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Abstract. In this paper we consider the Darboux problem for a third order hyperbolic

inclusion of the form uxyz ∈ F (x, y, z, u). Using the notion of uniform convergence on

compact domains as defined by Arrigo Cellina for a sequence of single-valued functions

fk : Λ → Rn such that fk → F , where F is a multifunction, it is considered a sequence of

approximating univalued equations of the form uxyz = fk (x, y, z, u) and it is proved that they

have a unique solution based on Schauder’s Fixed Point Theorem. Using a characterization

theorem for the solutions of the Darboux Problem for the specified inclusion, it is proved

that the sequence of solutions to the univalued equations uniformly converges, on compact

sets, to a solution of the Darboux Problem for the considered inclusion.

Key Words and Phrases: multifunction, hyperbolic inclusion, upper semi-continuity, ini-

tial values, absolutely continuous in Carathéodory’s sense function, Aumann integral, uni-
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1. Introduction

In this paper we consider the Darboux Problem for a third order hyperbolic
inclusion of the form
∂3u (x, y, z)
∂x ∂y ∂z

∈ F (x, y, z, u) , (x, y, z) ∈ D = [0, a]×[0, b]×[0, c] , u∈Ω⊂Rn

(1.1)

This paper was presented at the International Conference on Nonlinear Operators, Dif-

ferential Equations and Applications held in Cluj-Napoca (Romania) from July 4 to July 8,

2007.
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with the initial values
u (x, y, 0) = ϕ (x, y) , (x, y) ∈ D1 = [0, a]× [0, b] ,
u (0, y, z) = ψ (y, z) , (y, z) ∈ D2 = [0, b]× [0, c] ,
u (x, 0, z) = χ (x, z) , (x, z) ∈ D3 = [0, a]× [0, c]

(1.2)

where ϕ,ψ, χ are absolutely continuous in Carathéodory’s sense functions [2,
§565 - §570], ϕ ∈ C∗ (D1; Rn), ψ ∈ C∗ (D2; Rn), χ ∈ C∗ (D3; Rn) and they
satisfy the conditions

u (x, 0, 0) = ϕ (x, 0) = χ (x, 0) = v1 (x) , x ∈ [0, a] ,
u (0, y, 0) = ϕ (0, y) = ψ (y, 0) = v2 (y) , y ∈ [0, b] ,
u (0, 0, z) = ψ (0, z) = χ (0, z) = v3 (z) , z ∈ [0, c] ,
u (0, 0, 0) = v1 (0) = v2 (0) = v3 (0) = v0,

(1.3)

where F : D×Ω → 2Rn
is a multifunction with compact convex and non-empty

values and Ω ⊂ Rn is an open subset.
Under suitable assumptions, we proved in [27] an existence theorem for

a local solution of the Darboux Problem (1.1) + (1.2) and that the set of its
solutions is compact in Banach space C (D0; Rn), D0 = [0, x0]×[0, y0]×[0, z0] ⊆
D; moreover, as a function of the initial values this set defines an upper semi-
continuous multifunction.

In [28] we proved a theorem of prolongation for the solutions of the consid-
ered problem and also an existence theorem for a saturated solution.

In [29] we proved a characterization theorem for the solutions of Darboux
Problem (1.1) + (1.2) using the Aumann integral defined for multifunctions.

In this paper, using the notion of uniform convergence on compact sets as
defined by Arrigo Cellina for a sequence of single-valued functions fk : Λ →
Rn such that fk → F , where F is a multifunction, we consider a sequence
of approximating univalued equations of the form uxyz = fk (x, y, z, u) and
we prove that they have a unique solution based on Schauder’s Fixed Point
Theorem. Using a characterization theorem for the solutions of the Darboux
Problem for the specified inclusion, we prove that the sequence of solutions
to the approximating univalued equations uniformly converges, on compact
sets, to a solution of the Darboux Problem (1.1) + (1.2) for the considered
inclusion. This study has been suggested by [26] and it provides an extension
of the results in that article.
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2. Preliminaries

The definitions and Theorems 2.1-2.7 plus Propositions 2.1-2.4 in this sec-
tion are taken from [1], [2], [5]-[29].

Definition 2.1. Let X and Y be two non-empty sets. A multifunction Φ :
X → 2Y is a function from X into the family of all non-empty subsets of Y .

To each x ∈ X, a subset Φ (x) of Y is associated by the multifunction Φ.

The set
⋃

x∈X

Φ (x) is the range of Φ. Φ (X) =
{ ⋃

x∈X

Φ (x) | x ∈ X
}

.

Definition 2.2. Let us consider Φ : X → 2Y .
a) If A ⊂ X, the image of A by Φ is Φ (A) =

⋃
x∈A

Φ (x);

b) If B ⊂ Y , the counterimage of B by Φ is

Φ− (B) = {x ∈ X | Φ (x) ∩B 6= ∅} ;

c) The graph of Φ, denoted graphΦ, is the set

graphΦ = {(x, y) ∈ X × Y | y ∈ Φ (x)} .

