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1. Introduction

In this paper we consider the existence of global solutions for a class of stochastic
differential equations in the form

d[x(t)− g (t, x(t))] = Ax(t)dt + G (t, x(t)) dw(t), t ∈ R, (1.1)

where A is the infinitesimal generator of an hyperbolic C0-semigroup of bounded
linear operators {T (t)}t≥0 in the Hilbert space H, g : R×H → U and G : R×H → L0

2

are appropriate functions specified later, and w(t) is a Brownian motion.
Stochastic differential equation has attracted great interest due to its applications

in characterizing many problems in physics, biology, mechanics and so on. Qualitative
properties such as existence, uniqueness and stability for various stochastic differential
systems have been extensively studied by many researchers, see for instance [2, 3, 4,
10, 11, 12, 14, 18, 19, 21] and the references therein.

Recently, Hernández in [9] has investigated the existence of global solutions for a
class of abstract neutral differential equations of the form

d

dt
[x(t) + g(t, xt)] = Ax(t) + f(t, xt), t ∈ R,
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where A is the infinitesimal generator of an hyperbolic C0-semigroup of bounded linear
operators {T (t)}t≥0 on a Banach space X, the history xt : (−∞, 0] → X defined by
xt(θ) = x(t + θ), belongs to some abstract phase space B defined axiomatically and
g, f : R× B → X are continuous functions. The approach is based upon the Banach
contraction principle and Schauder’s fixed point theorem, and a fixed point theorem
for condensing maps.

Motivated by the above mentioned work [9], the main purpose of this paper is
to deal with the existence of global solutions to the problem (1.1). Our results are
established by using a fixed point theorem for condensing maps and the Banach
contraction mapping principle. The obtained results can be seen as a contribution to
this emerging field.

The rest of this paper is organized as follows: In section 2 we recall some basic
definitions, lemmas and preliminary facts which will be need in the sequel. Our main
results and their proofs are arranged in Section 3.

2. Preliminaries

This section is concerned with some basic concepts, notations, definitions, lemmas
and technical results which are used in the sequel. For more details on this section,
we refer the reader to [8, 17].

Throughout the paper, (H, ‖·‖, 〈·, ·〉) and (K, ‖·‖K, 〈·, ·〉K) denote two real separable
Hilbert spaces. Let (Ω,F , P) be a complete probability space. We denote by L2(K, H)
the set of all Hilbert-Schmidt operators Φ : K → H, equipped with the Hilbert-
Schmidt norm ‖ · ‖2.

For a symmetric nonnegative operator Q ∈ L2(K, H) with finite trace we suppose
that {w(t) : t ∈ R} is a Q-Wiener process defined on (Ω,F , P) and with values in K.
So, actually, w can be obtained as follows: let wi(t), t ∈ R, i = 1, 2, be independent
K-valued Q-Wiener processes, then

w(t) =
{

w1(t) if t ≥ 0,
w2(−t) if t ≤ 0,

is a Q-Wiener process with R as time parameter, Ft = σ{w(s) : s ≤ t} is the σ-algebra
generated by w.

Let K0 = Q
1
2 K and L0

2 = L2(K0, H) with respect to the norm

‖Φ‖2
L0

2
= ‖ΦQ

1
2 ‖2

2 = Tr(ΦQΦ∗).

Let L2(Ω,Ft, H) denote the Hilbert space of all Ft-measurable square integrable
random variables with values in H. Let L2

Ft
(R, H) be the Hilbert space of all square

integrable and Ft-adapted processes with values in H.
In what follows, A is the infinitesimal generator of an analytic semigroup of

bounded linear operators {T (t)}t≥0 on H such that σ(A) ∩ iR = ∅. In this case,
the set σ−(A) = {λ ∈ σ(A) : Re(λ) < 0} and σ+(A) = {λ ∈ σ(A) : Re(λ) > 0} are
closed and disjoint, and there exists $ > 0 such that

sup{Re(λ) : λ ∈ σ−(A)} < −$ < 0 < $ < inf{Re(λ) : λ ∈ σ+(A)}.
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Let D ⊂ R2 be an open bounded set with smooth boundary ∂D such that σ+(A) ⊂
D ⊆ C+ = {λ ∈ C : Re(λ) > 0} and P : H → H be the operator defined by

Px =
1

2πi

∫
∂D

R(µ;A)xdµ, x ∈ H,

where ∂D is oriented counterclockwise. In the next result, H1 = P (H), H2 = (I −
P ) (H) and A1 : H1 → H, A2 : D(A2) = {x ∈ D(A) : x ∈ H2, Ax ∈ H2} → H2, are
the operators defined by A1x = Ax for x ∈ H1 and A2y = Ay for y ∈ D(A2). The
following properties hold by [13] and [9, Proposition 1.1.].

