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Abstract. Geophysicists have long known that near-zero frequency data is insensitive to the vari-
ations of the index of refraction in a medium. Using the contraction mapping principle we are able
to prove this fact for layered media. Moreover, the method of proof extracts from the data the part
which is sensitive to the variation of the refractive index. We illustrate this sensitivity by recon-
structing an approximate refractive index. The approximation is necessary due to the ill-posedness
in the reconstruction problem.
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1. Introduction

We consider an inverse source problem for the differential equation

∂y

∂x
(x, s) +

2s

1 + sx
y(x, s) = a(x), 0 ≤ s ≤ ǫ, (1)

for some ǫ > 0 small. The source a(x) is unknown and the boundary data

y(0, s) = 0, (2)

y(1, s) = ϕ(s) (3)

are available for small values of s near zero. This problem occurs in the frequency
sounding of layered media when we only have knowledge of near zero frequency data.

The method of frequency sounding was introduced in geophysical prospecting of
the Earth’s crust in the early fifties by Tikhonov [18] and Cagniard [6]. An explosion
is set off at the surface and the response is recorded afterwards. One is to determine
the sound speed of the inner structure of the Earth from these recordings. Due to
its applications, the problem has been extensively studied both on the mathematical
and on the engineering front and the reference below are by no means exhaustive.
For example, by reducing the wave equation to the Helmholtz equation, the problem
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reduces to finding the refraction coefficient from boundary data, see [16], [5], [3],
[4], [15],[9]. In [17] the frequency sounding problem is reduced to an inverse source
problem for a first order quadratic differential equation. All of the above methods
above use knowledge of high frequency data. By contrast we consider the problem
for near zero frequency data starting from the model in [17].

In Sections 1 and 2 we describe the reduction of the frequency sounding problem to
an inverse problem for (1). Namely, in Section 1 we describe the reduction from the
acoustic wave model to an intermediate Riccati differential equation. In Section 2, by
asymptotic methods (as frequency goes to zero), we show that near zero frequency
data in the intermediate problem is not sensitive to variations of the sound speed.

In Section 4 we consider the linearized inverse problem (which is justified by the
asymptotic result in Section 3) and point out the equivalence of the inverse source
problem to the inversion of the Laplace transform, which guarantees uniqueness.
However our inverse problem is severely ill-posed: In an example we perturb the
coefficient of y(x, s̃) in (26), for which the corresponding inverse problem exhibits a
large class (co-dimension three) non-uniqueness.

We regularize the problem by seeking its solution in a finite dimensional space of
polynomials or wavelets (see Section 5). We show that the first n − 1st derivatives
of the data uniquely determines the best L2- polynomial approximation of the source
a(x), see Theorem 5.1. In the end some numerical experiments are conducted with
simulated data.

2. Connection with the inverse acoustic problem of layered media

This section briefly describe the steps in [17] to reduce an inverse acoustic problem
in a layered media to an inverse Riccati equation.

We start with the pulsed acoustic wave equation in layered media

c−2(z)Utt(z, t) − Uzz(z, t) = 0, z > 0, t > 0, (4)

U(z, 0) = Uz(z, 0) = 0, (5)

U(0, t) = δ(t). (6)

We further assume that the medium is homogeneous past its Epstein layer ([7]): i.e.
c(z) = c0 for z > L, for some depth L > 0. Motivated by our technique, we work
under the assumption that the pressure wave is bounded at all times t > 0:

|U(z, t)| ≤ M ∀t > 0, (7)

Assume the model given in (4) through (7), for a given the depth of the Epstein
layer L, and a given speed c(z) = c0 for z > L. Knowing the derivative of the pressure
at the surface Uz(0, t) = Ψ(t), t > 0 one is to find the sound speed c(z) in (0, L).

Let

ũ(z, σ) =

∫ ∞

0

e−σtU(z, t)dt, z > 0, σ ≥ 0,

be the Laplace transform of U solution of (4) through (7). By introducing the dimen-
sionless variables x = z/L, s = σL/c0, and denoting n(z) = c0/c(z) and

u(x, s) = ũ(Lx, c0s/L),



AN INVERSE SOURCE PROBLEM IN NEAR ZERO FREQUENCY SOUNDING 13

we arrive to the dimensionless equation

∂w

∂x
(x, s) = w2(x, s) − s2n2(x), 0 < x < 1 (8)

w(1, s) = s, s ≥ 0, (9)

where the admittance function w is given by

w(x, s) = −
∂u
∂x

(x, s)

u(x, s)
.

Note that solutions of (8) are positive. Otherwise, they have negative local minima,
where they should also be concave down. Consequently, the admittance function w
is well defined.

