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1. Introduction and preliminaries

One of the simplest and most useful results in the fixed point theory is the Banach-
Caccioppoli contraction mapping principle [5, 9]. This principle has been generalized
in different directions in different spaces by mathematicians over the years.

The concept of weak contractions in Hilbert spaces was defined by Alber and
Guerre-Delabriere [3] in 1997 and was extended to metric spaces by Rhoades [41].

Definition 1.1. A map T : X → X, where (X, d) is a metric space, is said to be
weakly contractive if

d(Tx, Ty) ≤ d(x, y)− Φ(d(x, y)), ∀x, y ∈ X, (1)
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where Φ : [0,+∞) → [0,+∞) is continuous and non-decreasing function such that
Φ(t) = 0 if and only if t = 0.

The result of Rhoades [41] is the following.

Theorem 1.2. Let (X, d) be a complete metric space and T : X → X be a weakly
contractive map. Then, T admits a unique fixed point.

Weak inequalities of the above type have been used to establish fixed point results
in a number of subsequent works, some of which are noted in [6, 10, 11, 18, 44, 50].

Ordered normed spaces and cones have applications in applied mathematics, for
instance, in using Newton’s approximation method [25, 26, 46, 49] and in optimization
theory [14]. Fixed point theory in K-metric and K-normed spaces was developed by
A.I. Perov and his consortiums [28, 35, 36], E.M. Mukhamadijev and V.J. Stetsenko
[30] and others. The main idea consists to use an ordered Banach space instead of
the set of real numbers, as the codomain for a metric. For more details on fixed
point theory in K-metric and K-normed spaces, we refer the reader to [49]. Without
mentioning these previous works, Huang and Zhang [19] reintroduced such spaces
under the name of cone metric spaces but went further, defining convergent and
Cauchy sequences in the terms of interior points of the underlying cone. They also
proved some fixed point theorems in such spaces in the same work. After that,
fixed point results in cone metric spaces have been studied by many other authors.
References [1, 15, 16, 20, 21, 24, 27, 38, 40, 45, 47, 48] are some works in this line of
research. However, very recently Wei-Shih Du in [17] used the scalarization function
and investigated the equivalence of vectorial versions of fixed point theorems in cone
metric spaces and scalar versions of fixed point theorems in metric spaces. He showed
that many of the fixed point theorems for maps satisfying contractive conditions of a
linear type in cone metric spaces can be considered as the corollaries of corresponding
theorems in metric spaces. Nevertheless, the fixed point theory in cone metric spaces
proceeds to be actual, since it is unknown if it is possible to adapt the method of
scalarization to maps satisfying contractive conditions of a nonlinear type in cone
metric spaces.

Recently, in [11], B. S. Choudhury and N. Metiya established a unique fixed point
result for maps satisfying nonlinear weak contractive contractions in cone metric
spaces. Before stating the main theorem in [11], we begin by recalling some defi-
nitions and mathematical preliminaries.

Let B be a Banach space over R with respect to a given norm ‖ · ‖B . We denote
by 0B the zero vector of B.

Definition 1.3. (Zabrejko [49]) A non-empty subset K of B is called a cone if and
only if:
(i) K = K, K 6= {0B},
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ K ⇒ ax + by ∈ K,
(iii) K ∩ (−K) = {0B},
where K denotes the closure of K.

Definition 1.4. Recall that a binary relation ≤A on a non-empty set A is said to
be an order relation (and A equipped with ≤A is called a partially ordered set) if it



FIXED POINT RESULTS IN ORDERED K-METRIC SPACES 61

satisfies the following three properties:
(i) reflexivity: x ≤A x for all x ∈ X,
(ii) antisymmetry: x ≤A y and y ≤A x imply x = y,
(iii) transitivity: x ≤A y and y ≤A z imply x ≤A z.

Let K be a cone in B. We denote by int(K) the interior of K. We suppose that
int(K) is non-empty. We denote by ≤B the binary relation on B defined by:

x, y ∈ B, x ≤B y ⇐⇒ y − x ∈ K.

