Fixed Point Theory, Volume 9, No. 1, 2008, 351-362 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

ITERATION PROCESS WITH ERRORS FOR LOCAL STRONGLY H-ACCRETIVE TYPE MAPPINGS

VINAI K. SINGH* AND SANTOSH KUMAR**

*Department of Mathematics R.D. Engineering College N.H-58 Delhi-Meerut Road, Duhai, Ghaziabad, INDIA.

 ** Department of Applied Mathematics Inderprastha Engineering College 63, Site IV
 Surya Nagar Flyover Road Shahibabad, Ghaziabad, U.P., INDIA E-Mail: sengar1@rediffmail.com

Abstract. Some iteration processes of Mann and Ishikawa type with error has been discussed to approximate solution of equation Tx = f, where T is locally strongly H - accretive mapping [18] on uniformly smooth Banach space X. This extends an earlier result of Liu [9] on iterative processes with errors. We also extend a result of Weng [20] on iterative processes of dissipative type mappings.

Key Words and Phrases: Mann iteration process, Ishikawa iteration process, strictly pseudo-contractive map, local strongly H-accretive map, accretive map,strongly accretive map.

2000 Mathematics Subject Classification: 47H10, 54H25.

1. INTRODUCTION

In recent literature interests have been generated to deal with iteration processes which approximates fixed points of nonlinear mappings in a Banach Space with special emphasis on Mann and Ishikawa type of processes. In [10] Liu extended these ideas to deal with Mann and Ishikawa type of processes with errors.

Browder [1] and Kato [8] have introduced the concept of accretive operators to establish that the initial value problem:

$$\frac{du}{dt} + Tu = 0, \quad u(0) = u_0$$
351

is solvable if T is locally Lipschitzian and m-accretive [3,6], strongly accretive [2,14] and continuous accretive [11,15,16] operators. In [9] Liu dealt with strongly accretive operators, and proved that when E is a uniformly smooth Banach space and $T: K \to K$ is a strongly accretive mapping where K is a nonempty closed convex and bounded subset of E then both Mann and Ishikawa iteration with errors could be used to approximate the unique solution of the equation Tx = f. We extend this result of Liu to cover a new class called local strongly H-accretive operators which include all strongly accretive operators. In fact, it was earlier introduced by Sharma and Thakur [18] for dealing with ordinary iteration processes. In the concluding section we also include a generalization of a result of Weng [20] for dissipative mappings to approximate unique solution of Tx = f and this scheme involves Mann Iteration process with errors.

Let D be a nonempty subset of a Banach space X. Recall that a mapping $T: D \to X$ is said to be strictly pseudo-contractive if there exists a constant t > 1 such that the inequality

$$||x - y|| \le ||(1 + r)(x - y) - rt(Tx - Ty)||,$$
(1)

holds for all $x, y \in D$ and r > 0.

Let X be a Banach space with norm $\| \cdot \|$ and dual X^* . Let $\langle \cdot, \cdot \rangle$ denote the generalized duality pairing. For $1 , the mapping <math>J_p : X \to 2^{X^*}$ defined by

 $J_p(x) = \left\{ f^* \in X^* : Re < x, f^* > = \| f^* \| \| x \|, \| f^* \| = \| x \|^{p-1} \right\},\$

is called the duality mapping with gauge function $\phi(t) = t^{p-1}$, particularly, the duality mapping with gauge function $\phi(t) = t$, denoted by J is referred to as normalized duality mapping. In fact that $J_p(x) = || x ||^{p-1} J(x)$ for $x \in X, x \neq 0$ and 1 (cf. [19,21,23]). A mapping T with domain D(T) $and range R(T) in X is said to be accretive if for all <math>x, y \in D(T)$ and r > 0there holds the inequality

$$||x - y|| \le ||x - y - r(Tx - Ty)||.$$
(2)

T is accretive iff for any $x, y \in D(T)$, there is $j \in J(x-y)$ such that

$$Re < Tx - Ty, \ j \ge 0.$$
(3)