Definition 2.3. Let us now take Φ : X → 2Y . An element x ∈ X with the
property x ∈ Φ (x) is called a fixed point of the multifunction Φ.

Definition 2.4. A univalued function ϕ : X → Y is said to be a selection of
Φ : X → 2Y if ϕ (x) ∈ Φ (x) for all x ∈ X.

Definition 2.5. Let X and Y be two topological spaces. The multifunction
Φ : X → 2Y is upper semi-continuous if, for any closed B ⊂ Y , Φ− (B) is
closed in X.

Definition 2.6. If (X,F) is a measurable space and Y is a topological space,
the multifunction Φ : X → 2Y is measurable if Φ− (B) ∈ F for every closed
subset B ⊂ Y,F being the σ-algebra of the measurable sets of X, i.e. Φ− (B)
is measurable.

Theorem 2.1. [21]. Let X and Y be two metric spaces, Y compact and
Φ : X → 2Y a multifunction with the property that Φ (x) is a closed subset of
Y for any x ∈ X. The following assertions are equivalent:
i) the multifunction Φ is upper semi-continuous;
ii) the graph of Φ is a closed subset of X × Y ;
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iii) any would be the seguences (xn)n∈N and (yn)n∈N, from xn → x, yn ∈
Φ (xn) and yn → y it follows that y ∈ Φ (x).

Definition 2.7. [2], [10], [11] The function u : 4 → Rn,4 ⊂ R2, is abso-
lutely continuous in Carathéodory’s sense [2, §565 - §570] if and only if it is
continuous on 4, absolutely continuous in x (for any y), absolutely contin-
uous in y (for any x), ux (x, y) is (possibly after a suitable definition on a
two-dimensional set of zero measure) absolutely continuous in y (for any x)
and uxy is Lebesque-integrable on 4.

Theorem 2.2. [2], [7], [24] The function u : 4→ Rn, 4 = [0, a]× [0, b] ⊂ R2,
is absolutely continuous in Carathéodory’s sense on 4 if and only if there exist
f ∈ L1 (4; Rn), g ∈ L1 ([0, a] ; Rn), h ∈ L1 ([0, b] ; Rn) such that

u (x, y) =
∫ x

0

∫ y

0
f (s, t) ds dt+

∫ x

0
g (s) ds+

∫ y

0
h (t) dt+ u (0, 0) .

We denote the class of absolutely continuous functions in Carathéodory’s
sense by C∗ (4; Rn), [11], [12]. In [7], this space is denoted by AC (4; Rn).

Theorem 2.3. [7] The space C∗ (4; Rn) endowed with the norm

‖u(·, ·)‖=
∫ a

0

∫ b

0
‖uxy(s, t)‖ ds dt+

∫ a

0
‖ux(s, 0)‖ ds+

∫ b

0
‖uy(0, t)‖ dt+‖u(0, 0)‖ ,

where 4 = [0, a] × [0, b] ⊂ R2, and ‖·‖ is the Euclidean norm, is a Banach
space.

Definition 2.8. [2], [12] The function u : D → Rn, D ⊂ R3, is absolutely
continuous in Carathéodory’s sense [2, §565 - §570] if and only if u (x, y, z)
is continuous on D, absolutely continuous in each variable (for any pair of
the other two variables) and similarly for ux (x, y, z), uy (x, y, z), uz (x, y, z),
uxy (x, y, z), uyz (x, y, z), uxz (x, y, z), and uxyz is Lebesque-integrable on D.

Theorem 2.4. [7] The function u : D → Rn, D = [0, a]× [0, b]× [0, c] ⊂ R3,
is absolutely continuous in Carathéodory’s sense on D if and only if there
exist f ∈ L1 (D; Rn), g1 ∈ L1 (D1; Rn), g2 ∈ L1 (D2; Rn), g3 ∈ L1 (D3; Rn),
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h1 ∈ L1 ([0, a] ; Rn), h2 ∈ L1 ([0, b] ; Rn), h3 ∈ L1 ([0, c] ; Rn), such that

u (x, y, z) =
∫ x

0

∫ y

0

∫ z

0
f (r, s, t) dr ds dt+

∫ x

0

∫ y

0
g1 (r, s) dr ds+

+
∫ y

0

∫ z

0
g2 (s, t) ds dt+

∫ x

0

∫ z

0
g3 (r, t) dr dt+

+
∫ x

0
h1 (r) dr +

∫ y

0
h2 (s) ds+

∫ z

0
h3 (t) dt+ u (0, 0, 0) .

We denote the class of absolutely continuous functions in Carathéodory’s
sense on D by C∗ (D; Rn) [12].