The notation x <B y indicates that x ≤B y and x 6= y while x � y will show
y − x ∈ int(K).

Proposition 1.5. ([4, 49]) (B,≤B) is a partially ordered set.

Definition 1.6. ([4, 34, 49]) The cone K is called normal if there is a constant
L > 0 such that the order inequalities ξ ≤B η (ξ, η ∈ K) imply the scalar inequality
‖ξ‖B ≤ L‖η‖B. The least positive number L satysfying the above inequality is called
the normal constant of K. Clearly, L ≥ 1. In fact, taking ξ = η 6= 0B in the above
inequality, we have L ≥ 1.

Definition 1.7. The cone K is said to be regular if every increasing sequence which is
bounded from above is convergent, that is, if {xn} is a sequence in B such that x1 ≤B

x2 ≤B · · · ≤B y for some y ∈ B, then there is x ∈ B such that lim
n→+∞

‖xn − x‖B = 0.

Remark 1.8. Equivalently, the cone K is said to be regular if every decreasing se-
quence which is bounded from below is convergent.

Lemma 1.9. ([40]) Every regular cone is normal.

Definition 1.10. (Zabrejko [49]) Let X be a non-empty set and ρ : X × X → K
satisfies:
(i) The equality ρ(x, y) = 0B is equivalent to the equality x = y,
(ii) ρ(x, y) = ρ(y, x) for all x, y ∈ X,
(iii) ρ(x, y) ≤B ρ(x, z) + ρ(z, y) for all x, y, z ∈ B.
Then ρ is called a K-metric (or a cone metric) on X and (X, ρ) is called a K-metric
space (or a cone metric space).

In [19], Huang and Zhang presented the notion of convergence of sequences in a
K-metric space. However this notion is not new and existed before Huang and Zhang
(see for example [12, 49]).

Definition 1.11. ([12, 19, 49]) Let (X, ρ) be a K-metric space, {xn} is a sequence
in X and x ∈ X.
(i) If for every c ∈ B with 0B � c, there is N ∈ N such that ρ(xn, x) � c for all
n ≥ N , then {xn} is said to be convergent to x. This limit is denoted by lim

n→+∞
xn = x

or xn → x as n → +∞.
(ii) If for every c ∈ B with 0B � c, there is N ∈ N such that ρ(xn, xm) � c for all
n, m > N , then {xn} is called a Cauchy sequence in X.
(iii) If every Cauchy sequence in X is convergent in X, then (X, ρ) is called a complete
cone metric space.
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Lemma 1.12. ([19, 49]) Let (X, ρ) be a cone metric space with K a normal cone.
(i) A sequence {xn} in X converges to x ∈ X if and only if ‖ρ(xn, x)‖B → 0 as
n → +∞.
(ii) A sequence {xn} in X is Cauchy if and only if ‖ρ(xn, xm)‖ → 0 as n, m → +∞.
(iii) If {xn} and {yn} are sequences in X such that xn → x ∈ X as n → +∞ and
yn → y ∈ X as n → +∞, then ρ(xn, yn) → ρ(x, y) as n → +∞.

Lemma 1.13. Let (X, ρ) be a K-metric space with cone K. Then
(i) int(K) + K ⊆ int(K) and λ int(K) ⊆ int(K), λ > 0 [45].
(ii) a ≤B b and b � c imply a � c [22].
(iii) 0B ≤B xn ≤B yn for each n ∈ N, lim

n→+∞
xn = x ∈ B and lim

n→+∞
yn = y ∈ B

imply 0B ≤B x ≤B y [22].
(iv) K is normal if and only if xn ≤B yn ≤B zn and lim

n→+∞
xn = lim

n→+∞
zn = x imply

lim
n→+∞

yn = x [14].

Now, the main result in [11] is the following.