Let D be a nonempty subset of Banach space X. Recall that a mapping $T: D \to X$ is said to be strongly accretive if there exists a real number k > 0 such that for every $x, y \in D$,

$$Re < Tx - Ty, j > \ge k ||x - y||^2$$
 (4)

holds for some $j \in J(x - y)$, or equivalently, there exists a real number k > 0 such that for every $x, y \in D$,

$$Re < Tx - Ty, j_p > \geq k \parallel x - y \parallel^p$$
(5)

holds for some $j_p \in J_p(x-y)$. Without loss of generality, we assume that $k \in (0, 1)$. In particular, Deimling [4] proved that if X is uniformly smooth Banach space and $T: X \to X$ is strongly accretive and semicontinuous, then for each $f \in X$, the equation Tx = f has a solution in X.

Let D be a nonempty subset of a Banach Space X. A mapping $T: D \to D$ is said to be a local strongly H-accretive if for each $x \in D(T)$ and $p \in F(T)$, where F(T) is the nonempty fixed point set of T, there exists $j \in J(x-p)$ such that

$$\langle Tx - p, j \rangle \geq k_p \parallel x - p \parallel^2 \tag{6}$$

for some $k_p > 0$, (assume $k_p \in (0, 1)$).

Now let D be a nonempty closed convex subset of a Hilbert space H, with inner product $\langle .,. \rangle$ and let $T : D(T) \in H$, then T is said be locally dissipative type at a fixed point p if

$$Re < Tx - p, x - p > \leq C_p || x - p ||^2$$
 (7)

where $C_p < 1$ and $x, p \in D(T)$. Moreover, if $\{C_n\} \subset (0, 1]$ satisfies the following conditions:

$$\lim_{n \to \infty} C_n = 0, \quad \sum_{n=0}^{\infty} C_n = \infty,$$

then the recursion

$$x_{n+1} = (1 - C_n)x_n + C_n T(x_n), \quad x_0 \in D$$

will converge to \bar{x} .

Dunn [5] and Rhoades and Saliga [17] further introduced the weaker version of (7),

 $Re < \xi - \bar{x}, x - \bar{x} > \leq C_p || x - \bar{x} ||^2$

for some $\bar{x} \in D(T), C_p < 1$ and for all $x \in D(T), \xi \in Tx$.

Also, Dunn [5] showed that if $x \in T(x)$ then $x = \bar{x}$. So that T can have at most one fixed point. Moreover, if $\{x_n\}$ is a sequence in D(T) satisfying

$$x_{n+1} = (1 - C_n)x_n + C_n \xi_n$$

where $\xi_n \in T(x_n)$, with $\{C_n\} \subset (0, 1]$ satisfying

$$\sum_{n=0}^{\infty} C_n = \infty, \ \sum_{n=0}^{\infty} C_n^2 < \infty$$

then $\{x_n\}$ strongly converges to \bar{x} .

In this paper we introduce the iterative solutions to the equation Tx = f, in the case when T is Lipschitzian and local strongly H-accretive which we shall define soon.

Let us first recall the following two iteration processes due to Mann [12] and Ishikawa [7], respectively. Here X is taken to be uniformly smooth.

(I) The Mann iteration process [12] is defined as follow: for a convex subset C of a Banach space X and a mapping $T: C \to C$, then the sequence $\{x_n\} \in C$ is defined by $x_0 \in C$,

$$x_{n+1} = (1 - C_n)x_n + C_n T_n, \ n \ge 0$$

where $\{C_n\}$ is a real sequence satisfying $c_0 = 1, 0 < c_n \leq 1$, for all $n \geq 1$ and $\sum_{n=0}^{\infty} C_n = \infty$.

