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1. Introduction

In this article we study the existence of the fixed points for operators defined
on cartesian product of structured sets by the following form:

f : X × Y → X × Y

f (x, y) = (f1 (x, y) , f2 (x, y))

The problem studied is:

Problem 1.1. If f : X × Y → X × Y satisfies the following conditions:

(H1) f1 (·, y) : X → X has a fixed point for all y ∈ Y ;
(H2) f2 (x, ·) : Y → Y has a fixed point for all x ∈ X.

In which conditions f : X × Y → X × Y has a fixed point.

Let f : X × Y → X × Y , f = (f1, f2) satisfies conditions (H1), (H2).
We define the following multivalued mappings:

P : Y ( X, P (y) = {x ∈ X : x = f1(x, y)} (1)
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Q : X ( Y, Q(x) = {y ∈ Y : y = f2(x, y)} (2)

H : Y ( Y, H(y) = { f2(x, y) : x ∈ P (y) } (3)

We have the following general principles for the existence of the fixed point
for operator f = (f1, f2).

Theorem 1.1. (M.A. Şerban [29], [30]) Suppose that f : X × Y → X × Y ,
f = (f1, f2) satisfies conditions (H1), (H2). If the mapping P ◦ Q : X ( X

has at least a fixed point or the mapping Q ◦ P : Y ( Y has at least a fixed
point then the mapping f has at least a fixed point.

Proof. Let x∗ ∈ FP◦Q which means that x∗ ∈ P ◦ Q (x∗) =
⋃

y∈Q(x∗)

P (y).

Therefore there exists y∗ ∈ Q (x∗) such that x∗ ∈ P (y∗).

x∗ ∈ P (y∗) =⇒ x∗ = f1(x∗, y∗)

y∗ ∈ Q (x∗) =⇒ y∗ = f2(x∗, y∗)

so (x∗, y∗) ∈ Ff .
Similarly we can prove the existence of the fixed point in the case of FQ◦P 6=

∅. �

Theorem 1.2. (I.A. Rus [15]) Suppose that f : X×Y → X×Y , f = (f1, f2)
satisfies condition (H1). If the mapping H has at least a fixed point then the
mapping f has at least a fixed point.

Proof. Let y∗ ∈ FH therefore y∗ ∈ H (y∗), so there exists x∗ ∈ P (y∗) such
that

y∗ = f2(x∗, y∗)

x∗ ∈ P (y∗) =⇒ x∗ = f1(x∗, y∗)

which implies that (x∗, y∗) ∈ Ff . �

Remark 1.1. If instead of conditions (H1) and (H2) we use the following
conditions

(H1’) f1 (·, y) : X → X has a unique fixed point for all y ∈ Y ;
(H2’) f2 (x, ·) : Y → Y has a unique fixed point for all x ∈ X;
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the mappings P , Q, H become singlevalued

P : Y → X, P (y) = x∗ (y) , Ff1(·,y) = {x∗ (y)} (4)

Q : X → Y, Q(x) = y∗ (x) , Ff2(x,·) = {y∗ (x)} (5)

H : Y → Y, H(y) = f2(P (y) , y) (6)

and we can formulate the following results:

(i) If in Theorem 1.1 we suppose that the mapping P ◦Q : X → X has a
unique fixed point or the mapping Q ◦ P : Y → Y has a unique fixed
point then the mapping f has a unique fixed point.

(ii) If in Theorem 1.2 we suppose that the mapping H has a unique fixed
point then the mapping f has a unique fixed point.

2. Operators on cartesian product of ordered sets

In this section we consider the case of ordered sets and we give some appli-
cations of the Theorem 1.1 and Theorem 1.2.

Theorem 2.1. (M.A. Şerban [29]) Let (X,≤1), (Y,≤2) be two complete lat-
tices and f : X × Y → X × Y , f = (f1, f2), such that:

(i) the mapping f1(·, y) is monotone increasing for any y ∈ Y ;
(ii) the mapping f2(x, ·) is monotone increasing for any x ∈ X;
(iii) for every x1, x2 ∈ X such that x1 ≤1 x2 and y1 = f2(x1, y1), y2 =

f2(x2, y2) we have y1 ≤2 y2;
(iv) for every y1, y2 ∈ Y such that y1 ≤2 y2 and x1 = f1(x1, y1), x2 =

f1(x2, y2) we have x1 ≤1 x2.