Theorem 1.14. (Choudhury-Metiya [11]) Let (X, ρ) be a complete K-metric space
with regular cone K such that ρ(x, y) ∈ int(K), for x, y ∈ X with x 6= y. Let T : X →
X be a mapping satisfying the inequality (1), where the function Φ : int(K)∪{0B} →
int(K) ∪ {0B} is continuous and monotone increasing w.r.t. ≤B with
(i) Φ(t) = 0B ⇔ t = 0B,
(ii) Φ(t) � t for all t ∈ int(K),
(iii) either Φ(t) ≤B ρ(x, y) or ρ(x, y) ≤B Φ(t), for t ∈ int(K) ∪ {0B} and x, y ∈ X.
Then, T has a unique fixed point in X.

The existence of a fixed point in partially ordered metric spaces has been recently
considered in [2, 7, 8, 13, 29, 31, 33, 37, 39, 42, 43] and others. It is of interest to
determine the existence of a fixed point in such a setting. The first result in this
direction was given by Ran and Reurings in [39], where they extended the Banach
contraction principle in partially ordered sets with some applications to linear and
nonlinear matrix equations. The main result obtained in [39] was further extended
and refined by many authors.

In this paper, we establish new coincidence and common fixed point theorems in
ordered K-metric spaces for self-maps satisfying a weak contraction. Presented theo-
rems extend the recent result of B. S. Choudhury and N. Metiya [11]. An application
of our obtained results to prove an existence theorem for an integral equation is given.

2. Main results

Definition 2.1. ([23]) Let (X, ρ) be a K-metric space and f, g : X → X. If w =
fx = gx, for some x ∈ X, then x is called a coincidence point of f and g, and
w is called a point of coincidence of f and g. Self-maps f and g are said to be
compatible if lim

n→+∞
ρ(fgxn, gfxn) = 0B, whenever {xn} is a sequence in X such that

lim
n→+∞

fxn = lim
n→+∞

gxn = t for some t in X.
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Definition 2.2. ([13]) Let (X,�) be a partially ordered set and T, S : X → X are
maps of X into itself. One says T is S-non-decreasing w.r.t. � if for x, y ∈ X,

Sx � Sy implies Tx � Ty.

Our first result is the following.

Theorem 2.3. Let (X,�) be a partially ordered set and suppose that there exists a
K-metric ρ in X such that the K-metric space (X, ρ) is complete and K is a regular
cone such that ρ(x, y) ∈ int(K) for all x, y ∈ X, x 6= y. Let T, S : X → X be such
that
(a) TX ⊆ SX,
(b) T and S are compatible,
(c) T and S are continuous maps,
(d) T is S-non-decreasing w.r.t. �.
Suppose that

ρ(Tx, Ty) ≤B ρ(Sx, Sy)− Φ(ρ(Sx, Sy)), for all x, y ∈ X for which Sy � Sx, (2)

where Φ : int(K) ∪ {0B} → int(K) ∪ {0B} is continuous with
(e) Φ(t) = 0B ⇔ t = 0B,
(f) Φ(t) � t for all t ∈ int(K),
(g) either Φ(t) ≤B ρ(x, y) or ρ(x, y) ≤B Φ(t), for t ∈ int(K) ∪ {0B} and x, y ∈ X.
Suppose also that there exists x0 ∈ X such that Sx0 � Tx0. Then, T and S have a
coincidence point x∗ ∈ X, i.e., Tx∗ = Sx∗.

Proof. Let x0 ∈ X such that Sx0 � Tx0. By (a), there exists x1 ∈ X such that
Sx1 = Tx0. Again, from (a), there exists x2 ∈ X such that Sx2 = Tx1. Continuing
this process, we can construct a sequence {xn} in X such that

Sxn+1 = Txn, ∀n ∈ N. (3)

Since T is S-non-decreasing, we have

Sx0 � Tx0 = Sx1 ⇒ Tx0 = Sx1 � Tx1 = Sx2 ⇒ · · · ⇒ Txn � Txn+1.

Then
Sxn � Sxn+1, ∀n ∈ N. (4)

If Sxn = Sxn+1 for some n, then trivially xn is a coincidence point of T and S. Then,
we assume that Sxn 6= Sxn+1 for all n ∈ N.