Theorem 2.5. [7] The space C∗ (D; Rn) endowed with the norm

‖u (·, ·, ·)‖ =
∫ a

0

∫ b

0

∫ c

0
‖uxyz (r, s, t)‖ dr ds dt+

∫ a

0

∫ b

0
‖uxy (r, s, 0)‖ dr ds+

+
∫ b

0

∫ c

0
‖uyz (0, s, t)‖ ds dt+

∫ a

0

∫ c

0
‖uxz (r, 0, t)‖ dr dt+

+
∫ a

0
‖ux (r, 0, 0)‖ dr +

∫ b

0
‖uy (0, s, 0)‖ ds+

+
∫ c

0
‖uz (0, 0, t)‖ dt+ ‖u (0, 0, 0)‖ ,

where ‖·‖ is the Euclidean norm, is a Banach space.

We denote by d (x, y) the Euclidean distance from x to y, x, y ∈ Rn, Rn is the
Euclidean space. B [x, r] is the closed ball of radius r > 0 centered at x ∈ Rn.
If A ⊂ Rn, d (x,A) = inf {d (x, y) | y ∈ A} and B [A, r] = {x | d (x,A) ≤ r}. If
A,B ⊂ Rn, d∗ (A,B) = sup {d (x,B) | x ∈ A}. ConvA is the convex covering
of A ⊂ Rn and

|A| = sup {‖ζ‖ | ζ ∈ A} .

C (Rn) is the set of compact and non-empty subsets of Rn.
For S ⊂ Rn we have

Definition 2.5’. [6] The multifunction Γ : S → C (Rn) is upper semi-
continuous on S if for each y ∈ S and each ε > 0 there exists δ > 0 such
that

Γ (B [y, δ]) ⊂ B [Γ (y) , ε] .
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Similarly with [1], [6], [25], we define the Aumann integral for multifunctions
of three variables.

Definition 2.9. [29] Let D = [0, a]× [0, b]× [0, c] ⊂ R3. For each (x, y, z) ∈ D,
let H (x, y, z) be a non-empty subset of Rn. Let H be the set of functions
h : D → Rn integrable on D and h (x, y, z) ∈ H (x, y, z) for each (x, y, z) ∈ D.
Then, by the integral of the multifunction H : D → 2Rn

we mean the set∫∫∫
D

H (x, y, z) dx dy dz =


∫∫∫

D

h (x, y, z) dx dy dz | h ∈ H

 .

In what follows we list some properties of the integral defined above, simi-
larly with [6], [25] (in the first three propositions).

Proposition 2.1. [29] If H : D → 2Rn
is an upper semi-continuous multi-

function and there exists a positive real number C such that

|H (x, y, z)| = sup {‖ζ‖ | ζ ∈ H (x, y, z)} ≤ C

for each (x, y, z) ∈ D, then∫∫∫
D

H (x, y, z) dx dy dz =
∫∫∫

D

convH (x, y, z) dx dy dz.

Proposition 2.2. [29] If Hk : D → 2Rn
, k ∈ N, are upper semi-

continuous multifunctions and there exists a positive real number C such that
|Hk (x, y, z)| ≤ C for each (x, y, z) ∈ D and k ∈ N , then∫∫∫

D

limHk (x, y, z) dx dy dz ⊂ lim
∫∫∫

D

Hk (x, y, z) dx dy dz.

Taking into account Definition 2 in [6], we have (x, y, z) ∈ limHk (x, y, z) iff
each neighbourhood of (x, y, z) intersects all the sets Hk (x, y, z) with k large
enough.

Proposition 2.3. [29] If A is a compact subset of Rn, independent of
(x, y, z), then∫ x2

x1

∫ y2

y1

∫ z2

z1

Adxdy dz = (x2 − x1) (y2 − y1) (z2 − z1) convA,

where (x1, y1, z1) , (x2, y2, z2) ∈ D.

Moreover, we need the following proposition.
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Proposition 2.4. If K is a convex set in a Banach space X, then the set
Kε =

⋃
x∈K

B [x, ε] is convex.

Definition 2.10. (Def. 6 in [6]). Let Γn : Ω ⊂ Eq+1 → C (Eq) be a sequence
of multifunctions, Ω is an open set, Eq is the Euclidean space. Γn → Γ
uniformly on compact sets if for ε > 0 and all compact subset K ⊂ Ω, there
exists N such that for n ≥ N , d∗ (Gn, G) < ε, where Gn and G are the graphs
of restrictions of Γn and Γ to K.

Gn = graphΓn|K , G = graphΓ|K , K ⊂ Ω.

Theorem 2.6. (Th. 2 in [6]) Let Γ : Ω → C (Eq) be an upper semi-continuous
multifunction, Ω ⊂ Eq+1 and Γ (x, t) is convex for (x, t) ∈ Ω. Then there
exists a sequence of single-valued continuous functions fn : Ω → Eq, such that
fn → Γ uniformly on compact sets.

We have, from Definition 2.10, d∗ (Fn, G) < ε where Fn = graph fn|K ,
G = graphΓ|K , K ⊂ Ω being a compact set.

This Theorem can be extended to

Theorem 2.7. Let F : Λ ⊂ Rn+3 → 2Rn
be an upper semi-continuous

multifunction defined on the open set Λ and whose values are non-empty,
convex and compact sets in Rn. Then there exists a sequence of single-valued
continuous functions fk : Λ → Rn, k ∈ N, such that fk → F uniformly on
compact sets.