In these conditions f has at least a fixed point.

Proof. The conditions (i) and (ii) show us that f1(·, y) and f2(x, ·) satisfy
the Knaster-Tarski Fixed Point Theorem for any y ∈ Y , respectively for any
x ∈ X.

The conditions (iii) and (iv) can be write in the terms of mappings P and
Q as follow:

(iii) for every x1, x2 ∈ X such that x1 ≤1 x2 and y1 ∈ Q(x1), y2 ∈ Q(x2) we
have y1 ≤2 y2;

(iv) for every y1, y2 ∈ Y such that y1 ≤2 y2 and x1 ∈ P (y1), x2 ∈ P (y2) we
have x1 ≤1 x2.
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Let y1 ≤2 y2, x1 ∈ P (y1), x2 ∈ P (y2) then x1 ≤1 x2. For x1 ≤1 x2 , y′1 ∈
Q(x1), y′2 ∈ Q(x2) then y′1 ≤2 y′2. So, any selection g : Y → Y of multivalued
mapping Q ◦ P is monotone increasing and thus g is in the conditions of
Knaster-Tarski Fixed Point Theorem, therefore FQ◦P 6= ∅. Applying Theorem
1.1 we obtain the conclusion. �

Theorem 2.2. (M.A. Şerban [29]) Let (X,≤1), (Y,≤2) be two right induc-
tively ordered sets and f : X × Y → X × Y , f = (f1, f2), such that:

(i) for fixed y ∈ Y we have x ≤1 f1(x, y), ∀x ∈ X;
(ii) for fixed x ∈ X we have y ≤2 f2(x, y), ∀y ∈ Y ;
(iii) for every x ∈ X and y ∈ Ff2(x,·) there exist x′ ∈ Ff1(·,y) such that

x ≤1 x′;
or the condition holds:

(iii’) for every y ∈ Y and x ∈ Ff1(·,y) there exist y′ ∈ Ff2(x,·) such that
y ≤2 y′;

In these conditions f has at least a fixed point.

Proof. From Bourbaki-Birkhoff Fixed Point Theorem, conditions (i) and (ii)
imply the conditions (H1) and (H2) of Theorem 1.1. Condition (iii) can be
formulate as:

(iii) for every x ∈ X and y ∈ Q(x) there exist x′ ∈ P (y) such that x ≤1 x′,

this means that there is a selection h of multivalued mapping P ◦ Q such
that:

h : X → X, x 7−→ x′

Using condition (iii) we deduce that h satisfies: x ≤1 h(x), ∀x ∈ X, which
means that h satisfies the Bourbaki-Birkhoff Fixed Point Theorem, therefore
FP◦Q 6= ∅.

If we are using condition (iii)’ instead of (iii) we deduce the existence of
selection g : Y → Y of multivalued mapping Q ◦ P such that y ≤2 g (y),
∀y ∈ Y , thus FQ◦P 6= ∅. �

From the Theorem 1.2 point of view we get the following results:

Theorem 2.3. (I.A. Rus [15]). Let (X,≤1), (Y,≤2) be two complete lattices
and f : X × Y → X × Y , f = (f1, f2), such that:

(i) the mapping f1(·, y) : X → X is monotone increasing for any y ∈ Y ;
(ii) the mapping f2(x, ·) : Y → Y is monotone increasing for any x ∈ X;
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(iii) the mapping f2(·, y) : X → Y is monotone increasing for any x ∈ X;
(iv) for every y1, y2 ∈ Y such that y1 ≤2 y2 and x1 = f1(x1, y1), x2 =

f1(x2, y2) we have x1 ≤1 x2.

In these conditions f has at least a fixed point.

Proof. We show that multivalued mapping H, defined by (3), has a fixed
point. For y1 ≤2 y2 and x1 ∈ P (y1), x2 ∈ P (y2) we have x1 ≤1 x2, therefore:

f2(x1, y1) ≤2 f2(x2, y1) ≤2 f2(x2, y2).

Thus, any selection s : Y → Y of multivalued mapping H is monotone increas-
ing, so s is in the conditions of Knaster-Tarski Fixed Point Theorem, which
implies that FH 6= ∅. �

Theorem 2.4. (M.A. Şerban [29]) Let (X,≤1), (Y,≤2) be two right induc-
tively ordered sets and f : X × Y → X × Y , f = (f1, f2), such that:

(i) for fixed y ∈ Y we have x ≤1 f1(x, y), ∀x ∈ X;
(ii) for every y ∈ Y and x ∈ Ff1(·,y) there exist y′ ∈ Ff2(x,·) such that

y ≤2 y′.