Lemma 2.1. The following properties are valid:
(i) The operator P is a projection, P (H) ⊂ D(An) for all n ∈ N, T (t)Px = PT (t)x

for all x ∈ H and T (t)Hi ⊂ Hi for i = 1, 2, and every t ≥ 0.
(ii) A1 (H1) ⊂ H1, σ(A1) = σ+(A) and R(λ : A1) = R(λ : A)|H1 for all λ ∈ ρ(A1).

Moreover, A1 is the generator of a C0-group {TA1(t)}t≥0 on H1 and TA1(t) = T (t)|H1

for every t ≥ 0.
(iii) σ(A2) = σ−(A), R(λ : A2) = R(λ : A)|H2 for all λ ∈ ρ(A2), A2 is the

generator of an uniformly stable C0-semigroup {TA2(t)}t≥0 on H2, TA2(t) = T (t)|H2

for every t ≥ 0 and T (t) = TA1(t) + TA2(t) for each t ≥ 0.
(iv) There are constants di, Mi, i ∈ N, such that ‖AiT (t)(I − P )‖ ≤ Mie

−δtt−i

and ‖AiT (−t)P‖ ≤ die
−δt for every t ≥ 0 and each i ∈ N.

In this paper, BC2 (R, H) stands for the collection of all Ft-adapted measurable
stochastic processes x : R → H, which are square integrable and bounded continuous.
It is then easy to check that BC2 (R, H) is a Banach space when it is endowed with
the norm:

‖x‖∞ =
(

sup
t∈R

E‖x(t)‖2

) 1
2

.

We let L(K, H) denote the space of all linear bounded operators from K into
H, equipped with the usual operator norm ‖ · ‖L(K,H). In addition, the notation
BC2

0 (R, H) = {x ∈ BC2 (R, H) : limt→±∞E‖x(t)‖2 = 0}.
To establish our main theorem, we need the following lemma which can be seen as

an immediate consequence of [9, Lemma 2.1.].

Lemma 2.2. A set B ⊂ BC2
0 (R, H) is relatively compact in BC2

0 (R, H) if, and only
if, B(t) = {x(t) : x ∈ B} is relatively compact in H for every t ∈ R, B is equicontinuous
and limt→±∞E‖x(t)‖2 = 0 uniformly for x ∈ B.

Some of our results are based upon the following fixed point theorem [15, 20].

Lemma 2.3. Let D be a convex, bounded and closed subset of a Banach space X and
Λ : D → D be a condensing map. Then Λ has a fixed point in D.

From Lunardi [13] and Hernández [5, 8, 9], we adopt the following concept of mild
solution for the problem (1.1).
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Definition 2.1. An Ft-adapted stochastic process x(t) ∈ BC2 (R, H) is called a mild
solution of the problem (1.1) if

x(t) = g (t, x(t)) +
∫ t

−∞
AT (t− s)(I − P )g (s, x(s)) ds

−
∫ ∞

t

AT (t− s)Pg (s, x(s)) ds

+
∫ t

−∞
T (t− s)(I − P )G (s, x(s)) dw(s)

−
∫ ∞

t

T (t− s)PG (s, x(s)) dw(s), t ∈ R.

Now we list the following basic assumptions of this paper:
(H1) Let (U, ‖ · ‖U, 〈·, ·〉U) denote an arbitrary real separable Hilbert space. Suppose
that U continuously included in H and there are functions H, H̃ ∈ L1

loc ([0,∞), (0,∞))
and δ > 0 with e−δsH(s) ∈ L1 ([0,∞)) such that ‖AT (t)‖L(U,H) ≤ H̃(t) and
‖AT (t)(I − P )‖L(U,H) ≤ e−δtH(t) for every t ≥ 0.
(H2) The function g : R × H → U is continuous and there exists a constant Lg > 0
such that the function satisfies the Lipschitz condition