(II) The Ishikawa iteration process in [21] is defined as follows:

With X and C as above, the sequence $\{x_n\} \in C$ is defined by $x_0 \in C$,

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T y_n,$$
$$y_n = (1 - \beta_n)x_n + \beta_n T x_n, \ n \ge 0,$$

where $\{\alpha_n\}$ and $\{\beta_n\}$ are two sequences in (0,1] satisfying the conditions $0 \le \alpha_n \le \beta_n \le 1$ for all n,

and

$$\lim_{n \to \infty} \beta_n = 0$$
$$\sum_{n=0}^{\infty} \alpha_n \ \beta_n = \infty$$

Now we introduce the following concept of the Ishikawa iteration process with errors.

(III) The Ishikawa iteration process with errors is defined as follows: for a nonempty subset K of a Banach space X and a mapping $T: K \to X$, the

354

sequence $\{x_n\}$ in K is defined by

$$\begin{split} x_0 \in K, \\ x_{n+1} &= (1 - \alpha_n)x_n + \alpha_n T y_n + u_n, \\ y_n &= (1 - \beta_n)x_n + \beta_n T x_n + v_n, \ n \geq 0, \\ \text{where } \{u_n\} \text{ and } \{v_n\} \text{ are two summable sequences in X. i.e.,} \end{split}$$

$$\sum_{n=0}^{\infty} \parallel u_n \parallel < \infty, \ \sum_{n=0}^{\infty} \parallel v_n \parallel < \infty$$

and $\{\alpha_n\}$ and $\{\beta_n\}$ are two sequences in [0,1] satisfying certain restrictions.

Recently, Chidume [2] proved that if $X = L_p$ (or l_p) for $p \ge 2$, then the Mann iteration process converges strongly to a solution of equation Tx = f when T is Lipschitzian and strongly accretive.

1.2. Let X be an arbitrary Banach space. Recall that the modulus of smoothness $\rho_x(.)$ of X is defined by

$$\rho_x(\tau) = \frac{1}{2} \sup \{ \|x + y\| + \|x - y\| - 2 : x, y \in X, \|x\| = 1, \|y\| \le \tau \}, \tau > 0$$

and that X is said to be uniformly smooth if $\lim_{\tau\to 0} \frac{\rho_x(\tau)}{\tau} = 0$. Recall that for a real number p > 1, a Banach space X is said to be p -uniformly smooth if $\rho_x(\tau) \le d\tau^p$ for $\tau > 0$, where d > 0 is constant. In Xu and Roach [22] for a Hilbert space H, $\rho_H(\tau) = (1 + \tau^2)^{1/2} - 1$ and hence H is 2 -uniformly smooth, while if $2 \le p < \infty$, $L_p(l_p)$ is 2-uniformly smooth. In [21,22], X is uniformly smooth iff J_p is single valued and uniformly continuous on any bounded subset of X, X is uniformly convex (smooth) iff X^* is uniformly smooth (convex).

We define for positive t,

$$b(t) = \sup\left\{\frac{(\parallel x + ty \parallel^2 - \parallel x \parallel^2)}{2} - 2Re < y, J(x) > :\parallel x \parallel \le 1, \parallel y \parallel \le 1\right\}.$$

Clearly $b: (0, \infty) \to [0, \infty)$ is nondecreasing, continuous and $b(ct) \leq cb(t)$, for all $c \geq 1$ and t > 0.

Also following Lemmas are needed to prove our results:

Lemma 1. [15] Suppose that X is a uniformly smooth Banach space and b(t) is defined as above. Then $\lim_{t\to 0+} b(t) = 0$ and

$$|| x + y ||^{2} \le || x ||^{2} + 2Re < y, J(x) > + \max\{|| x ||, 1\} || y || b(|| y ||)$$

for all $x, y \in X$.

Proof. The proof is same as in Reich [15], proved for a real uniformly smooth Banach space.

We also need the following Lemma for our results.