The proof is completely analogous with that of Theorem 2.6 (Theorem 2 in
[6]).

3. Results

In [27], the notion of a local solution for the Darboux Problem (1.1) + (1.2)
is a defined and it is proved an existence theorem for a local solution of this
problem, together with some properties of the set of its solutions, namely that
this set is a compact subset in Banach space C (D; Rn) and, as a function
of initial values, it defines an upper semi-continuous multifunction on D0 =
[0, x0]× [0, y0]× [0, z0] ⊆ D.

Let the following hypotheses be satisfied:
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(H1) F : D × Ω → 2Rn
is multifunction with compact convex non-empty

values in Rn, D = [0, a] × [0, b] × [0, c] ⊂ R3, and Ω ⊂ Rn is an open
subset;

(H2) For any (x, y, z) ∈ D, the mapping u → F (x, y, z, u) is upper semi-
continuous on Ω;

(H3) For any u ∈ Ω, the mapping (x, y, z) → F (x, y, z, u) is Lebesque-
measurable on D;

(H4) There exists a function k : D → R+, k ∈ L1 (D; Rn) such that

‖ζ‖ ≤ k (x, y, z) , (∀) ζ ∈ F (x, y, z, u) , (∀) (x, y, z) ∈ D, (∀)u ∈ Ω;

(H5) The functions ϕ ∈ C∗ (D1; Rn), ψ ∈ C∗ (D2; Rn), χ ∈ C∗ (D3,Rn) are
absolutely continuous in Carathéodory’s sense functions and satisfy
condition (1.3).

Remark 1. The function α : D → Rn defined by

α (x, y, z) = ϕ (x, y) + ψ (y, z) + χ (x, z)− ϕ (x, 0)− (3.1)

− ϕ (0, y)− ψ (0, z) + ψ (0, 0) =

= ϕ (x, y) + ψ (y, z) + χ (x, z)− v1 (x)− v2 (y)− v3 (z) + v0,

is an absolutely continuous in Carathéodory’s sense function on D, α ∈
C∗(D; Rn) [2, §565-§570].

Remark 2. Denote by M ⊂ Ω the convex compact set in which the function
α : D → Rn, defined by (3.1), takes its values for all (x, y, z) ∈ D0.

Remark 3. Let (x0, y0, z0) ∈]0, a]×]0, b]×]0, c] be a point such that∫ x0

0

∫ y0

0

∫ z0

0
k (r, s, t) dr ds dt < d (M,CΩ) ,

where d (M,CΩ) is the distance from M to CΩ = Rn − Ω, an inequality im-
mediately resulting from the integrability of function k.

Definition 3.1. [27] The Darboux Problem for the hyperbolic inclusion (1.1)
means to determine a solution of this inclusion which satisfies the initial con-
ditions (1.2).

Definition 3.2. [27] A local solution of Darboux Problem (1.1) + (1.2) is
defined as a function U : D0 → Ω, U ∈ C∗ (D0; Rn), absolutely continuous in
Carathéodory’s sense [2,§565-§570], which satisfies (1.1) for a.e. (x, y, z) ∈ D0,
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and also initial conditions (1.2) for all (x, y) ∈ [0, x0] × [0, y0], all (y, z) ∈
[0, y0]× [0, z0], all (x, z) ∈ [0, x0]× [0, z0].

In [27] we proved the following

Theorem 3.1. [27] Let the hypotheses (H1)− (H5) be satisfied. Then:

(i) there exists at least a local solution U of Darboux Problem (1.1)+(1.2);
(ii) the set Sα of the local solutions U is compact in Banach space

C (D0; Rn);
(iii) the multifunction α → Sα is upper semi-continuous on C∗ (D0; Rn),

taking values in C (D0; Rn).

The solution U is a fixed point of a suitable multifunction which satisfies
the Kakutani-Ky Fan Fixed Point Theorem and it is of the form

U (x, y, z) = α (x, y, z) +
∫ x

0

∫ y

0

∫ z

0
β (r, s, t) dr ds dt, (x, y, z) ∈ D0, (3.2)

where

β (x, y, z) ∈ Γ (x, y, z) ⊂ F (x, y, z, U (x, y, z)) for a.e. (x, y, z) ∈ D0, (3.3)

β is a measurable selection of the multifunction Γ : D0 → C (Rn), [3], [4], [27].

Definition 3.3. [28] A local solution for the Darboux Problem (1.1) + (1.2)
U : D0 → Ω is prolongable (or non-saturated) if there exists a solution Ũ :
D̃ → Rn for the Darboux Problem (1.1) + (1.2) such that{

D0 ⊆ D̃, D0 6= D̃

Ũ (x, y, z) = U (x, y, z) , (x, y, z) ∈ D0,

where D̃ ⊆ D is a union of D0 with a finite number of adjacent parallelepipeds.