E‖g (t, x)− g (t, y) ‖2
U ≤ LgE‖x− y‖2,

for all t ∈ R and for each x, y ∈ H. Moreover, there exists a constant Mg > 0 such
that E‖g(t, 0)‖2

U ≤ Mg for all t ∈ R.
(H3) The function G : R×H → L0

2 is continuous and there exists a constant LG > 0
such that the function satisfies the Lipschitz condition

E‖G (t, x)−G (t, y) ‖2
L0

2
≤ LGE‖x− y‖2,

for all t ∈ R, and for each x, y ∈ H. Moreover, there exists a constant MG > 0 such
that E‖G(t, 0)‖2

L0
2
≤ MG for all t ∈ R.

(H4) We denote by ic the inclusion map from U into H.
(H5) The semigroup {T (t)}t>0 is compact.
(H6) The function G : R×H → L0

2 is continuous and there exist an integrable function
mG : [0,∞) → (0,∞) and a continuous non-decreasing function W : [0,∞) → [0,∞)
such that

E‖G (t, x) ‖2
L0

2
≤ mG(t)W (E‖x‖2),

for every (t, x) ∈ R×H.

Remark 2.1. Note that the assumption (H1) is achieved in many cases, see, for
instance, Lunardi [13], and we refer the reader to [1, 5, 6, 7] for additional details
related this type of condition in the theory of neutral equations.

In order to proof our main result Theorem 3, we give a useful lemma appeared in [9].

Lemma 2.4. If the semigroup {T (t)}t>0 is compact, then ic : U → H is compact.
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3. Main results

In this section, we present and prove our main results. Firstly, we give an existence
and uniqueness result for the problem (1.1).

Theorem 3.1. Assume the conditions (H1)-(H4) are satisfied, then the problem
(1.1) has a unique mild solution on R provide that

L0 = 5

{
Lg

[
‖ic‖2

L(U,H) +
(∫ ∞

0

e−δsH(s)ds

)2

+
d2
1‖ic‖2

L(U,H)

δ2

]

+TrQLG

(
M2

0

2δ
+

d2
0

2δ

)}
< 1. (3.1)

Proof. Let Γ : BC2 (R, H) → BC2 (R, H) be the operator defined by

Γx(t) = g (t, x(t)) +
∫ t

−∞
AT (t− s)(I − P )g (s, x(s)) ds

−
∫ ∞

t

AT (t− s)Pg (s, x(s)) ds

+
∫ t

−∞
T (t− s)(I − P )G (s, x(s)) dw(s)

−
∫ ∞

t

T (t− s)PG (s, x(s)) dw(s), t ∈ R.

First we prove that Γx is well defined. From Lemma 2.1 and the estimate

E

∥∥∥∥∫ t

−∞
AT (t− s)(I − P )g (s, x(s)) ds

∥∥∥∥2

≤ E

(∫ t

−∞
e−δ(t−s)H(t− s)[‖g (s, x(s))− g(s, 0)‖U + ‖g(s, 0)‖U ]ds

)2

≤
(∫ t

−∞
e−δ(t−s)H(t− s)ds

)
×
(∫ t

−∞
e−δ(t−s)H(t− s)E[‖g (s, x(s))− g(s, 0)‖U + ‖g(s, 0)‖U ]2ds

)
≤

(∫ t

−∞
e−δ(t−s)H(t− s)ds

)
×
(∫ t

−∞
e−δ(t−s)H(t− s)[2LgE‖x(s)‖2 + 2E‖g(s, 0)‖2

U ]ds

)
≤

[
2Lg sup

t∈R
E‖x(t)‖2 + 2 sup

t∈R
E‖g(t, 0)‖2

U

](∫ ∞

0

e−δsH(s)ds

)2

=
(
2Lg‖x‖2

∞ + 2Mg

)(∫ ∞

0

e−δsH(s)ds

)2

,
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we infer that the function s → AT (t − s)(I − P )g (s, x(s)) is integrable on (−∞, t)
for every t ∈ R and the function s →

∫ t

−∞AT (t − s)(I − P )g (s, x(s)) ds belongs to
BC2 (R, H).