Lemma 2. [9] Let $\{a_n\}, \{b_n\}$ and $\{c_n\}$ be three nonnegative real sequences satisfying

$$a_{n+1} \le (1 - t_n)a_n + b_n + c_n$$

with

$$\{t_n\} \subset [0,1], \ \sum_{n=0}^{\infty} t_n = \infty, b_n = 0(t_n)$$

and

$$\sum_{n=0}^{\infty} c_n < \infty$$

Then

$$\lim_{n \to \infty} a_n = 0.$$

For proof one can see Weng [20].

2. The Ishikawa iteration process with errors

In this section we study the Ishikawa iteration process with errors and prove that if X is uniformly smooth Banach space and $T: X \to X$ is a Lipschitzian local strongly H-accretive mapping, then the Ishikawa iteration process with errors converges strongly to the unique solution of the equation Tx = f.

Theorem 1. Let X be a uniformly smooth Banach space. Let $T: X \to X$ be a Lipschitzian local strongly H-accretive operator with a constant $k_p \in (0, 1)$ and a Lipschitz constant $L \ge 1$. Define $S: X \to X$ by Sx = f + x - Tx. Let $\{u_n\}, \{v_n\}$ be two summable sequences in X and let $\{\alpha_n\}, \{\beta_n\}$ be two real sequences in [0,1] satisfying:

(i)
$$\lim_{n \to \infty} \alpha_n = 0$$
, $\sum_{n=0}^{\infty} \alpha_n = \infty$.
(ii) $\lim_{n \to \infty} \sup \beta_n < \frac{k_p}{L^2 - k_p}$.

For arbitrary $x_0 \in X$, the iteration sequence $\{x_n\}$ is defined by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n S y_n + u_n,$$

$$y_n = (1 - \beta_n)x_n + \beta_n S x_n + v_n, \ n \ge 0.$$
 (8)

356

Moreover, suppose that the sequence $\{Sy_n\}$ is bounded, then $\{x_n\}$ converges strongly to the unique solution q of the equation Tx = f.

Proof. The solution of equation Tx = f follows from Morales [13]. Let q denotes the solution of Tx = f and the uniqueness from the local strongly H-accretiveness of T.

Now set,

$$= \sup \left\{ (\parallel Sy_n - q \parallel : n \ge 0) + \parallel x_0 - q \parallel \right\},$$
$$M = d + \sum_{n=0}^{\infty} \parallel u_n \parallel +1.$$
(9)

For any $n \ge 0$, using induction, we obtain

d

$$||x_n - q|| \le d + \sum_{i=0}^{n-1} ||u_i||, \ n \ge 0,$$

hence,

$$||x_n - q|| \le M, \ n \ge 0 \tag{10}$$

Now from (4), (8) and (10), we have $Re < y_n - q, J(x_n - q) >$

$$= Re < x_{n} + \beta_{n}f - \beta_{n}Tx_{n} + v_{n} - q, J(x_{n} - q) >$$

$$= -\beta_{n}Re < Tx_{n} - Tq, J(x_{n} - q) > + Re < x_{n} - q, J(x_{n} - q) >$$

$$+ Re < v_{n}, J(x_{n} - q) >$$

$$\leq -k_{p}\beta_{n} || x_{n} - q ||^{2} + || x_{n} - q ||^{2} + || v_{n} || || x_{n} - q ||$$

$$\leq (1 - k_{p}\beta_{n}) || x_{n} - q ||^{2} + M || v_{n} ||. \qquad (11)$$

Again from (4), (8) and (11), we have

$$Re < Sy_n - q, J(x_n - q) >$$

$$= Re < Tq + y_n - Ty_n - q, J(x_n - q) >$$

$$= Re < Tx_n - Ty_n, J(x_n - q) > -Re < Tx_n - Tq, J(x_n - q) >$$

$$+Re < y_n - q, J(x_n - q) >$$

$$\leq L \parallel y_n - x_n \parallel \parallel x_n - q \parallel -k_p \parallel x_n - q \parallel^2 + (1 - k_p \beta_n) \parallel x_n - q \parallel^2 + M \parallel v_n \parallel$$