Following the normalization, the Laplace transform of the measured data

ϕ(σ) =

∫ ∞

0

e−σtUx(0, t)dt,

gives

w(0, s) =
∂u

∂x
(0, s) = Lϕ(s).

In this paper we assume the data are available only for 0 ≤ s < ǫ.
Finally, since we like to solve initial value problems in the positive x direction, for

g(x, s) = w(1 − x, s),

we obtain
{

∂g
∂x

(x, s) = s2m2(x) − g2(x, s), 0 ≤ x ≤ 1

g(0, s) = s,
(10)

where

m(x) =
c0

c(L(1 − x))
. (11)

3. Asymptotic expansion as s → 0+

In this section we study the asymptotic expansion (for s → 0) of solutions of (10)
and show that the main order term is independent of m(x) in (11).

Theorem 3.1. Consider the problem (10), for some coefficient m integrable on [0, 1].
There exists an s̄ > 0, such that for each s ∈ [0, s] the solution x → g(x, s) of (10)

exists throughout 0 ≤ x ≤ 1 and the following asymptotic formula holds:

g(x, s) =
s

1 + sx
+ s2y(x, s), (12)

where y ∈ C([0, 1] × [0, s̄]) is given by

y(x, s) =

∫ x

0

m2(t)dt + O(s), as s → 0+.
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Proof. We seek solutions g of (10) by using the ansatz (12). The initial value problem
for y(x, s) is

{

∂y
∂x

(x, s) = m2(x) − 2s
1+sx

y(x, s) − s2y2(x, s), 0 ≤ x ≤ 1,

y(0, s) = 0.
(13)

The function y(x, s) is a solution to (13) if and only if g(x, s) solves the family of
Riccati problems in (10).

For each s, the solution to (13) exists and is unique for x near 0. Using the
Contraction Mapping Principle, we show that the solution to (13) exists on the entire
[0, 1] for all s ∈ [0, s̄] and s̄ sufficiently small. Let

φ(x) =

∫ x

0

m2(t) dt. (14)

Note that x 7→ φ(x) is increasing, hence 0 = φ(0) ≤ φ(x) ≤ φ(1) . By integrating
both sides of (13) and taking into account (14), we obtain the equivalent Volterra
integral equation

y(x, s) = V [y](x, s), (15)

where

V [y](x, s) = φ(x) − s ·
∫ x

0

(

2

1 + st
y(t, s) + sy2(t, s)

)

dt (16)

is a Volterra operator acting on the space of continuous function C([0, 1]× [0, s̄]) with
the L∞-norm, for some s̄ to be specified later on. More precisely we restrict the
domain of V to the closed ball B(φ; R) centered at φ with the radius R:

B(φ; R) := {y ∈ C([0, 1] × [0, s̄]) : sup
[0,1]×[0,s̄]

‖y(x, s) − φ(x)‖ ≤ R}. (17)

We will show that, for s̄ sufficiently small, V : B(φ; R) → B(φ; R) is contractive.
By the Contraction Mapping Principle V has a unique fixed point in B(φ; R), which
is also a solution of (13).

We first show that V {B(φ; R)} ⊂ B(φ; R). Let y ∈ B(φ; R) be arbitrary. Then for
all (x, s) ∈ [0, 1]× [0, s̄] we get

|y(t, s)| ≤ R + M, (18)

where for simplicity we denote M = φ(1). For all (x, s) ∈ [0, 1] × [0, s̄] the following
estimate holds:

| V [y](x, s) − φ(x) | = s
∣

∣

∣

∫ x

0

2

1 + st
y(t, s) + sy2(t, s) dt

∣

∣

∣

≤ s
[

∫ x

0

2

1 + st
|y(t, s)| dt + s

∫ x

0

|y(t, s)|2 dt
]

≤ s
[

2

∫ 1

0

|y(t, s)| dt + s

∫ 1

0

(|y(t, s)|)2 dt
]

.

(19)

It follows from (19) and (18) that

| V [y](x, s) − φ(x) | ≤ s · [2(R + M) + s(R + M)2] (20)
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The right hand side of (20) can be bounded by R,

s · [2(R + M) + s(R + M)2] ≤ R, (21)

provided that 0 ≤ s ≤ σ, where

σ =
R

(R + M)(
√

R + 1 + 1)
. (22)

Next, we show that V is contractive. Letting ỹ ∈ B(φ; R) and taking into account
(18) and (21), we have

|V [y](x, s) − V [ỹ](x, s)| ≤ s

∫ x

0

2 + s|y(t, s)| + s|ỹ(t, s)|
1 + st

|y(t, s) − ỹ(t, s)|dt

≤ 2s[1 + s(R + M)]

∫ x

0

|y(t, s) − ỹ(t, s)|dt

≤ 2s
√

R + 1 ·
∫ x

0

|y(t, s) − ỹ(t, s)|dt.