In [28] we proved the following theorems:

Theorem 3.2. [28] Let the hypotheses (H1)− (H5) be satisfied together with
the hypotheses:

(H6) The set Ω is bounded, that is there exists a constant C ∈ R+ such that
‖u‖ ≤ C, (∀)u ∈ Ω.

(H7) The multifunction F maps bounded sets onto bounded sets, hence a
constant K ∈ R+ exists such that

sup {‖ζ‖ | ζ ∈ F (x, y, z, u)} ≤ K,
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for any (x, y, z, u) ∈ D × Ω.

Then the local solution U is prolongable.

Theorem 3.3. [28] We assume the hypotheses (H1) − (H7) to be satisfied.
If U : D0 → Ω is a local solution of Darboux Problem (1.1) + (1.2) that is
non-saturated, hence prolongable, then there exists a saturated solution U∗ :
D∗ → Ω of the Darboux Problem (1.1) + (1.2) such that{

D0 ⊆ D∗, D0 6= D∗, D∗ ⊆ D,

U∗ (x, y, z) = U (x, y, z) , (x, y, z) ∈ D0,

hence U∗ is a prolongation of U onto D∗ that has been built by joining D0

with a union of parallelepipeds adjacent to D0.

Theorem 3.4. [28] Let the hypotheses (H1)−(H7) be satisfied. If the saturated
solution U∗ is bounded on D∗, then D∗ = D.

Theorem 3.5. [28] Let the hypotheses (H1)− (H7) be satisfied together with
the hypothesis:

(H8) The multifunction F : D × Ω → 2Rn
is sublinear, hence two constants

k1 > 0 and k2 ∈ R exist with the property

sup {‖ζ‖ | ζ ∈ F (x, y, z, u)} ≤ k1 ‖u‖+ k2, (3.4)

for a.e. (x, y, z) ∈ D, u ∈ Ω.

Then the saturated solution U∗ : D → Ω is bounded on D.
The saturated solution U∗ has the form, by Theorem 3.1 [27],

U∗ (x, y, z) = α (x, y, z) +
∫ x

0

∫ y

0

∫ z

0
β∗ (r, s, t) dr ds dt, (x, y, z)∈D, (3.5)

where α (x, y, z) is given by (3.1) and β∗ is a measurable selection of the
multivalued mapping Γ∗ [3], [4], [27], defined on D with compact non-empty
values in Rn, i.e. Γ∗ : D → C (Rn), such that

β∗ (x, y, z) ∈ Γ∗ (x, y, z) ⊆ F (x, y, z, U∗ (x, y, z)) for a.e. (x, y, z) ∈ D.
(3.6)

Definition 3.4. [28] A function U : D → Rn is called a solution of the Dar-
boux Problem (1.1) + (1.2) if it is absolutely continuous in Carathéodory’s
sense on D,U ∈ C∗ (D; Rn), [2, §565 - §570], and satisfies (1.1) for a.e.
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(x, y, z) ∈ D, and also initial conditions (1.2) for all (x, y) ∈ D1, all (y, z) ∈ D2,
all (x, z) ∈ D3.

Similarly with [6], [25], we proved in [29] the following theorem of charac-
terization for the solutions to Darboux Problem (1.1) + (1.2).

Theorem 3.6. [29] Let the hypotheses (H ′
1), (H3), (H4), (H5) of Theorem

3.1 be satisfied, where:

(H ′
1) F : D × Ω → 2Rn

is an upper semi-continuous multifunction with
compact convex non-empty values in Rn, D = [0, a]× [0, b]× [0, c] ⊂ R3

and Ω ⊂ Rn is an open bounded set.

The hypothesis (H ′
1) includes the hypothesis (H6). Then, the continuous

function U : D → Rn is a solution of Darboux Problem (1.1) + (1.2) if and
only if for each (x1, y1, z1), (x2, y2, z2) ∈ D the membership relation

[U (x2, y2, z2)− U (x1, y2, z2)− U (x2, y1, z2) + U (x1, y1, z2)]− (3.7)

− [U (x2, y2, z1)− U (x1, y2, z1)− U (x2, y1, z1) + U (x1, y1, z1)] ∈

∈
∫ x2

x1

∫ y2

y1

∫ z2

z1

F (x, y, z, U (x, y, z)) dx dy dz,

holds, and U satisfies the conditions (1.2).
The difference in (3.7) is an extension of hyperbolic difference for functions

in two variables.

The main result of this paper is the following:

Theorem 3.7. Assume the hypotheses (H ′
1), (H2) − (H8) to be satisfied,

where F : D × Ω → 2Rn
. Let fk : D × Ω → Rn be a sequence of single-valued

continuous functions such that fk → F uniformly on compact sets and let
uk : D → Rn, k ∈ N, be the solutions of the Darboux Problems (3.8k) + (1.2),
where

∂3u (x, y, z)
∂x ∂y ∂z

= fk (x, y, z, u) , (x, y, z) ∈ D, u ∈ Ω, k ∈ N. (3.8k)

Then, there exists a solution U : D → Rn of the Darboux Problem (1.1) +
(1.2) and a sequence of positive integers {np}p∈N such that Unp (x, y, z) →
U (x, y, z) uniformly on D.