Now, from (4), we can apply (2) for x = xn−1 and y = xn. We obtain:

ρ(Sxn, Sxn+1) ≤B ρ(Txn−1, Txn) (5)
≤B ρ(Sxn−1, Sxn)− Φ(ρ(Sxn−1, Sxn)) ≤B ρ(Sxn−1, Sxn).

Then, the sequence {ρ(Sxn, Sxn+1)} is monotone decreasing. Since K is a regular
cone and 0B ≤B ρ(Sxn, Sxn+1) for all n ∈ N , there exists r ≥B 0B such that

ρ(Sxn, Sxn+1) → r as n → +∞. (6)

We claim that
r = 0B . (7)
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By contradiction, suppose that (7) not holds, that is, r 6= 0B . Since K is a regular
cone, it is also a normal cone. Let us denote by L > 0 the normal constant of K. Let
H be the set defined by:

H :=
{

s ∈ int(K) | ‖s‖B <
‖r‖B

L

}
.

For every real number a with 0 < a <
‖r‖B

L
and s ∈ int(K), it is clear that

as

‖s‖B
∈ H.

Then, H is a non-empty set. Now, we claim that for every s ∈ H,

Φ(s) ≤B ρ(Sxn, Sxn+1), ∀n ∈ N. (8)

If otherwise, from (g) there is s0 ∈ H such that ρ(Sxm, Sxm+1) <B Φ(s0), for some
m ∈ N . Since the sequence {ρ(Sxn, Sxn+1)} is decreasing, we have:

ρ(Sxn, Sxn+1) ≤B ρ(Sxm, Sxm+1) <B Φ(s0), ∀n ≥ m.

This implies that ρ(Sxn, Sxn+1) <B Φ(s0), ∀n ≥ m. Letting n → +∞ in the above
inequality and using (f) and (6), we get

0B ≤B r ≤B Φ(s0) � s0.

This implies from the normality of K that ‖r‖B ≤ L‖s0‖B , i.e., ‖s0‖B ≥ ‖r‖B

L . This
is a contradiction since s0 ∈ H. Then, (8) holds. Now, letting n → +∞ in (8), we
obtain Φ(s) ≤B r, ∀ s ∈ H. Therefore, for every s ∈ H, there exists p(s) ∈ P such
that r = Φ(s) + p(s). Now, since Φ(s) ∈ int(K) (by (e) and since s 6= 0B), we can
write 0B ≤B p(s) � p(s)+Φ(s), which implies that 0B � p(s)+Φ(s) = r. This gives
that r ∈ int(K). Then, Φ(r) is well defined. Letting n → +∞ in (5) and using the
continuity of Φ, we obtain r ≤B r − Φ(r), i.e., −Φ(r) ∈ K. Since we also have that
Φ(r) ∈ K, by the definition of a cone, we get Φ(r) = 0B .

By (e), we obtain r = 0B : a contradiction. We deduce that (7) holds. Therefore,

ρ(Sxn, Sxn+1) → 0B as n → +∞. (9)

Now, let us prove that {Sxn} is a Cauchy sequence in the K-metric space (X, ρ).
We proceed by contradiction. Suppose that {Sxn} is not a Cauchy sequence. By
(f), there exists c ∈ B with 0B � c for which we can find two sequences of positive
integers {m(k)} and {n(k)} such that for all positive integers k,

n(k) > m(k) > k, ρ(Sxm(k), Sxn(k)) >B Φ(c), ρ(Sxm(k), Sxn(k)−1) ≤B Φ(c).

Now, we have:

Φ(c) <B ρ(Sxm(k), Sxn(k)) ≤B ρ(Sxm(k), Sxn(k)−1) + ρ(Sxn(k)−1, Sxn(k))
≤B Φ(c) + ρ(Sxn(k)−1, Sxn(k)),

that is
Φ(c) <B ρ(Sxm(k), Sxn(k)) ≤B Φ(c) + ρ(Sxn(k)−1, Sxn(k)).