$$= L \parallel \beta_n (Tq - Tx_n) + v_n \parallel \parallel x_n - q \parallel + (1 - k_p - k_p \beta_n) \parallel x_n - q \parallel^2 + M \parallel v_n \parallel$$

$$= L^2 \beta_n \parallel x_n - q \parallel^2 + L \parallel v_n \parallel \parallel x_n - q \parallel + (1 - k_p - \beta_n) \parallel x_n - q \parallel^2 + M \parallel v_n \parallel$$

$$\leq (1 - k_p - k_p \beta_n + L^2 \beta_n) \parallel x_n - q \parallel^2 + M(L+1) \parallel v_n \parallel .$$
 (12)

It then follows from (8), (9), (12) and Lemma 1 that

$$\| x_{n+1} - q \|^{2} = \| (1 - \alpha_{n})(x_{n} - q) + \alpha_{n}(Sy_{n} - q) + u_{n} \|^{2}$$

$$= \| (1 - \alpha_{n})(x_{n} - q) + \alpha_{n}(Sy_{n} - q) \|^{2}$$

$$+ 2Re < u_{n}, J(1 - \alpha_{n})(x_{n} - q) + \alpha_{n}(Sy_{n} - q) >$$

$$+ \max \{\| (1 - \alpha_{n})(x_{n} - q) + \alpha_{n}(Sy_{n} - q) \|, 1\} \| u_{n} \| b(\| u_{n} \|)$$

$$\le (1 - \alpha_{n})^{2} \| (x_{n} - q) \|^{2} + 2\alpha_{n}(1 - \alpha_{n})Re < (Sy_{n} - q), J(x_{n} - q) >$$

$$+ \max \{(1 - \alpha_{n}) \| x_{n} - q \|, 1\} \alpha_{n} \| Sy_{n} - q \| b(\alpha_{n} \| Sy_{n} - q \|)$$

$$+ 2 \| u_{n} \| \| (1 - \alpha_{n})(x_{n} - q) + \alpha_{n}(Sy_{n} - q) \| + Mb(M) \| u_{n} \|$$

$$\le [(1 - \alpha_{n})^{2} + 2\alpha_{n}(1 - \alpha_{n})(1 - k_{p} - k_{p}\beta_{n} + L^{2}\beta_{n})] \| x_{n} - q \|^{2}$$

$$+ 2\alpha_{n}(1 - \alpha_{n})(L + 1)M \| v_{n} \| + M^{3}\alpha_{n}b(\alpha_{n}) + [2M + Mb(M)] \| u_{n} \|$$

$$\le [(1 - \alpha_{n})^{2} + 2\alpha_{n}(1 - \alpha_{n})(1 - k_{p} - k_{p}\beta_{n} + L^{2}\beta_{n})] \| x_{n} - q \|^{2}$$

$$+ M^{3}\alpha_{n}b(\alpha_{n}) + [LM + 2M + Mb(M)](\| u_{n} \| + \| v_{n} \|).$$

By assumption (II) on the sequence $\{\beta_n\}$, there exists $\delta \in (0, 2k)$ and a natural number $N \ge 1$ such that $L(L^2 - k_p)\beta_n < k_p - \delta/2$, for $n \ge N$.

Consequently, we have

$$\| x_{n+1} - q \|^{2} \leq [(1 - \alpha_{n})^{2} + 2\alpha_{n}(1 - \alpha_{n})(1 - \delta/2)] \| x_{n} - q \|^{2}$$

$$M^{3}\alpha_{n}b(\alpha_{n}) + [LM + 2M + Mb(M)](\| u_{n} \| + \| v_{n} \|)$$

$$= (1 - \delta\alpha_{n} - \alpha_{n}^{2} + \delta\alpha_{n}^{2}) \| x_{n} - q \|^{2} + M^{3}\alpha_{n}b(\alpha_{n})$$

$$+ [LM + 2M + Mb(M)](\| u_{n} \| + \| v_{n} \|)$$

$$\leq (1 - \delta\alpha_{n}) \| x_{n} - q \|^{2} + \alpha_{n}[M^{2}\delta\alpha_{n} + M^{3}b(\alpha_{n})]$$