Proof. Suppose D × Ω ⊂ Λ ⊂ Rn+3. Taking into account the sub-
linearity of F and the uniform convergence of {fk}k∈N to F on compact
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sets, it follows that fk, k ∈ N, is sublinear. Given the compact set
K1 = D × Ω, by Definition 2.10 for every ε > 0 there exists a nat-
ural number k (ε) such that d∗ (graph fk, graphF ) < ε, (∀) k > k (ε),
hence sup d {[(x, y, z, u, fk (x, y, z, u)) , graphF ]} < ε, (∀) k > k (ε), for
(x, y, z, u, fk (x, y, z, u)) ∈ graph fk, and moreover

sup
(x,y,z,u,fk)
∈graph fk

{
inf

(x̄,ȳ,z̄,ū,ζ)
∈graph F

{d [(x, y, z, u, fk (x, y, z, u)) , (x̄, ȳ, z̄, ū, ζ)]}
}
< ε, (3.9)

(∀) k > k (ε) .

From (3.9), taking into account [5]

d [(x, y, z, u, fk (x, y, z, u)) , (x̄, ȳ, z̄, ū, ζ)] =

= max {d [(x, y, z, u) , (x̄, ȳ, z̄, ū)] , d [fk (x, y, z, u) , ζ]}

we get

d [(x, y, z, u) , (x̄, ȳ, z̄, ū)] < ε (3.10)

and

d [fk (x, y, z, u) , ζ] = ‖fk (x, y, z, u)− ζ‖ < ε. (3.11)

The relation (3.10)yields d (u, ū) = ‖u− ū‖ < ε. Thus

‖ū‖ ≤ ‖u− ū‖+ ‖u‖ < ε+ ‖u‖ . (3.12)

Since by (H8) F is sublinear, the inequality (3.4) holds for ū. From (3.11),
(3.12) and (3.4) we deduce

‖fk (x, y, z, u)‖ ≤ ‖fk (x, y, z, u)− ζ‖+ ‖ζ‖ < ε+ k1 ‖ū‖+ k2 <

< ε+ k1 (ε+ ‖u‖) + k2 = k1 ‖u‖+ k1ε+ k2 + ε =

= k1 ‖u‖+ k3, (x, y, z, u) ∈ D × Ω, (3.13)

where k3 = k1ε+ k2 + ε, k3 ∈ R.
By (3.13) we conclude that fk, k ∈ N, is sublinear.
Because fk, k ∈ N, is continuous and sublinear, by Schauder’s Fixed Point

Theorem, the Darboux Problem (3.8k)+(1.2) has at least a solution uk : D →
Rn, k ∈ N.

Indeed, (3.8k) + (1.2) is equivalent to the integral equation

u (x, y, z) = α (x, y, z) +
∫ x

0

∫ y

0

∫ z

0
fk (r, s, t, u (r, s, t)) dr ds dt, k ∈ N.
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Define the operator Tk : C (D; Rn) → C (D; Rn), k ∈ N, by

Tku (x, y, z) = α (x, y, z) +
∫ x

0

∫ y

0

∫ z

0
fk (r, s, t, u (r, s, t)) dr ds dt,

(x, y, z) ∈ D, k ∈ N. The operator Tk, k ∈ N, is continuous. The set

B [α; r] = {u | u ∈ C (D; Rn) , ‖u− α‖ ≤ r} , r > 0,

is convex and closed and it is mapped by the operator Tk, k ∈ N, into itself.
Indeed, let u ∈ B [α; r]. Then, taking into account (3.13) one gets

‖Tku− α‖ ≤
∫ x

0

∫ y

0

∫ z

0
‖fk (r, s, t, u (r, s, t))‖ dr ds dt ≤

≤
∫ x0

0

∫ y0

0

∫ z0

0
‖fk (r, s, t, u (r, s, t))‖ dr ds dt ≤

≤
∫ x

0

∫ y

0

∫ z

0
[k1 ‖u (r, s, t)‖+ k3] dr ds dt,

(x, y, z) ∈ D0 = [0, x0]× [0, y0]× [0, z0] , (x0, y0, z0) ∈ D.

We have

‖u (r, s, t)‖ ≤ ‖u (r, s, t)− α (r, s, t)‖+ ‖α (r, s, t)‖ ≤ r + sup ‖α (r, s, t)‖ = C1,

(r, s, t) ∈ D0 and thereby

‖Tku− α‖ ≤
∫ x0

0

∫ y0

0

∫ z0

0
(k1C1 + k3) dr ds dt = (k1C1 + k3)x0y0z0. (3.14)

Choose (x0, y0, z0) ∈ D such that the condition

(k1C1 + k3)x0y0z0 ≤ r (3.15)

holds.
By (3.14), (3.15) we obtain ‖Tku− α‖ ≤ r, i.e. Tku ∈ B [α; r], or

TkB [α; r] ⊂ B [α; r], k ∈ N. The set TkB [α; r] is relatively compact by the
Arzelà-Ascoli Theorem. By Schauder’s Fixed Point Theorem, the operator Tk,
k ∈ N, has at least a fixed point uk, k ∈ N, which is a solution of the Darboux
Problem (3.8k) + (1.2) on D0. This solution can be extended to the whole D
[28]. Then

uk (x, y, z) = α (x, y, z) +
∫ x0

0

∫ y0

0

∫ z0

0
fk (r, s, t, uk (r, s, t)) dr ds dt, (3.16)
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(x, y, z) ∈ D, k ∈ N, is equivalent to (3.8k) and (1.2k).