In these conditions f has at least a fixed point.

Proof. Condition (ii) ensure the existence of selection s : Y → Y of multival-
ued mapping H, defined by (3), such that

y ≤2 s (y) , ∀y ∈ Y

which implies that FH 6= ∅. �

3. Operators on cartesian product of metric spaces

In this section we present some applications of the Theorem 1.1 and Theo-
rem 1.2 in the case of cartesian product of metric spaces.

3.1. Equivalent conditions. Let (X, d) and (Y, ρ) two complete metric
spaces. We have:

Theorem 3.1.1. (M.A. Şerban [29], [30]) f : X × Y → X × Y , f = (f1, f2),
such that:

(i) f1(·, y) : X → X is a1-contraction ∀y ∈ Y ;
(ii) f2(x, ·) : Y → Y is a2-contraction ∀x ∈ X;
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(iii) f1(x, ·) : Y → X is L1-lipschitz ∀x ∈ X;
(iv) f2(·, y) : X → Y is L2-lipschitz ∀y ∈ Y ;

(v)
L1L2

(1− a1)(1− a2)
< 1.

Then f has a unique fixed point.

Proof. Since (X, d) and (Y, ρ) are two complete metric spaces and from (i)
and (ii) we have that f1(·, y) : X → X satisfies condition (H1′) and f2(x, ·) :
Y → Y satisfies condition (H2′) therefore P and Q are singlevalued operators.
Using (i) and (iii) we get that operator P is lipschitz:

d (P (y1) , P (y2)) = d (f1 (P (y1) , y1) , f1 (P (y2) , y2)) ≤
≤ d (f1 (P (y1) , y1) , f1 (P (y2) , y1)) + d (f1 (P (y2) , y1) , f1 (P (y2) , y2)) ≤

≤ a1 · d (P (y1) , P (y2)) + L1 · ρ (y1, y2)

thus
d(P (y1), P (y2)) ≤

L1

1− a1
ρ(y1, y2), ∀y1, y2 ∈ Y.

Analogue, using (ii) and (iii), we obtain that operator Q is lipschitz:

ρ(Q(x1), Q(x2)) ≤
L2

1− a2
d (x1, x2) ∀x1, x2 ∈ X.

The conclusion is obtained from Theorem 1.1 and Remark 1.1 since the oper-
ator P ◦Q : X → X is contraction. �

Theorem 3.1.2. (I.A. Rus [16]) f : X × Y → X × Y , f = (f1, f2) satisfies
conditions (i) - (iv) from Theorem 3.1.1 and

(v’) a2 +
L1L2

(1− a1)
< 1.

Then f has a unique fixed point.

Proof. We consider the operator H : Y → Y defined by (6) which is a
contraction because of condition (v’):

ρ(H(y1),H(y2)) = ρ(f2 (P (y1), y1) , f2 (P (y2) , y2)) ≤
≤ ρ(f2 (P (y1), y1) , f2 (P (y1) , y2)) + ρ(f2 (P (y1), y2) , f2 (P (y2) , y2)) ≤

≤ a2 · ρ(y1, y2) + L2 · d(P (y1), P (y2)) ≤
(

a2 +
L1L2

1− a1

)
· ρ(y1, y2)

Applying the Theorem 1.2 and Remark 1.1 we get the conclusion. �

Remark 3.1.1.
L1L2

(1− a1)(1− a2)
< 1 ⇐⇒ a2 +

L1L2

(1− a1)
< 1.
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Theorem 3.1.3. (I.A. Rus [16]) If f : X×Y → X×Y , f = (f1, f2) satisfies:

(i) There exist a1 ∈ [0; 1[ and L1 > 0 such that:

d(f1(x1, y1), f1(x2, y2)) ≤ a1d(x1, x2) + L1ρ(y1, y2) (7)

for all (x1, y1), (x2, y2) ∈ X × Y ;
(ii) There exist a2 ∈ [0; 1[ and L2 > 0 such that:

ρ(f2(x1, y1), f2(x2, y2)) ≤ L2d(x1, x2) + a2ρ(y1, y2) (8)

for all (x1, y1), (x2, y2) ∈ X × Y ;
(iii) Condition (v) from Theorem 3.1.1 or condition (v’) from Theorem

3.1.2 hold.