$$+ [LM + 2M + Mb(M)](\| u_{n} \| + \| v_{n} \|)$$

for $n \geq N$. We set $a_n = || x_n - q ||^2$, $t_n = \delta \alpha_n$, $b_n = \alpha_n [M^2 \delta \alpha_n + M^3 b(\alpha_n)]$ and $c_n = [LM + 2M + Mb(M)](|| u_n || + || v_n ||)$. Then the above inequality reduces to

$$a_{n+1} \le (1-t_n)a_n + b_n + c_n, \ n \ge N.$$

Observe that $\lim_{t\to 0^+} b(t) = 0$ and $\lim_{t\to\infty} a_n = 0$, so that $\lim_{t\to\infty} b(\alpha_n) = 0$. It follows from Lemma 2 that $\lim_{t\to\infty} a_n = 0$, so that $\{x_n\}$ converges strongly to the unique solution q of the equation Tx = f. **Corollary 1.** Let X be a p - uniformly smooth Banach space with 1 $and let <math>T: X \to X$ be a Lipschitzian local strongly H - accretive operator with a constant $k \in (0, 1)$ and a Lipschitzian constant $L \ge 1$. Define $S: X \to X$ by Sx = f + x - Tx. Let $\{u_n\}, \{v_n\}$ be two summable sequences in X and let $\{\alpha_n\}, \{\beta_n\}$ be two real sequences in [0,1] satisfying

(i)
$$\lim_{n \to \infty} \alpha_n = 0$$
, $\sum_{n=0}^{\infty} \alpha_n = \infty$

and

(*ii*)
$$\lim_{n \to \infty} \sup \beta_n < \frac{k_p}{L^2 - k_p}$$
.

Then for each $x_0 \in X$, the iteration sequences $\{x_n\}$ is defined by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n S y_n + u_n,$$

$$y_n = (1 - \beta_n)x_n + \beta_n S x_n + v_n, \ n \ge 0,$$
 (13)

Proof. The proof of the corollary is on the lines of Theorem 1.

3. The Mann iteration process with errors

In this section we study the Mann iteration process with errors and prove that if X is a uniformly smooth Banach space and $T: X \to X$ is a locally dissipative type mapping, then the Mann iteration process with errors converges strongly to the unique solution of the equation Tx = f.

Theorem 2. Let D be a uniformly smooth Banach space of X. Let $T : D(T) \to 2^D$ be a locally dissipative type operator with a constant $k \in (0, 1)$. Define $S : X \to X$ by Sx = f + x - Tx.

Let $\{u_n\}$ be a summable sequence in X, and $\{\alpha_n\}$ be a real sequence in [0,1] satisfying $\lim_{n\to\infty} \alpha_n = 0$, and $\sum_{n=0}^{\infty} \alpha_n = \infty$. For arbitrary $x_0 \in X$, the iteration sequence $\{x_n\}$ is defined by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n S x_n + u_n, \ n \ge 0.$$

Moreover, suppose that the sequence $\{Sy_n\}$ is bounded. Then $\{x_n\}$ converges strongly to the unique solution q of the equation Tx = f.

Proof. Let q be a fixed point of T. For T is a locally dissipative type mapping, we have

$$Re < Tx - q, j(x - q) \ge C_q \parallel x - q \parallel^2$$
.