(23)

By taking the maximum in x ∈ [0, 1] and s ∈ [0, σ], we get

‖V [y] − V [ỹ]‖∞ ≤ 2s
√

R + 1 · ‖y − ỹ‖∞ (24)

By further constraining s so that s < σ̄ where

σ̄ =
1

2
√

R + 1
(25)

we get that V is a contraction. Thus, let h = min{σ, σ̄}, then 0 < s̄ < h. Moreover,
let ŷ be a fixed point of (15), then by (18) we get

ŷ(x, s) =

∫ x

0

m2(t)dt + O(s), as s → 0+. �

4. The linearized inverse problem

Since solutions y(x, s) as in (12) are bounded as s → 0+, we get that, for s̃ = 2s
sufficiently small, solutions of (1) are asymptotically close to solution of the linear
equation

{

∂y
∂x

(x, s̃) + s̃y(x, s̃) = a(x), 0 ≤ x ≤ 1,

y(0, s̃) = 0.
(26)

We consider the linearized inverse source problem: Assume that y(x, s̃) solves (26)
for some unknown a(x). Given y(1, s̃) find a(x).

We note first that the inverse source problem formulated above is equivalent to the
inversion of the Laplace transform for b(x) where:

b(1 − x) = a(x), 0 ≤ x ≤ 1. (27)

Indeed, the solution to the 1st order differential equation is

y(x, s̃) =

∫ x

0

a(t)e−s̃(x−t) dt (28)
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so that the data

y(1, s̃) =

∫ ∞

0

b̃(t)e−s̃tdt (29)

is exactly the Laplace transform of b̃(x), where

b̃(x) =

{

b(x), x ∈ [0, 1]

0, x > 1
=

{

a(1 − x), x ∈ [0, 1]

0 x > 1.

Therefore the inverse source problem has unique solution, solution given by the
inversion of its Laplace transform. Since we only know the Laplace transform for
s ∈ [0, s̄] with s̄ small, this is a problem of analytic continuation which is severely
ill-posed.

To further emphasize the ill-posedness character of our inverse problem for (26)
consider the following example.

Example. Let y(x, s) be the solution of the problem
{

∂y
∂x

(x, s) + q(x, s)y(x, s) = a(x), s ∈ [0, ǫ),

y(0, s) = 0,
(30)

where the coefficient q(x, s) = 2s
1+sx

is O(ǫ2)-close to 2s:

|q(x, s) − 2s| =

∣

∣

∣

∣

2s

1 + sx
− 2s

∣

∣

∣

∣

≤ 2ǫ2

1 − ǫ
,

for sufficiently small ǫ > 0 and x ∈ [0, 1]. The data y(1, s) satisfies:

(1 + s)2y(1, s) =

∫ 1

0

a(t)dt + 2s

∫ 1

0

a(t)tdt + s2

∫ 1

0

a(t)t2dt.

Therefore, the problem is to find the source a(x) from knowing its first three moments
∫ 1

0
a(t)tjdt, for j = 0, 1, 2. This example exhibits a co-dimension three non-uniqueness.

5. Regularized solutions

We regularize the problem by restricting the class of sources a(x) to some finite
dimensional spaces: polynomials or finite expansion in a wavelet base.

5.1. The best least square polynomial approximations and the Hilbert ma-

trix. Recall that y(x, s) denote the solutions to the differential equation (26):
{

∂y
∂x

(x, s̃) + s̃y(x, s̃) = a(x), 0 ≤ x ≤ 1,

y(0, s) = 0,

where for simplicity we denote s for s̃.
We show next that the first n-th derivatives of the data y(1, s) at frequency s = 0

determine the best least square polynomial approximation of a(x).

Theorem 5.1. The first n derivatives ∂ky

∂sk (1, s)|s=0, (k = 0, 1, . . . n) of the data
uniquely determine the best least square n-th degree polynomial approximation to a(x).
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Proof. It is easy to see that the solution y to (26) satisfies

esxy(x, s) =

∫ x

0

a(t)estdt.

In particular for x = 1 the function

esy(1, s) =

∫ 1

0

a(t)estdt. (31)

is analytic in s. Let bk denote the kth Taylor coefficient, i.e.

esy(1, s) =

∞
∑

k=0

bk

k!
sk. (32)

Using the left hand side of (31) we have

bk =

∫ 1

0

a(t)tkdt. (33)

We show next that if a(x) were a polynomial, say

a(x) = α0 + α1x + . . . + αnxn, (34)

then its coefficients are uniquely determined by the first n derivatives of the data at
s = 0, by solving (for the unknown α′s) the linear system

n
∑

j=0

αj

k + j + 1
= bk. (35)

Indeed, if we plug (32) into the left hand side of (31) and (34) into the right hand
side of (31) we get

∞
∑

k=0

bk

k!
sk =

n
∑

k=0

αk

∫ 1

0

tkestdt. (36)

By identifying the coefficients of the first n powers of s we are lead to the linear
system (35).