∂3uk (x, y, z)
∂x ∂y ∂z

= fk (x, y, z, uk (x, y, z)) , (x, y, z) ∈ D,uk ∈ Ω ⊂ Rn, (3.8k)
uk (x, y, 0) = ϕ (x, y) , (x, y) ∈ D1 = [0, a]× [0, b] ,
uk (0, y, z) = ψ (y, z) , (y, z) ∈ D2 = [0, b]× [0, c] ,
uk (x, 0, z) = χ (x, z) , (x, z) ∈ D3 = [0, a]× [0, c]

(1.2k)

where uk, k ∈ N, denotes the extended solution on D.
The family {uk (x, y, z)}k∈N of solutions is equicontinuous and equibounded

in the Banach space C (D; Rn).
For h̄, k̄, l̄ ∈ R,

(
x+ h̄, y + k̄, z + l̄

)
∈ D, from the absolute continuity of

the integral, we get∥∥uk

(
x+ h̄, y + k̄, z + l̄

)
− zk (x, y, z)

∥∥ < ε, for
∣∣h̄∣∣ , ∣∣k̄∣∣ , ∣∣l̄∣∣ < δ (ε) .

Thus, the family {uk (x, y, z)}k∈N is equicontinuous. Taking into account
the sublinearity of fk, k ∈ N, by a Gronwall’s type inequality [9], [28] we get
from (3.16)

‖uk (x, y, z)‖ ≤ B

[
1 + k1

∫ x

0

∫ y

0

∫ z

0
exp

(∫ x

r

∫ y

s

∫ z

t
k1dξ dη dζ

)
dr ds dt

]
=

= B

[
1 + k1

∫ x

0

∫ y

0

∫ z

0
exp (k1 (x− r) (y − s) (z − t)) dr ds dt

]
≤

≤ B

[
1 + k1

∫ x

0

∫ y

0

∫ z

0
exp (k1xyz) dr ds dt

]
≤

≤ B [1 + k1 exp (k1abc)xyz] ≤

≤ B [1 + k1abc exp (k1abc)] , for a.e. (x, y, z) ∈ D,

where

B = sup ‖α (x, y, z)‖+ |k2| abc, (x, y, z) ∈ D.

Thus, the family {uk (x, y, z)}k∈N is equibounded.
By the Arzelà-Ascoli Theorem, the sequence {uk (x, y, z)}k∈N contains an

uniformly convergent subsequence to a continuous function U ∈ C (D; Rn),
ukp (x, y, z) → U (x, y, z), (x, y, z) ∈ D.

We shall prove that the function above obtained is a solution of the Darboux
Problem (1.1) + (1.2). To this end we shall show that the conditions of the
characterization Theorem 3.6 [29] of a solution is fulfilled. The conditions
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(1.2) from (1.2k) are obviously satisfied. We have to prove the relation (3.7)
for the compact [x1, x2]× [y1, y2]× [z1, z2] ⊆ D. Thus, we prove the inequality

d
(

[U (x2, y2, z2)− U (x1, y2, z2)− U (x2, y1, z2) + U (x1, y1, z2)]−

− [U (x2, y2, z1)− U (x1, y2, z1)− U (x2, y1, z1) + U (x1, y1, z1)] ,∫ x2

x1

∫ y2

y1

∫ z2

z1

F (x, y, z, U (x, y, z)) dx dy dz
)
< ε. (3.17)

Integrating (3.8k) on [x1, x2]× [y1, y2]× [z1, z2] ⊆ D one gets

[uk (x2, y2, z2)− uk (x1, y2, z2)− uk (x2, y1, z2) + uk (x1, y1, z2)]−

− [uk (x2, y2, z1)− uk (x1, y2, z1)− uk (x2, y1, z1) + uk (x1, y1, z1)] =

=
∫ x2

x1

∫ y2

y1

∫ z2

z1

fk (r, s, t, uk (r, s, t)) dr ds dt. (3.18)

By (3.17) and (3.18) we have

d
(

[U (x2, y2, z2)− U (x1, y2, z2)− U (x2, y1, z2) + U (x1, y1, z2)]−

− [U (x2, y2, z1)− U (x1, y2, z1)− U (x2, y1, z1) + U (x1, y1, z1)] ,∫ x2

x1

∫ y2

y1

∫ z2

z1

F (r, s, t, U (r, s, t)) dr ds dt
)
≤

≤ d
(

[U (x2, y2, z2)− U (x1, y2, z2)− U (x2, y1, z2) + U (x1, y1, z2)]−

− [U (x2, y2, z1)− U (x1, y2, z1)− U (x2, y1, z1) + U (x1, y1, z1)] , (3.19)

