=1 Ai →

⋃p
i=1 Ai be a p− cyclic contraction; if for some i, x ∈ Ai, is such that

the sequence {T pnx} in Ai contains a convergent subsequence {T pnj x}, converging to
ξ ∈ Ai, then ξ is a best proximity point of T in Ai.

Proof. Consider d(T pnj−1, ξ) ≤ d(T pnj−1x, T pnj x) + d(T pnj x, ξ) which tends to
dist(Ai, Ai−1) as j −→ to ∞. Now

dist(Ai, Ai+1) ≤ d(ξ, T ξ)
= lim

j→∞
d(T pnj x, Tξ)

≤ lim
j→∞

kd(T pnj−1x, ξ) + (1− k)dist(Ai, Ai+1)

= kdist(Ai, Ai+1) + (1− k)dist(Ai, Ai+1)
= dist(Ai, Ai+1).

Therefore, d(ξ, T ξ) = dist(Ai, Ai+1).

Theorem 3.6. Let A1, A2, ..., Ap be nonempty, closed and convex subsets of a uni-
formly convex Banach space. Let T :

⋃p
i=1 Ai −→

⋃p
i=1 Ai be a p−cyclic contraction.

Then there exists a zi ∈ Ai (1 ≤ i ≤ p), such that, if x is any point of Ai, the se-
quence {T pnx} converges to zi and zi is a best proximity point of T in Ai. Moreover,
T jzi = zi+j is a best proximity point in Ai+j, for j = 1 to (p−1) and zi is the unique
periodic point of T with period p.

Proof. If dist(Ai, Ai+1) = 0 for some i, then dist(Ai, Ai+1) = 0 for all i. Then by
Theorem 1.1, T has a unique fixed point. Hence we assume that dist(Ai, Ai+1) > 0,
for all i. Let x ∈ Ai. Then T pnx ∈ Ai and T pn+1x ∈ Ai+1, for all n. By Lemma 3.3,
‖T pnx− T pn+1x‖ −→ dist(Ai, Ai+1). If, for given ε > 0, there exists an n0 ∈ N, such
that for m > n > n0,

‖T pmx− T pn+1x‖ ≤ dist(Ai, Ai+1) + ε, (3.1)

then by Lemma 2.1, for given ε > 0, there exists an n1 ∈ N, such that, for m > n >
n1, ‖T pmx − T pnx‖ ≤ ε. Therefore, {T pnx} is a Cauchy sequence and converges to
some z ∈ Ai. By Theorem 3.5, z is a best proximity point in Ai. Therefore, assume
the contrary of (3.1). Then, there exists an εo > 0 such that, for every k ∈ N, there
exists mk > nk ≥ k such that,

‖T pmkx− T pnk+1x‖ ≥ dist(Ai, Ai+1) + ε0. (3.2)

Let mk be the smallest integer greater than nk, to satisfy the above inequality.
Now,

dist(Ai, Ai+1) + ε0 ≤ ‖T pmkx− T pnk+1x‖
≤ ‖T pmkx− T pmk−px‖+ ‖T pmk−px− T pnk+1x‖.
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By Remark (3.4), ‖T pmkx− T pmk−px‖ −→ 0 as k −→∞. Therefore,

dist(Ai, Ai+1) + ε0 ≤ lim
k→∞

‖T pmkx− T pnk+1x‖ ≤ dist(Ai, Ai+1) + ε0.

So, lim
k→∞

‖T pmkx− T pnk+1x‖ = dist(Ai, Ai+1) + ε0. Now,

‖T pmkx− T pnk+1x‖ ≤ {‖T pmkx− T pmk+px‖+ ‖T pmk+px− T pnk+p+1x‖
+ ‖T pnk+p+1x− T pnk+1x‖}.

By Remark (3.4), ‖T pmkx− T pmk+px‖ −→ 0 as k −→∞ and

‖T pnk+p+1x− T pnk+1x‖ −→ 0 as k −→∞.

Therefore,

lim
k→∞

‖T pmkx− T pnk+1x‖ ≤ lim
k→∞

‖T pmk+px− T pnk+p+1x‖

≤ lim
k→∞

kp‖T pmkx− T pnk+1x‖+ (1− kp)dist(Ai, Ai+1).

That is, dist(Ai, Ai+1) + ε0 ≤ kp(dist(Ai, Ai+1) + ε0) + (1− kp)dist(Ai, Ai+1).
That is, ε0 ≤ kpε0, which is a contradiction. Hence {T pnx} is a Cauchy sequence

and converges to some z ∈ Ai, such that ‖z − Tz‖ = dist(Ai, Ai+1). Now let y ∈ Ai

be such that, y 6= x and {T pny} converges to z′ ∈ Ai. By Theorem 3.5, z’ is a best
proximity point. That is, ‖z′ − Tz′‖ = dist(Ai, Ai+1). To prove z′ = z, consider,

‖z′ − T p+1z′‖ = lim
n→∞

‖T pny − T p+1z′‖

≤ lim
n→∞

kp‖T pn−py − Tz′‖+ (1− kp)dist(Ai, Ai+1)

= kp‖z′ − Tz′‖+ (1− kp)dist(Ai, Ai+1)
= kpdist(Ai, Ai+1) + (1− kp)dist(Ai, Ai+1)
= dist(Ai, Ai+1).

Therefore, dist(Ai, Ai+1) ≤ ‖z′ − T p+1z′‖ ≤ dist(Ai, Ai+1). Hence

‖z′ − T p+1z′‖ = dist(Ai, Ai+1).