Note that H = ( 1
j+k−1 )1≤k,j≤n+1 is the Hilbert matrix and (35) can be written as

a matrix equation:

H · ~α = ~b

where ~α = (α0, ..., αn)T ,~b = (b0, ..., bn)T .
On the other hand let us consider the best least square polynomial approximation

of the function a(x):

min
α0,...,αn∈R

∫ 1

0

|a(x) −
n

∑

j=0

αjx
j |2dx.
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The quadratic form

Q(α0, ..., αn) =

∫ 1

0

|a(x) −
n

∑

j=0

αjx
j |2dx =

∫ 1

0

a2(x)dx − 2

n
∑

j=0

αjbj · · ·

+
n

∑

j=0

α2
j

2j + 1
+ 2

∑

0≤i<j≤n

αiαj

i + j + 1

has a minimum where ∂Q
∂αk

(α0, ..., αn) = 0. A simple calculation leads to the linear
system for α0, ..., αn:

n
∑

j=0

αj

j + k + 1
=

∫ 1

0

a(x)xkdx (37)

By comparing the right hand side of (37) with (33) we see that α0, ..., αn also solves

the system H · ~α = ~b. �

5.2. Finite expansion in a wavelet basis. In this method, a(x) is expanded in
a wavelet basis and the approximation truncates the expansion. We determine one
scale ak(x) at a time for x ∈ [0, 1], i.e.

a(x) =

K
∑

i=0

ai(x) =

K
∑

i=0

2i

∑

j=1

αi,jgi,j(x),

where

gi,j(x) =

{

1, j−1
2i ≤ x ≤ j

2i ,

0, elsewhere.
(38)

The choice of K pre-determines the number of intervals for a piecewise approxi-
mation of a(x), see Figure 2.

6. Numerical Results

In this section we illustrate the source reconstructions from simulated data using
the two approximation methods described in sections 5.1 and, respectively, 5.2. In
both cases we simulated the data for the source a(x) given by

{

4.5|x − 1
3 | + 0.25 if x ∈ [16 , 1

2 ]

1 otherwise.
(39)

By using the polynomial approximation method in section 5.1, for the cubic re-
spectively quartic polynomials, we find:

P3(x) = 1.2381− 4.5064x + 10.1806x2 − 6.0176x3,

and

P4(x) = 1.2824− 5.3927x + 14.1690x2 − 12.2217x3 + 3.1021x4.

In the Figure 1 we show the source a(x) versus the two polynomial approximations
w(x).
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Figure 1. Targeted refraction a(x) (Solid) and its reconstructed
polynomial approximations (dashed and dotted).

For the same a(x) as in (39) we use the wavelet approximation method in section
5.2 to get the approximation

w(x) =

3
∑

i=0

2i

∑

j=1

αi,jgi,j(x),

where gi,j ’s are the basis functions in (38) and the computed coefficients are:
α0,1 = 0.8740,

α1,1 = −0.0864, α1,2 = 0.0864,
α2,1 = 0.1715, α2,2 = −0.3086, α2,3 = 0.1090, α2,4 = 0.0282,
α3,1 = 0.0215, α3,2 = 0.0268, α3,3 = −0.2487, α3,4 = 0.3290,

α3,5 = −0.0962, α3,6 = −0.0505, α3,7 = 0.0061, α3,8 = 0.0121.
The Figure 2 below shows the wavelet expansion approximation w(x) versus the

source a(x).

7. Conclusions

We considered an inverse source problem for a first order Riccati equation. This
problem has been motivated by the geophysics problem of recovering the refractive
index of a layered medium from the near zero frequency data.

The near zero frequency data in the geophysics problem turned out to be insensitive
to the variation of the refractive index. We studied first the asymptotic as frequency
s → 0 in order to extract the sensitive part. Furthermore, the asymptotic showed
that it is sufficient to work with the linear model.
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Figure 2. Targeted refraction a(x) (solid) and its wavelet expansion
approximation (dashed-dotted).

The inverse problem in the linear model is equivalent to inverting a Laplace trans-
form from near zero frequency. This is a problem of unique analytic continuation
which is severely ill-posed. We regularized the inverse problem by seeking an approx-
imate source in the finite dimensional space of polynomials of a given degree or as a
finite wavelet expansion.

When looking at polynomial approximations, we showed that the first n deriva-
tives of the data uniquely determined the best least square n-th degree polynomial
approximation of the unknown coefficient.

We perform a series of numerical experiments with simulated data. The results
confirmed the severity of the ill-posedness in the problem.
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