Letting k → +∞ in the above inequality and using (9), we obtain:

lim
k→+∞

ρ(Sxm(k), Sxn(k)) = Φ(c). (10)
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On the other hand, we have
ρ(Sxm(k), Sxn(k))

≤B ρ(Sxm(k), Sxm(k)+1) + ρ(Sxm(k)+1, Sxn(k)+1) + ρ(Sxn(k)+1, Sxn(k))
and

ρ(Sxm(k)+1, Sxn(k)+1)

≤B ρ(Sxm(k)+1, Sxm(k)) + ρ(Sxm(k), Sxn(k)) + ρ(Sxn(k), Sxn(k)+1).
Letting k → +∞ in the above inequalities and using (9) and (10), we obtain:

lim
k→+∞

ρ(Sxm(k)+1, Sxn(k)+1) = Φ(c). (11)

Putting x = xm(k) and y = xn(k) and applying the contractive condition (2), we get

ρ(Sxm(k)+1, Sxn(k)+1) ≤B ρ(Txm(k), Txn(k))

≤B ρ(Sxm(k), Sxn(k))− Φ(ρ(Sxm(k), Sxn(k))).
Letting k → +∞ in the above inequality and using (10), (11) and the continuity of
Φ, we obtain:

Φ(c) ≤B Φ(c)− Φ(Φ(c)).
This implies that Φ(Φ(c)) = 0B . From (e), we deduce that Φ(c) = 0B . Again, from
(e), we deduce that c = 0B , which is a contradiction, since c is supposed to be an
element of int(K). Hence, we obtain that {Sxn} is Cauchy in the K-metric space
(X, ρ).

Now, since (X, ρ) is a complete K-metric space, there exists x∗ ∈ X such that

lim
n→+∞

Sxn = x∗. (12)

From (12) and the continuity of S, we get:

lim
n→+∞

S(Sxn) = Sx∗. (13)

Now, by the triangular inequality, we obtain:

ρ(Sx∗, Tx∗) ≤B ρ(Sx∗, S(Sxn+1)) + ρ(S(Txn), T (Sxn)) + ρ(T (Sxn), Tx∗). (14)

On the other hand, we have:

Sxn → x∗, Txn → x∗ as n → +∞.

Since S and T are compatible maps, this implies that

lim
n→+∞

ρ(S(Txn), T (Sxn)) = 0B . (15)

Using the continuity of T , we obtain from (12):

lim
n→+∞

ρ(T (Sxn), Tx∗) = 0B . (16)

Now, combining (13), (15) and (16) and letting n → +∞ in (14), we get:

ρ(Sx∗, Tx∗) ≤B 0B ,

i.e., ρ(Sx∗, Tx∗) = 0B . This implies that Sx∗ = Tx∗ and x∗ is a coincidence point of
T and S. This makes end to the proof. �
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In the next theorem, we omit the continuity and the compatibility hypotheses of
T and S and we consider other conditions that assure the existence of a coincidence
point.

At first we introduce the following definition.

Definition 2.4. Let (X,�, ρ) be a partially ordered K-metric space. We say that
(X,�, ρ) is regular if and only if the following condition holds:
If {xn} is a non-decreasing sequence in X w.r.t. � such that ρ(xn, x) → 0B as
n → +∞, x ∈ X, then xn � x for all n ∈ N.

Theorem 2.5. Let (X,�) be a partially ordered set and suppose that there exists a
K-metric ρ in X such that the K-metric space (X, ρ) is complete and K is a regular
cone such that ρ(x, y) ∈ int(K) for all x, y ∈ X, x 6= y. Suppose that (X,�, ρ) is
regular. Let T, S : X → X be such that
(a) TX ⊆ SX,
(b) SX is a closed subspace of (X, ρ),
(c) T is S-non-decreasing w.r.t. �.
Suppose that ρ(Tx, Ty) ≤B ρ(Sx, Sy) − Φ(ρ(Sx, Sy)), for all x, y ∈ X for which
Sy � Sx, where Φ : int(K) ∪ {0B} → int(K) ∪ {0B} is continuous with
(d) Φ(t) = 0B ⇔ t = 0B,
(e) Φ(t) � t for all t ∈ int(K),
(f) either Φ(t) ≤B ρ(x, y) or ρ(x, y) ≤B Φ(t), for t ∈ int(K) ∪ {0B} and x, y ∈ X.
Suppose also that there exists x0 ∈ X such that Sx0 � Tx0. Then, T and S have a
coincidence point x∗ ∈ X, i.e., Tx∗ = Sx∗.