Similarly, from the estimate

E

∥∥∥∥∫ ∞

t

AT (t− s)Pg (s, x(s)) ds

∥∥∥∥2

≤ d2
1E

(∫ ∞

t

eδ(t−s)[‖ic‖L(U,H)‖g (s, x(s))− g(s, 0)‖U + ‖ic‖L(U,H)‖g(s, 0)‖U ]ds

)2

≤ d2
1

(∫ ∞

t

eδ(t−s)ds

)
×
(∫ ∞

t

eδ(t−s)E[‖ic‖L(U,H)‖g (s, x(s))− g(s, 0)‖U + ‖ic‖L(U,H)‖g(s, 0)‖U ]2ds

)
≤ d2

1

(∫ ∞

t

eδ(t−s)ds

)
×
(∫ ∞

t

eδ(t−s)[2‖ic‖2
L(U,H)LgE‖x(s)‖2 + 2‖ic‖2

L(U,H)E‖g(s, 0)‖2
U ]ds

)
≤ 2d2

1‖ic‖2
L(U,H)

(
Lg‖x‖2

∞ + Mg

)(∫ ∞

t

eδ(t−s)ds

)2

≤ d2
1

δ2
2‖ic‖2

L(U,H)

(
Lg‖x‖2

∞ + Mg

)
,

it follows that s → AT (t− s)Pg (s, x(s)) is integrable on (t,∞) for all t ∈ R and that
s →

∫∞
t

AT (t − s)Pg (s, x(s)) ds ∈ BC2 (R, H). Arguing as above, we can complete
the proof that Γx ∈ BC2 (R, H). Therefore, Γ is well defined on BC2 (R, H).

Now the remaining task is to prove that Γ is a strict contraction on BC2 (R, H).
Indeed, for each t ∈ R, x, y ∈ BC2 (R, H), we see that

E‖Γx(t)− Γy(t)‖2

≤ 5E‖g (t, x(t))− g (t, y(t)) ‖2
U

+5E

(∥∥∥∥∫ t

−∞
AT (t− s)(I − P )[g (s, x(s))− g (s, y(s))]ds

∥∥∥∥)2

+5E

(∥∥∥∥∫ ∞

t

AT (t− s)P [g (s, x(s))− g (s, y(s))]ds

∥∥∥∥)2

+5E

(∥∥∥∥∫ t

−∞
T (t− s)(I − P )[G (s, x(s))−G (s, y(s))]dw(s)

∥∥∥∥)2

+5E

(∥∥∥∥∫ ∞

t

T (t− s)P [G (s, x(s))−G (s, y(s))]dw(s)
∥∥∥∥)2

≤ 5‖ic‖2
L(U,H)E‖g (t, x(t))− g (t, y(t)) ‖2

U
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+5E

(∫ t

−∞
e−δ(t−s)H(t− s)‖g (s, x(s))− g (s, y(s)) ‖Uds

)2

+5d2
1E

(∫ ∞

t

eδ(t−s)‖ic‖L(U,H)‖g (s, x(s))− g (s, y(s)) ‖Uds

)2

+5TrQE

(∫ t

−∞
‖T (t− s)(I − P )[G (s, x(s))−G (s, y(s))]‖2ds

)
+5TrQE

(∫ ∞

t

‖T (t− s)P [G (s, x(s))−G (s, y(s))]‖2ds

)
≤ 5‖ic‖2

L(U,H)Lg sup
t∈R

E‖x(t)− y(t)‖2

+5Lg

(∫ t

−∞
e−δ(t−s)H(t− s)ds

)2

sup
t∈R

E‖x(t)− y(t)‖2

+5d2
1‖ic‖2

L(U,H)Lg

(∫ ∞

t

eδ(t−s)ds

)2

sup
t∈R

E‖x(t)− y(t)‖2

+5TrQM2
0 LG

(∫ t

−∞
e−2δ(t−s)ds

)
sup
t∈R

E‖x(t)− y(t)‖2

+5TrQd2
0LG

(∫ ∞

t

e2δ(t−s)ds

)
sup
t∈R

E‖x(t)− y(t)‖2

≤ 5‖ic‖2
L(U,H)Lg‖x− y‖2

∞ + 5Lg

(∫ t

−∞
e−δ(t−s)H(t− s)ds

)2

‖x− y‖2
∞

+5Lg

d2
1‖ic‖2

L(U,H)

δ2
‖x− y‖2

∞ + 5TrQLG
M2

0

2δ
‖x− y‖2

∞ + 5TrQLG
d2
0

2δ
‖x− y‖2

∞

=

{
5Lg

[
‖ic‖2

L(U,H) +
(∫ ∞

0

e−δsH(s)ds

)2

+
d2
1‖ic‖2

L(U,H)

δ2

]

+5TrQLG

(
M2

0

2δ
+

d2
0

2δ

)}
‖x− y‖2

∞

= L0‖x− y‖2
∞.