Then f has a unique fixed point.

Proof. The proof of this theorem is similar with the proof of Theorem 3.1.1
because conditins (i)-(ii) are equivalent with conditions (i)-(iv) from Theorem
3.1.1. �

Theorem 3.1.4. (Perov Theorem) If f : X × Y → X × Y , f = (f1, f2) such
that:

(i) there exist a1, a2, L1, L2 ∈ R+ such that (7) and (8) hold;
(ii) the matrix

A =

(
a1 L1

L2 a2

)
has the property that An → 0.

Then f has a unique fixed point.

The Perov Theorem is obtained using the vectorial metric δ : (X × Y )2 →
R2

+:

δ ((x1, y1) , (x2, y2)) =

(
d (x1, x2)
ρ (y1, y2)

)
and conditions (i) can be written in the following form:

δ (f (x1, y1) , f (x2, y2)) ≤ A · δ ((x1, y1) , (x2, y2)) .

Remark 3.1.2. The conditions of the Perov Theorem are equivalent with the
conditions of Theorem 3.1.1 and Theorem 3.1.2 because:
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An → 0 ⇐⇒ the matrix A has eigenvalues with

|λ| < 1 ⇐⇒ L1L2

(1− a1)(1− a2)
< 1.

Theorem 3.1.5. (St. Czerwik [9], J. Matkowski [12]) If f : X ×Y → X ×Y ,
f = (f1, f2) such that:

(i) there exist a1, a2, L1, L2 ∈ R+ such that (7) and (8) hold;

(ii) there exist r1, r2 ∈ R∗
+ such that

{
a1r1 + L1r2 < r1

L2r1 + a2r2 < r2
.

Then f has a unique fixed point.

Proof. We denote by

LCM = max
{

a1r1 + L1r2

r1
,
L2r1 + a2r2

r2

}
and Z = X × Y . Now we consider the metric σCM : Z × Z → R+

σCM ((x1, y1) , (x2, y2)) = r1d (x1, x2) + r2ρ (y1, y2)

It is easy to check that f : Z → Z, f = (f1, f2) is LCM− contraction with
respect to σCM . �

Remark 3.1.3. Condition (ii) from Theorem 3.1.5 ⇐⇒ the matrix A has
eigenvalues with |λ| < 1.

3.2. Remarks on contraction condition for operators on X × Y . Let
(X, d) and (Y, ρ) two metric spaces. For the set X × Y we can define the
following metrics:

σC : (X × Y )× (X × Y ) → R+

σC ((x1, y1) , (x2, y2)) = max {d (x1, x2) , ρ (y1, y2)} ,

σM : (X × Y )× (X × Y ) → R+

σM ((x1, y1) , (x2, y2)) = d (x1, x2) + ρ (y1, y2) ,

σE : (X × Y )× (X × Y ) → R+

σE ((x1, y1) , (x2, y2)) =
√

(d (x1, x2))
2 + (ρ (y1, y2))

2,

and generalized metric used in Perov Theorem:

δ : (X × Y )× (X × Y ) → R2
+ :

δ ((x1, y1) , (x2, y2)) =

(
d (x1, x2)
ρ (y1, y2)

)
.
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Lemma 3.2.1. Let a1, a2, L1, L2 ∈ R+ and the matrix

A =

(
a1 L1

L2 a2

)
.

The following statements are equivalent:

(i) A is convergent to zero matrix;
(ii) I −A is non-singular and

(I −A)−1 = I + A + A2 + ...

(iii) the matrix A has eigenvalues with |λ| < 1;
(iv) I −A is non-singular and (I −A)−1 has nonnegative elements;

(v)
L1L2

(1− a1)(1− a2)
< 1;

Proof. The equivalence of (i), (ii), (iii), (iv) is well-known (see R. Precup
[13], [14], I.A. Rus [24]).

(iii) ⇐⇒ (v) The eigenvalues of matrix A are solutions of the equation

λ2 − (a1 + a2) · λ + a1a2 − L1L2 = 0,

so

λ1,2 =
a1 + a2 ±

√
(a1 − a2)

2 + 4 · L1L2

2
.