Proof. Following the proof of Theorem 2.3, since {Sxn} is a Cauchy sequence in the
closed subspace SX, there exists y∗ = Sx∗, x∗ ∈ X such that

Sxn → y∗ = Sx∗ as n → +∞. (17)

On the other hand, from the proof of Theorem 2.3, we know that {Sxn} is a non-
decreasing sequence w.r.t. �. Since (X,�, ρ) is regular, it follows from (17) that

Sxn � Sx∗, ∀n ∈ N.

Then, we can apply the considered contractive condition for x = x∗ and y = xn. We
get:

ρ(Tx∗, Sxn+1) = ρ(Tx∗, Txn) ≤B ρ(Sx∗, Sxn)− Φ(ρ(Sx∗, Sxn)).
Letting n → +∞ in the above inequality and using (17) and the continuity of Φ, we
obtain:

ρ(Tx∗, Sx∗) ≤B −Φ(0B) = 0B .

This implies that ρ(Tx∗, Sx∗) = 0B , i.e., Tx∗ = Sx∗. Hence x∗ is a coincidence point
of T and S. This makes end to the proof. �

Now, we give existence and uniqueness theorem of a common fixed point of T and
S.

Theorem 2.6. In addition to the hypotheses of Theorem 2.3, suppose that for every
(x, y) ∈ X ×X, there exists u ∈ X such that Tx � Tu and Ty � Tu. Then, T and
S have a unique common fixed point, that is, there exists a unique z ∈ X such that
z = Tz = Sz.



FIXED POINT RESULTS IN ORDERED K-METRIC SPACES 67

Proof. From Theorem 2.3, the set of coincidence points is non-empty. We shall show
if x∗and y∗are coincidence points, that is, if Sx∗ = Tx∗and Sy∗ = Ty∗, then

Sx∗ = Sy∗. (18)

By assumption, there is u0 ∈ X such that

Tx∗ � Tu0 and Ty∗ � Tu0. (19)

Choose u1 ∈ X such that Su1 = Tu0. Then, similarly as in the proof of Theorem 2.3,
we can inductively define the sequence {Sun} by:

Sun+1 = Tun, ∀n ∈ N. (20)

Now,
Tx∗ � Tu0 ⇒ Sx∗ � Su1 ⇒ Tx∗ � Tu1 ⇒ Sx∗ � Su2 ⇒ · · ·

By induction, we have:
Sx∗ � Sun, ∀n ∈ N∗.

The same inequality holds if we replace x∗ by y∗. Then, for all n ∈ N∗, we have:

Sx∗ � Sun, Sy∗ � Sun. (21)

Now, from (21) and the considered contractive condition, we obtain:

ρ(Sun+1, Sx∗) ≤B ρ(Tun, Tx∗) (22)
≤B ρ(Sun, Sx∗)− Φ(ρ(Sun, Sx∗)) ≤B ρ(Sun, Sx∗).

This proves that {ρ(Sun+1, Sx∗)} is a decreasing sequence. Since K is a regular cone,
there is r ≥ 0B such that

ρ(Sun+1, Sx∗) → r as n → +∞. (23)

Now, suppose that r 6= 0B . As in the proof of Theorem 2.3, one can show that
r ∈ int(K). Then, Φ(r) is well defined. Letting n → +∞ in (22) and using (23) and
the continuity of Φ, we obtain r ≤B r − Φ(r). This implies that Φ(r) = 0B and thus
r = 0B . The same case holds if we replace x∗ by y∗. Then, we have

ρ(Sun+1, Sx∗) → 0B and ρ(Sun+1, Sy∗) → 0B . (24)

From (24) and the uniqueness of the limit, it follows that Sx∗ = Sy∗. Then, (18)
holds.