Hence, we obtain

‖Γx− Γy‖2
∞ ≤ L0‖x− y‖2

∞,

which implies that Γ is a contraction by (3.1). So by the Banach contraction principle,
we conclude that there exists a unique fixed point x(·) for Γ in BC2 (R, H), therefore
the problem (1.1) has a unique mild solution on R. The proof is completed.

Next, we establish an existence result of mild solutions to the problem (1.1) via
fixed point theorem for condensing maps.
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Theorem 3.2. Assume the conditions (H1), (H2) and (H4)-(H6) hold, then the
problem (1.1) admits at least one mild solution on R provide that

L1 = sup
t∈R

[
M2

0

∫ t

−∞
e−2δ(t−s)mG(s)ds + d2

0

∫ ∞

t

e2δ(t−s)mG(s)ds

]
< ∞ (3.2)

and

10‖ic‖2
L(U,H)Lg + 10Lg

(∫ ∞

0

e−δsH(s)ds

)2

+10Lg‖ic‖2
L(U,H)

d2
1

δ2
+ 5TrQL1 lim inf

r→∞

W (r)
r

< 1. (3.3)

Proof. We define the operator Γ : BC2 (R, H) → BC2 (R, H) as

Γx(t) = g (t, x(t)) +
∫ t

−∞
AT (t− s)(I − P )g (s, x(s)) ds

−
∫ ∞

t

AT (t− s)Pg (s, x(s)) ds

+
∫ t

−∞
T (t− s)(I − P )G (s, x(s)) dw(s)

−
∫ ∞

t

T (t− s)PG (s, x(s)) dw(s),

t ∈ R. From Theorem 3 and the assumptions (H5)-(H6), we infer that Γ is well defined
on BC2 (R, H). Our proof will be given in several steps.

Step 1. Let Br = {x ∈ BC2 (R, H) : E‖x‖2 ≤ r} for each r > 0. Clearly, for each
positive number r, Br is a bounded closed convex set in BC2 (R, H). We claim that
there exists a positive number r such that Γ(Br) ⊂ Br. If it is not true, then for each
positive number r, there would exist xr ∈ Br and tr ∈ R such that E‖Γxr(tr)‖2 > r.
However, on the other hand, we have

r < E‖Γxr(tr)‖2

≤ 5E‖g (tr, xr(tr)) ‖2
U + 5E

(∥∥∥∥∫ tr

−∞
AT (tr − s)(I − P )g (s, xr(s)) ds

∥∥∥∥)2

+5E

(∥∥∥∥∫ ∞

tr

AT (tr − s)Pg (s, xr(s)) ds

∥∥∥∥)2

+5E

(∥∥∥∥∫ tr

−∞
T (tr − s)(I − P )G (s, xr(s)) dw(s)

∥∥∥∥)2

+5E

(∥∥∥∥∫ ∞

tr

T (tr − s)PG (s, xr(s)) dw(s)
∥∥∥∥)2

≤ 10‖ic‖2
L(U,H)LgE‖xr(tr)‖2 + 10‖ic‖2

L(U,H)E‖g (tr, 0) ‖2
U

+
[
10Lg sup

t∈R
E‖xr(t)‖2 + 10 sup

t∈R
E‖g (t, 0) ‖2

U

](∫ ∞

0

e−δsH(s)ds

)2



GLOBAL SOLUTIONS 43

+10‖ic‖2
L(U,H)

d2
1

δ2

(
Lg sup

t∈R
E‖xr(t)‖2 + sup

t∈R
E‖g (t, 0) ‖2

U

)
+5TrQM2

0

∫ tr

−∞
e−2δ(tr−s)mG(s)W (E‖xr(s)‖2)ds

+5TrQd2
0

∫ ∞

tr

e2δ(tr−s)mG(s)W (E‖xr(s)‖2)ds

≤ 10‖ic‖2
L(U,H)Lgr + 10‖ic‖2

L(U,H)Mg + [10Lgr + 10Mg]
(∫ ∞

0

e−δsH(s)ds

)2

+10‖ic‖2
L(U,H)

d2
1

δ2
(Lgr + Mg)