[uk (x2, y2, z2)− uk (x1, y2, z2)− uk (x2, y1, z2) + uk (x1, y1, z2)]−

− [uk (x2, y2, z1)− uk (x1, y2, z1)− uk (x2, y1, z1) + uk (x1, y1, z1)]+

+d
( ∫ x2

x1

∫ y2

y1

∫ z2

z1

fk (r, s, t, uk (r, s, t)) dr ds dt,∫ x2

x1

∫ y2

y1

∫ z2

z1

F (r, s, t, U (r, s, t)) dr ds dt
)
.
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Denoting for simplicity k = kp, from uk (x, y, z) → U (x, y, z) uniformly on
the compact set D, we deduce

d
(

[U (x2, y2, z2)− U (x1, y2, z2)− U (x2, y1, z2) + U (x1, y1, z2)]−

− [U (x2, y2, z1)− U (x1, y2, z1)− U (x2, y1, z1) + U (x1, y1, z1)] , (3.20)

[uk (x2, y2, z2)− uk (x1, y2, z2)− uk (x2, y1, z2) + uk (x1, y1, z2)]−

− [uk (x2, y2, z1)− uk (x1, y2, z1)− uk (x2, y1, z1) + uk (x1, y1, z1)] <
ε

2
,

(∀) k ∈ N1 (ε) .

Since d (ζ, A) = d (θ, ζ −A), where θ is the null vector in Rn and A ⊂ Rn,
we deduce

d
( ∫ x2

x1

∫ y2

y1

∫ z2

z1

fk (r, s, t, uk (r, s, t)) dr ds dt,∫ x2

x1

∫ y2

y1

∫ z2

z1

F (r, s, t, U (r, s, t)) dr ds dt
)

= (3.21)

= d
(
θ,

∫ x2

x1

∫ y2

y1

∫ z2

z1

[fk (r, s, t, uk (r, s, t))− F (r, s, t, U (r, s, t))] dr ds dt.

For (r, s, t) ∈ [x1, x2] × [y1, y2] × [z1, z2], by the Lemma [6], there exists a
natural number Nε = N2 (ε, (r, s, t)) such that [5], [29]

fk (r, s, t, uk (r, s, t)) ∈ B [F (r, s, t, U (r, s, t)) , ε] ,

for (∀) k ≥ N2 (ε, (r, s, t)), and therefore

d (fk (r, s, t, uk (r, s, t)) , F (r, s, t, U (r, s, t))) < ε,

or

d (θ, fk (r, s, t, uk (r, s, t))− F (r, s, t, U (r, s, t))) < ε.

Thus, by Definition 2 [6]

θ ∈ lim {fk (r, s, t, uk (r, s, t))− F (r, s, t, U (r, s, t))} .

Then

θ ∈
∫ x2

x1

∫ y2

y1

∫ z2

z1

lim {fk (r, s, t, uk (r, s, t))− F (r, s, t, U (r, s, t))} dr ds dt.

(3.22)
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Using the Proposition 3.2, the membership relation (3.22) yields

θ ∈ lim
∫ x2

x1

∫ y2

y1

∫ z2

z1

{fk (r, s, t, uk (r, s, t))− F (r, s, t, U (r, s, t))} dr ds dt.

(3.23)
By (3.23) and Definition 2 [6], each neighbourhoud of θ intersects the sets of
the form∫ x2

x1

∫ y2

y1

∫ z2

z1

{fk (r, s, t, uk (r, s, t))− F (r, s, t, U (r, s, t))} dr ds dt,

for a large enough k, (∀) k ≥ N2 (ε, (r, s, t)).
By (3.23) one gets

d

(
θ,

∫ x2

x1

∫ y2

y1

∫ z2

z1

{fk (r, s, t, uk (r, s, t))− F (r, s, t, U (r, s, t))} dr ds, dt
)
<
ε

2
,

(3.24)
for k ≥ N2 (ε), or by (3.21) it results

d

(
θ,

∫ x2

x1

∫ y2

y1

∫ z2

z1

fk (r, s, t, uk (r, s, t)) ds dr dt, (3.25)∫ x2

x1

∫ y2

y1

∫ z2

z1

F (r, s, t, U (r, s, t)) dr ds, dt
)
<
ε

2
,

for k ≥ N2 (ε, (r, s, t)).
Taking into account (3.20) and (3.25) the relation (3.19) yields (3.17) for

(∀) k ≥ max {N1 (ε) , N2 (ε, (r, s, t))}.
But F (r, s, t, U (r, s, t)) is closed and then, by (3.17) for ε→ 0, one obtains

(3.7).
Recalling that (3.7) together (1.2) are sufficient conditions for U be a solu-

tion of the Darboux Problem (1.1) + (1.2), the proof is complete.
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