Since Sun → Sx∗ and Tun = Sun+1 → Sx∗ as n → +∞, from the compatibility
of T and S, we obtain:

lim
n→+∞

ρ(T (Sun), S(Tun)) = 0B . (25)

Now, let us denote z := Sx∗. By the triangular inequality, we have:

ρ(Sz, Tz) ≤B ρ(Sz, S(Tun)) + ρ(S(Tun), T (Sun)) + ρ(T (Sun), T z).

Letting n → +∞ in the above inequality, using (25) and the continuity of T and S,
we obtain that ρ(Sz, Tz) ≤B 0B , that is, Sz = Tz and z is a coincidence point of T
and S. With y∗ = z and from (18), we have z = Sx∗ = Sz = Tz. This proves that z
is a common fixed point of T and S.

Now, let us prove that such a point is unique. Suppose that p is another common
fixed point of T and S, i.e., p = Sp = Tp. This implies that p is a coincidence point
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of T and S. From (18), we have that Sp = Sz. Hence, we get p = Sp = Sz = z.
Then, the uniqueness of the common fixed point is proved. This makes end to the
proof. �

Now, by considering S = IX : X → X the identity mapping (IXx = x for all
x ∈ X), we obtain immediately the following results.

The following result is an immediate consequence of Theorem 2.3.

Corollary 2.7. Let (X,�) be a partially ordered set and suppose that there exists a
K-metric ρ in X such that the K-metric space (X, ρ) is complete and K is a regular
cone such that ρ(x, y) ∈ int(K) for all x, y ∈ X, x 6= y. Let T : X → X be such that
(a) T is a continuous mapping,
(b) T is non-decreasing w.r.t. �.
Suppose that

ρ(Tx, Ty) ≤B ρ(x, y)− Φ(ρ(x, y)),

for all x, y ∈ X for which y � x, where Φ : int(K) ∪ {0B} → int(K) ∪ {0B} is
continuous with
(c) Φ(t) = 0B ⇔ t = 0B,
(d) Φ(t) � t for all t ∈ int(K),
(e) either Φ(t) ≤B ρ(x, y) or ρ(x, y) ≤B Φ(t), for t ∈ int(K) ∪ {0B} and x, y ∈ X.
Suppose also that there exists x0 ∈ X such that x0 � Tx0. Then, T has a fixed point
x∗ ∈ X, i.e., Tx∗ = x∗.

The next result is an immediate consequence of Theorem 2.5.

Corollary 2.8. Let (X,�) be a partially ordered set and suppose that there exists a
K-metric ρ in X such that the K-metric space (X, ρ) is complete and K is a regular
cone such that ρ(x, y) ∈ int(K) for all x, y ∈ X, x 6= y. Suppose that (X,�, ρ) is
regular. Let T : X → X be a non-decreasing mapping w.r.t. �. Suppose that

ρ(Tx, Ty) ≤B ρ(x, y)− Φ(ρ(x, y)),

for all x, y ∈ X for which y � x, where Φ : int(K) ∪ {0B} → int(K) ∪ {0B} is
continuous with
(a) Φ(t) = 0B ⇔ t = 0B,
(b) Φ(t) � t for all t ∈ int(K),
(c) either Φ(t) ≤B ρ(x, y) or ρ(x, y) ≤B Φ(t), for t ∈ int(K) ∪ {0B} and x, y ∈ X.
Suppose also that there exists x0 ∈ X such that x0 � Tx0. Then, T has a fixed point
x∗ ∈ X, i.e., Tx∗ = x∗.

Finally, the following result follows immediately from Theorem 2.6.

Corollary 2.9. In addition to the hypotheses of Corollary 2.7, suppose that for every
(x, y) ∈ X×X, there exists u ∈ X such that Tx � Tu and Ty � Tu. Then, T has a
unique fixed point, that is, there exists a unique x∗ ∈ X such that x∗ = Tx∗.
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3. An application

Consider the integral equation:

u(x) =
∫ T

0

F (x, s, u(s)) ds + g(x), x ∈ [0, T ], (26)

where T > 0.
The purpose of this section is to give an existence theorem for the solution of (26)

by using the obtained result given by Corollary 2.8.
Previously, we consider the space X = C(I, R)(I = [0, T ]) of continuous functions

defined in I and taking values in R. Let B = R2 and K ⊂ B be the cone defined by:

K = {(x, y) ∈ R2 |x ≥ 0, y ≥ 0}.