+5TrQW (r)
(

M2
0

∫ tr

−∞
e−2δ(tr−s)mG(s)ds + d2

0

∫ ∞

tr

e2δ(tr−s)mG(s)ds

)
≤ 10‖ic‖2

L(U,H)Lgr + 10‖ic‖2
L(U,H)Mg + [10Lgr + 10Mg]

(∫ ∞

0

e−δsH(s)ds

)2

+10‖ic‖2
L(U,H)

d2
1

δ2
(Lgr + Mg) + 5TrQW (r)L1.

Dividing both sides by r and taking the lower limit as r →∞, we obtain

1 ≤ 10‖ic‖2
L(U,H)Lg + 10Lg

(∫ ∞

0

e−δsH(s)ds

)2

+ 10Lg‖ic‖2
L(U,H)

d2
1

δ2

+5TrQL1 lim inf
r→∞

W (r)
r

,

which contradicts the condition (3.3). Thus, for some positive number r, Γ(Br) ⊂ Br.
In what follows, we aim to show that the operator Γ is condensing on Br. Now we
decompose Γ as Γ = Γ1 + Γ2 + Γ3, where the operators Γ1, Γ2, Γ3 are defined on Br,
respectively, by

Γ1x(t) = g (t, x(t)) +
∫ t

−∞
AT (t− s)(I − P )g (s, x(s)) ds

−
∫ ∞

t

AT (t− s)Pg (s, x(s)) ds,

Γ2x(t) =
∫ t

−∞
T (t− s)(I − P )G (s, x(s)) dw(s),

Γ3x(t) = −
∫ ∞

t

T (t− s)PG (s, x(s)) dw(s), t ∈ R.

We will verify that Γ1 is a contraction while Γ2 and Γ3 are completely continuous.
Step 2. Γ1 is a contraction. Let x, y ∈ Br. Then for each t ∈ R and by condition

(H2), we have

E‖Γ1x(t)− Γ1y(t)‖2

≤ 3E‖g (t, x(t))− g (t, y(t)) ‖2
U
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+3E

(∥∥∥∥∫ t

−∞
AT (t− s)(I − P )[g (s, x(s))− g (s, y(s))]ds

∥∥∥∥)2

+3E

(∥∥∥∥∫ ∞

t

AT (t− s)P [g (s, x(s))− g (s, y(s))]ds

∥∥∥∥)2

≤ 3‖ic‖2
L(U,H)E‖g (t, x(t))− g (t, y(t)) ‖2

U

+3
(∫ t

−∞
e−δ(t−s)H(t− s)ds

)
×
(∫ t

−∞
e−δ(t−s)H(t− s)E‖g (s, x(s))− g (s, y(s)) ‖2

Uds

)
+3d2

1

(∫ ∞

t

eδ(t−s)ds

)
×
(∫ ∞

t

eδ(t−s)‖ic‖2
L(U,H)E‖g (s, x(s))− g (s, y(s)) ‖2

Uds

)
≤ 3‖ic‖2

L(U,H)Lg sup
t∈R

E‖x(t)− y(t)‖2

+3Lg

(∫ t

−∞
e−δ(t−s)H(t− s)ds

)2

sup
t∈R

E‖x(t)− y(t)‖2

+3d2
1‖ic‖2

L(U,H)Lg

(∫ ∞

t

eδ(t−s)ds

)2

sup
t∈R

E‖x(t)− y(t)‖2

≤ 3Lg

[
‖ic‖2

L(U,H) +
(∫ ∞

0

e−δsH(s)ds

)2

+
d2
1‖ic‖2

L(U,H)

δ2

]
‖x− y‖2

∞

= L2‖x− y‖2
∞,

where L2 = 3Lg

[
‖ic‖2

L(U,H) +
(∫∞

0
e−δsH(s)ds

)2
+

d2
1‖ic‖2L(U,H)

δ2

]
.

Thus
‖Γ1x− Γ1y‖2

∞ ≤ L2‖x− y‖2
∞,

which implies that Γ1 is a contraction by (3.3).
Step 3. Γ2 is completely continuous.
(a) For all t ∈ R, the set Γ2Br(t) = {Γ2x(t) : x ∈ Br} is relatively compact in H.