Here, Sx = f - Tx + xNow,

$$< Sx - Sq, j(x - q) >= Re < f - Tx + x - f + Tq - q, j(x - q) >$$

$$= Re < Tq - Tx, j(x - q) > + Re < x - q, j(x - q) >$$

$$\leq C_q || x - q ||^2 + || x - q ||^2$$

$$\leq (C_q + 1) || x - q ||^2$$
(14)

Now, set $d = \sup \{ \| Sx_n - q \| : x \ge 0 \} + \| x_0 - q \|$

$$M = d + \sum_{n=0}^{\infty} \parallel u_n \parallel +1$$

for $n \ge 0$, applying induction, we have

$$||x_n - q|| \le d + \sum_{i=1}^{n-1} ||u_i||, n \ge 0$$

and hence $|| x_n - q || \le M, n \ge 0.$ Now, set

$$\beta_n = \parallel x_n - q \parallel^2 \tag{15}$$

Because $C_n \to 0$, it is easy to show that there exists an integer $N \ge 1$ such when $n \ge N$, then

$$[1 - (1 - (C_q + 1))C_n]^2 + d^2 C_n \beta(C_n) \le 1.$$

Let $B = \max \{ \beta_i : 1 \le i \le N, 1 \}$. First we want to show that $\beta_n \le B^2$ and

$$\beta_{n+1} \leq [1 - (1 - (c_q + 1))C_n]^2 + B^2 d^2 C_n \beta(C_n).$$

From (8), (9), (14) and Lemma 1 for any $n \ge 0$, we have

$$\beta_{n+1} = || x_{n+1} - q ||^{2}$$

$$\leq || (1 - C_{n})(x_{n} - q) + C_{n}(Sx_{n} - q) + u_{n} ||^{2}$$

$$\leq || (1 - C_{n})(x_{n} - q) + C_{n}(Sx_{n} - q) ||^{2}$$

$$+ 2Re < u_{n}, J(1 - C_{n})(x_{n} - q) + C_{n}(Sx_{n} - q) ||^{2}$$

$$+ \max \{ || (1 - C_{n})(x_{n} - q) + C_{n}(Sx_{n} - q) ||, 1 \} || u_{n} || b(|| u_{n} ||)$$

$$\leq || (1 - C_{n})^{2} || || (x_{n} - q) ||^{2} + 2C_{n}(1 - C_{n})Re < Sx_{n} - q, J(x_{n} - q) >$$

$$+ \max \{ (1 - C_{n}) || (x_{n} - q) ||, 1 \} C_{n} || (Sx_{n} - q) || b(C_{n} || (Sx_{n} - q) ||)$$

$$+ 2 || u_{n} || || (1 - C_{n})(x_{n} - q) + C_{n}(Sx_{n} - q) || + Mb(M) || u_{n} ||$$

360

$$\leq (1 - C_n)^2 \parallel (x_n - q) \parallel^2 + 2C_n(1 - C_n)(C_q + 1) \parallel (x_n - q) \parallel^2 + \max \{ \parallel x_n - q \parallel^2, 1 \} d^2 C_n b(C_n) + 2 \parallel u_n \parallel \parallel (x_n - q) \parallel + Mb(M) \parallel u_n \parallel \\ \leq \{ (1 - C_n)^2 + 2Cn(1 - C_n)(C_q + 1) \} \parallel x_n - q \parallel^2 + \max \{ \parallel x_n - q \parallel^2, 1 \} d^2 C_n b(C_n) + 2M \parallel u_n \parallel + Mb(M) \parallel u_n \parallel \\ \{ 1 - C_n(1 - (C_q + 1)) \}^2 + \parallel x_n - q \parallel^2 + B^2 d^2 C_n b(C_n) + \{ 2M + Mb(M) \} \parallel u_n \parallel,$$

for $n \geq M$, by the definition of number B, we have

$$\beta_n \leq B^2.$$

For $n \ge N$, we apply induction; Assume $\beta_n \le B^2$, then

$$\beta_{n+1} \leq \{1 - C_n(-(C_q + 1))\}^2 \beta_n + B^2 d^2 C_n b(C_n) + \{2M + Mb(M)\} \parallel u_n \parallel.$$

For $n > N$, we set $a_n = \beta_n$, $t_n = C_n(1 - (C_q + 1))$, $b_n = B^2 d^2 C_n b(C_n)$ and

$$C_n = \{2M + Mb(M)\} \parallel u_n \parallel .$$

Then the above inequality reduces to

$$a_{n+1} \le (1-t_n)^2 a_n + b_n + c_n, \ n \ge N.$$

Observe that $\lim_{n\to 0+} b(t) = 0$ and $\lim_{n\to\infty} \alpha_n = 0$. It follows from Lemma 2 that $\lim_{n\to\infty} a_n = 0$, so that $\{x_n\}$ converges strongly to the unique solution q of the equation $\operatorname{Tx} = \mathrm{f}$.