We endow X with the K-metric ρ : X×X → B defined by:

ρ(u, v) =
(

sup
x∈I

|u(x)− v(x)|, sup
x∈I

|u(x)− v(x)|
)

, ∀u, v ∈ X.

It is clear that (X, ρ) is a complete K-metric space. Now, we endow X with the
partial order � given by:

u, v ∈ X, u � v ⇔ u(x) ≤ v(x), ∀x ∈ I.

It is easy to check the following properties:

• K is regular,
• ρ(u, v) ∈ int(K), ∀u, v ∈ X, u 6= v.

Let ϕ : int(K) ∪ {0B} → [0,+∞) be a function satisfying the following properties:

• ϕ is continuous,
• ϕ(t) = 0 ⇔ t = 0B ,
• ϕ(t) < min(t1, t2), for all t = (t1, t2) ∈ int(K).

Now, the function Φ : int(K) ∪ {0B} → int(K) ∪ {0B} defined by:

Φ(t) = (ϕ(t), ϕ(t)), ∀ t ∈ int(K) ∪ {0B},

satisfies all the required hypotheses by Corollary 2.8.
Note that in this considered case, it is proved in [32] that (X,�, ρ) is regular.
Now, we are ready to prove the following theorem.

Theorem 3.1. Suppose that the following hypotheses hold:
(i) F : I × I × R → R and g : R → R are continuous;
(ii) for all a, b ∈ R, we have:

a ≤ b ⇒ F (x, s, a) ≤ F (x, s, b), ∀x, s ∈ I;

(iii) for all a, b ∈ R with a ≤ b,

|F (x, s, b)− F (x, s, a)| ≤ 1
T

[|a− b| − ϕ(|a− b|, |a− b|)],
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for all x, s ∈ I;
(iv) there exists u0 ∈ C(I, R) such that for all x ∈ I, we have:

u0(x) ≤
∫ T

0

F (x, s, u0(s)) ds + g(x).

Then, the integral equation (26) admits a solution u∗ ∈ C(I, R).

Proof. Let T : X → X be the mapping defined by:

Tu(x) =
∫ T

0

F (x, s, u(s)) ds + g(x), ∀x ∈ I,

for all u ∈ X. From (ii), it follows immediately that T is a non-decreasing mapping
w.r.t. �. Now, for all u, v ∈ X with v � u, from (iii), for all x ∈ I, we have:

|Tu(x)− Tv(x)| =

∣∣∣∣∣
∫ T

0

[F (x, s, u(s))− F (x, s, v(s))] ds

∣∣∣∣∣
≤

∫ T

0

|F (x, s, u(s))− F (x, s, v(s))| ds

≤ 1
T

∫ T

0

[|u(s)− v(s)| − ϕ(|u(s)− v(s)|, |u(s)− v(s)|)] ds

≤ 1
T

∫ T

0

[‖u− v‖∞ − ϕ(‖u− v‖∞, ‖u− v‖∞)] ds

= ‖u− v‖∞ − ϕ(‖u− v‖∞, ‖u− v‖∞),

where ‖α− β‖∞ = sup
x∈I

|α(x)− β(x)| for all α, β ∈ X. This implies that

‖Tu− Tv‖∞ ≤ ‖u− v‖∞ − ϕ(ρ(u, v)).

Hence, we obtain:
ρ(Tu, Tv) ≤B ρ(u, v)− Φ(ρ(u, v)),

for all u, v ∈ X with v � u. Moreover, from (iv), there exists u0 ∈ X such that
u0 � Tu0. Then, all the required hypotheses by Corollary 2.8 are satisfied and T
admits a fixed point u∗ ∈ X, that is, u∗ is a solution to (26). �
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