In fact, for each t ∈ R, x ∈ Br and for any ε > 0, we see that

Γ2x(t) = T (ε)
∫ t−ε

−∞
T (t− ε− s)(I − P )G (s, x(s)) dw(s)

+
∫ t

t−ε

T (t− s)(I − P )G (s, x(s)) dw(s).

Moreover, from the estimate

E

∥∥∥∥∫ t−ε

−∞
T (t− ε− s)(I − P )G (s, x(s)) dw(s)

∥∥∥∥2
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≤ TrQW (r)
∫ t−ε

−∞
M2

0 e−2δ(t−ε−s)mG(s)ds

≤ TrQW (r)L1

and

E

∥∥∥∥∫ t

t−ε

T (t− s)(I − P )G (s, x(s)) dw(s)
∥∥∥∥2

≤ TrQW (r)M2
0

∫ t

t−ε

mG(s)ds,

we obtain that
Γ2Br(t) ⊂ T (ε)Br∗(t) + Cε, (3.4)

where r∗ = TrQW (r)L1 and diam(Cε) ≤ TrQW (r)M2
0

∫ t

t−ε
mG(s)ds. Since T (ε) is

compact, diam(Cε) → 0 as ε → 0 and x(·) is arbitrary, from (3.4) we infer that is
relatively compact in H.

(b) The set Γ2Br = {Γ2x : x ∈ Br} is equicontinuous.
Let ε be small enough and t ∈ R. Since Ψ = Γ2Br(t) is relatively compact in

H, there exists γ > 0 such that E‖ (T (h)− I) y‖2 ≤ ε and
∫ t+h

t
mG(s)ds ≤ ε for all

y ∈ Ψ and every 0 < h < γ. Then, for x ∈ Br and 0 < h < γ we have

E‖Γ2u(t + h)− Γ2u(t)‖2

≤ 2E

∥∥∥∥(T (h)− I)
∫ t

−∞
T (t− s)(I − P )G (s, x(s)) dw(s)

∥∥∥∥2

+2E

∥∥∥∥∥
∫ t+h

t

T (t + h− s)(I − P )G (s, x(s)) dw(s)

∥∥∥∥∥
2

≤ 2 sup
y∈Ψ

E‖ (T (h)− I) y‖2 + 2TrQW (r)M2
0

∫ t+h

t

mG(s)ds

≤ 2ε
(
1 + TrQW (r)M2

0

)
,

which implies that the set Γ2Br is right equicontinuous at t. By a similar procedure we
can show that Γ2Br is left equicontinuous at t. Thus, the set Γ2Br is equicontinuous.

(c) limt→±∞E‖Γ2x(t)‖2 = 0 uniformly for x ∈ Br.
Let ε > 0 be given, we select Nε ∈ N such that

TrQM2
0

∫ t

−∞
e−2δ(t−s)mG(s)ds < ε, t ≤ −Nε,

2M2
0 e−2δNεr + 2TrQM2

0 W (r) sup
ϑ≥Nε

∫ ϑ

Nε

e−2δ(ϑ−s)mG(s)ds < ε, t ≥ 2Nε.

Consequently, for x ∈ Br and t ≤ −Nε, we find that

E‖Γ2x(t)‖2 ≤ TrQ

∫ t

−∞
‖T (t− s)(I − P )‖2E‖G (s, x(s)) ‖2

L0
2

≤ TrQM2
0

∫ t

−∞
e−2δ(t−s)mG(s)W (r)ds ≤ εW (r),
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which shows that limt→−∞E‖Γ2x(t)‖2 = 0, uniformly for x ∈ Br. On the other
hand, for t ≥ 2Nε and x ∈ Br, we get

E‖Γ2x(t)‖2 ≤ 2E

(∥∥∥∥∥T (t−Nε)
∫ Nε

−∞
T (Nε − s)(I − P )G (s, x(s)) dw(s)

∥∥∥∥∥
)2

+2E

∥∥∥∥∫ t

Nε

T (t− s)(I − P )G (s, x(s)) dw(s)
∥∥∥∥2

≤ 2M2
0 e−2δ(t−Nε)E‖Γ2x(Nε)‖2

+2TrQM2
0 W (r)

∫ t

Nε

e−2δ(t−s)mG(s)ds

≤ 2M2
0 e−2δNεr + 2TrQM2

0 W (r) sup
ϑ≥Nε

∫ ϑ

Nε

e−2δ(ϑ−s)mG(s)ds

≤ ε,

which implies that limt→∞E‖Γ2x(t)‖2 = 0 uniformly for x ∈ Br.
As a consequence of the above steps and Lemma 2.2, we can conclude that Γ2 is

completely continuous on Br. Moreover, applying the same method as in Step 3 of
this proof, we obtain that Γ3 is also completely continuous on Br. These arguments
enable us to conclude that Γ = Γ1 + Γ2 + Γ3 is a condensing map on Br.