Acknowledgement. The authors are thankful to Prof. S.P. Singh for his valuable suggestions to improve the results.

References

- F.E. Browder, Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer. Math. Soc., 73(1967), 875-882.
- [2] C.E. Chidume, An iterative process for nonlinear Lipschitzian strongly accretive mappings in L_p spaces, J. Math. Anal. Appl., 151(1990), 453-461.
- [3] C.E. Chidume, Approximation methods for non-linear operator equations of the maccretive type, to appear in J. Math. Anal. Appl.
- [4] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, New York-Berlin, 1985.
- [5] J.C. Dunn, Iterative construction of fixed points for multivalued operators of the monotone type, J. Funct. Anal., 27(1978), 38-50.

- [6] Jesus Garcia-Falset and Claudio H. Marales, Existence theorems for m-accretive operators in Banach spaces, J. Math. Anal. Appl., 309(2005), 453-461.
- [7] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44(1974), 147-150.
- [8] T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, 18/19(1967), 508-520.
- [9] L.S. Liu, Ishikawa and Mann iterative process with errors for non linear strongly accretive mappings in Banach Spaces, J. Math. Anal. Appl., 194(1995), 114-125.
- [10] L.S. Liu, Fixed points of local strictly pseudo-contractive mappings using Mann and Ishikawa iteration with errors, Indian J. Pure Appl. Math., 26(7)(1995), 649-659.
- [11] L.S. Liu, Mann iteration processes for constructing a solution of strongly monotone operator equations, J. Eng. Math., 4(1993), 117-121.
- [12] W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4(1953), 506-510.
- [13] C. Morales, Pseudo-contractive mappings and Leray-Schauder boundary conditions, Comment. Math. Univ. Carolina, 20(1979), 745-746.
- [14] M.O. Osilike, Ishikawa and Mann iteration methods for nonlinear strongly accretive mappings, Bull. Austral. Math. Soc., 46(1992), 413-424.
- [15] S. Reich, An iterative procedure for constructing zeroes of accretive sets in Banach spaces, Nonlinear Anal., 2(1978), 85-92.
- [16] S. Reich, Constuctive techniques for accretive and monotone operators in applied nonlinear analysis, (V. Lakhshmikantan-Ed.) pp. 335-345, Academic Press, New York, 1979.
- [17] B.E. Rhoades and L. Saliga, Some fixed point iteration procedures II, Nonlinear Analysis Forum, 6(2001), 193-217.
- [18] B.K. Sharma and B.S. Thakur, Local strongly H-accretive operators, (preprint).
- [19] K.K. Tan and H.K. Xu, Iterative solutions to nonlinear equations of strongly accretive operators in Banach spaces, J. Math. Anal. Appl., 178(1993), 9-21.
- [20] X.L. Weng, Iterative construction of fixed points of a dissipative type operator, Tamkang J. Math., 23(1992), 205-215.
- [21] Y. Xu, Ishikawa and Mann iterative process with errors for nonlinear strongly accretive operator equations, J. Math. Anal. Appl., 224(1998), 91-101.
- [22] Z. Xu and G.F. Roach, A necessary and sufficient condition for convergence of steepest descent approximation to accretive operator equations, J. Math. Anal. Appl., 167(1992), 340-354.
- [23] S. Zhang, On the convergence problems of Ishikawa and Mann iteration process with errors for ψ- pseudo contractive type mappings, Appl. Math. Mechanics, 21(2000), 1-10.

Received: November 10, 2007; Accepted: January 21, 2008.