Since Ai+1 is a convex set and X is a uniformly convex Banach space,

Tz′ = T p+1z′. (3.3)

Now,

‖z − Tz′‖ = lim
n→∞

‖T pnx− T p+1z′‖

≤ lim
n→∞

kp‖T pn−px− Tz′‖+ (1− kp)dist(Ai, Ai+1)

= kp‖z − Tz′‖+ (1− kp)dist(Ai, Ai+1)
≤ kp‖z − Tz′‖+ dist(Ai, Ai+1)− kp‖z − Tz′‖.

Therefore, ‖z − Tz′‖ ≤ dist(Ai, Ai+1). Hence ‖z − Tz′‖ = dist(Ai, Ai+1). Since Ai

is a convex set, z′ = z.
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Now, we observe that, since

‖T p−1z − T pz‖ ≤ ‖T p−2z − T p−1z‖ ≤ ‖T p−3z − T p−2z‖ ≤ · · · ≤
≤ ‖z − Tz‖ = dist(Ai, Ai+1),

T jz is a best proximity point in Ai+j , for j = 0 to (p− 1).
Next, to prove that z is a periodic point of T with period p, we see that by similar

argument of (3.3), T p+1z = Tz. Now,

‖T pz − Tz‖ = ‖T pz − T p+1z‖
≤ kp‖z − Tz‖+ (1− kp)dist(Ai, Ai+1)
= dist(Ai, Ai+1).

Since Ai is a convex set, we have T pz = z. Hence T pmz = z and T pm+1z = Tz for
all m ∈ N.

Now suppose there exists a ξ ∈ Ai such that T pξ = ξ, then {T pnξ} converges to ξ.
Since zi ∈ Ai is the unique element in Ai such that for any x ∈ Ai, {T pnx} converges
to zi, we have ξ = zi. Since T pzi = zi and ξ = zi implies zi is the unique periodic
point of T in Ai.

Now, by what we have proved, there exists a unique zi+1 ∈ Ai+1, such that for any
y ∈ Ai+1, the sequence {T pny} converges to zi+1, which is a best proximity point of
T in Ai+1. Now zi is a best proximity point in Ai. Tzi ∈ Ai+1 implies {T pn(Tzi)}
converges to zi+1. Moreover, T p+1zi = Tzi. Therefore T pn+1zi = Tzi. That is
{T pn(Tzi)} converges to Tzi. This implies zi+1 = Tzi. Similarly, zi+j = T jzi for
j = 1, 2..., (p− 1).

The following example illustrates Theorem 3.6.

Example 3.7. Let X = R2 be the Euclidean plane equipped with the usual Euclidean
metric. Let the subsets Ai, i = 1 to 4 be as follows:

A1 = {(0, 1 + x) : 0 ≤ x ≤ 1}, A2 = {(1 + x, 0) : 0 ≤ x ≤ 1},

A3 = {(0,−(1 + x)) : 0 ≤ x ≤ 1} and A4 = {(−(1 + x), 0) : 0 ≤ x ≤ 1}.
Note that dist(Ai, Ai+1) =

√
2, for i = 1 to 4, where A4+i = Ai.

Define T :
⋃4

i=1 Ai →
⋃4

i=1 Ai as follows:

T (0, 1 + x) = (1 +
x

10
, 0)

T (1 + x, 0) = (0,−(1 +
x

10
))

T (0,−(1 + x)) = (−(1 +
x

10
), 0)

T (−(1 + x), 0) = (0, (1 +
x

10
)), where x, y ∈ [0, 1].

Clearly, T (Ai) ⊆ Ai+1, for i = 1 to 4.
Now, let

z1 = (0, 1 + y) ∈ A1, z2 = (1 + x, 0) ∈ A2,

z3 = (0,−(1 + y)) ∈ A3, z4 = (−(1 + x), 0) ∈ A4, where x, y ∈ [0, 1].
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For each i = 1 to 4, we note that

d(zi, zi+1) =
√

(1 + x)2 + (1 + y)2

d(Tzi, T zi+1) =

√(
1 +

x

10

)2

+
(
1 +

y

10

)2

[d(Tzi, T zi+1)]2 ≤
(x

2

)2

+
(y

2

)2

+
x

2
+

y

2
+ 1 +

1√
2

√
(1 + x)2 + (1 + y)2

=
(

1
4

+
x2

4
+

2x

4

)
+

(
1
4

+
y2

4
+

2y

4

)
+

(
1
2

)
+

(
1√
2

√
(1 + x)2 + (1 + y)2

)
=

1
4
[(1 + x)2 + (1 + y)2] +

(
1√
2

)2

+
(

2
(

1√
2

) (
1
2

) √
(1 + x)2 + (1 + y)2

)
=

(
1
2

√
(1 + x)2 + (1 + y)2 +

1√
2

)2

=
(

1
2

√
(1 + x)2 + (1 + y)2 +

(
1− 1

2

)√
2
)2

.

Hence, for k = 1
2 the following condition is satisfied

d(Tzi, T zi+1) ≤ kd(zi, zi+1) + (1− k)
√

2,

for all zi ∈ Ai and zi+1 ∈ Ai+1. Therefore, T is a p-cyclic contraction.
Let x = (0, 1 + y) ∈ A1 where y ∈ [0, 1]. Then {T 4nx} = {(0, 1 + y

104n )}.
Clearly, {T 4nx} → (0, 1) as n →∞, which is a best proximity point of T in A1.
Also, T (0, 1) = (1, 0). So, (1,0) is a best proximity point in A2. T 2(0, 1) = (0,−1)
and T 3(0, 1) = (−1, 0) are unique best proximity points in A3 and A4 respectively.
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