Now, from Lemma 2.3, we assert that the problem (1.1) has a mild solution on R.
The proof is now completed.

4. Applications

In this section we consider a simple example of our abstract results. We examine
the existence and uniqueness of global mild solutions to the partial neutral stochastic
differential system

d

[
x(t, ξ)−

∫ π

0

b(η, ξ)x(t, η)dη

]
=

∂2

∂ξ2
x(t, ξ)dt + a (t, x(t, ξ)) dw(t), (4.1)

x(t, 0) = x(t, π) = 0, (4.2)
for all (t, ξ) ∈ R× [0, π], where w(t) is a Brownian motion.

Let H := L2([0, π]) with the norm ‖ · ‖ and A be the operator defined by Az = z′′,
with domain

D(A) = {z ∈ H : z′′ ∈ H, z(0) = z(π) = 0}.
It is well known that (for example, see [9, 13, 16]) A is the infinitesimal generator of
an analytic semigroup {T (t)}t≥0 on H. Furthermore, A has a discrete spectrum with
eigenvalues of the form −n2, n ∈ N, and corresponding normalized eigenvectors given

by zn(ξ) =
√

2
π sin(nξ). Moreover, the following properties hold:

(1) {zn : n ∈ N} is an orthonormal basis of H.
(2) T (t)z =

∑∞
n=1 e−n2t〈z, zn〉zn, for every z ∈ H and all t > 0.

(3) Az = −
∑∞

n=1 n2〈z, zn〉zn, for every z ∈ D(A).
(4) ‖T (t)‖ ≤ e−t for every t ≥ 0.
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In addition, it is possible to define the fractional power (−A)α, for 0 < α ≤ 1, as
closed linear operator on its domain D ((−A)α) with inverse (−A)−α (see [16] and
[13] for details). Especially,

(5) For z ∈ H and α ∈ (0, 1), (−A)−αz =
∑∞

n=1
1

n2α 〈z, zn〉zn.
(6) The operator (−A)α : D ((−A)α) ⊆ H → H is given by (−A)αz =∑∞
n=1 n2α〈z, zn〉zn for every z ∈ D ((−A)α) = {z ∈ H :

∑∞
n=1 n2α〈z, zn〉zn ∈ H}.

(7) For α = 1
2 , ‖(−A)−

1
2 ‖ = 1 and ‖(−A)

1
2 T (t)‖ ≤ 1√

2
e−

t
2 t−

1
2 for all t > 0.

Now, we take K = R with the norm |·|, and we assume that the following conditions
hold:
(H7) The functions b(·), ∂i

∂ξi b(η, ξ), i = 0, 1 are Lebesgue measurable, b(η, 0) =
b(η, π) = 0, and let

Lg = max

{∫ π

0

∫ π

0

(
∂i

∂ξi
b(η, ξ)

)2

dηdξ : i = 0, 1

}
< ∞.

(H8) Let g : R×H → H 1
2

and G : R×H → L0
2 be defined for ξ ∈ [0, π] and t ∈ R by

g(t, x)(ξ) =
∫ π

0

b(η, ξ)x(η)dη,

G(t, x)(ξ) = a (t, x(ξ)) .

Then the system (4.1)-(4.2) takes the abstract form

d[x(t)− g (t, x(t))] = Ax(t)dt + G (t, x(t)) dw(t), t ∈ R.

Moreover, from (H7), it follows that g is continuous and g(t, ·) is a bounded linear
operator with ‖g(t, ·)‖L(H,H 1

2
) ≤ Lg. Further, we can impose some suitable conditions

on the above defined function G(·) to verify the assumption on Theorem 3.1, we can
conclude that the problem (4.1)-(4.2) has a unique global mild solution.
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