We have

0 ≤ |λ1,2| ≤
a1 + a2 +

√
(a1 − a2)

2 + 4 · L1L2

2
and

a1 + a2 +
√

(a1 − a2)
2 + 4 · L1L2

2
< 1 ⇐⇒ L1L2 < (1− a1)(1− a2).

�

Theorem 3.2.1. Let (X, d) and (Y, ρ) two complete metric spaces and f :
X × Y → X × Y , f = (f1, f2) such that there exist a1, a2, L1, L2 ∈ R+ such
that (7) and (8) hold. Then:

(i) f is lipschitz with respect to σC with the lipschitz constant LσC =
max {a1 + L1, a2 + L2}. If LσC < 1 then the matrix A is convergent
to zero matrix;
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(ii) f is lipschitz with respect to σM with the lipschitz constant LσM =
max {a1 + L2, a2 + L1}. If LσM < 1 then the matrix A is convergent
to zero matrix;

(iii) f is lipschitz with respect to σE with the lipschitz constant LσE =√
a2

1 + a2
2 + L2

1 + L2
2. If LσE < 1 then the matrix A is convergent to

zero matrix;

Proof. (i) We have

σC (f (x1, y1) , f (x2, y2)) ≤
≤ max {a1d(x1, x2) + L1ρ(y1, y2), L2d(x1, x2) + a2ρ(y1, y2)} ≤

≤ max {a1 + L1, a2 + L2} · σC ((x1, y1) , (x2, y2))

If LσC < 1 then
a1 + L1 < 1 ⇐⇒ L1 < 1− a1

and
a2 + L2 < 1 ⇐⇒ L2 < 1− a2

therefore
L1L2 < (1− a1) (1− a2)

so from Lemma 3.2.1 we have that A is convergent to zero matrix.
(ii) In this case we have

σM (f (x1, y1) , f (x2, y2)) ≤
≤ (a1 + L2) · d(x1, x2) + (L1 + a2) · ρ(y1, y2) ≤
≤ max {a1 + L2, a2 + L1} · σM ((x1, y1) , (x2, y2))

If LσM < 1 then
a1 + L2 < 1 ⇐⇒ L2 < 1− a1

and
a2 + L1 < 1 ⇐⇒ L1 < 1− a2

therefore
L1L2 < (1− a1) (1− a2)

so, again, from Lemma 3.2.1 we have that A is convergent to zero matrix.
(iii) From (7), (8) and Cauchy inequality we get:

σE (f (x1, y1) , f (x2, y2)) ≤

≤
√

(a1d(x1, x2) + L1ρ(y1, y2))
2 + (L2d(x1, x2) + a2ρ(y1, y2))

2 ≤
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≤
√(

a2
1 + L2

1

)
(d(x1, x2)2 + ρ(y1, y2)2) +

(
L2

2 + a2
2

)
(d(x1, x2)2 + ρ(y1, y2)2) ≤

≤
√(

a2
1 + L2

1 + L2
2 + a2

2

)
· σE ((x1, y1) , (x2, y2)) .

If LσM < 1 then a1, a2, L1, L2 ∈ [0; 1[ and

L1L2 ≤ 2 · L1L2 ≤ L2
1 + L2

2 < 1− a2
1 − a2

2 ≤
≤ 1− a1 − a2 ≤ 1− a1 − a2 + a1a2 = (1− a1) (1− a2)

thus from Lemma 3.2.1 we have that A is convergent to zero matrix. �

Theorem 3.2.1 shows that if f : X × Y → X × Y , f = (f1, f2) satisfies
conditions (7) and (8) for a1, a2, L1, L2 ∈ R+ and it is contraction with respect
to σC or σM or σE the f satisfies conditions from Perov Theorem, which means
that Perov Theorem is weaker than Banach Theorem used in complete metric
space (X × Y, σC) or (X × Y, σM ) or (X × Y, σE). If f satisfies Perov Theorem
then there exist r1, r2 ∈ R∗

+ such that{
a1r1 + L1r2 < r1

L2r1 + a2r2 < r2

and we can always construct a complete metric on X × Y ,

σCM ((x1, y1) , (x2, y2)) = r1d (x1, x2) + r2ρ (y1, y2)

such that f becomes LCM -contraction (LCM = max
{

a1r1+L1r2
r1

, L2r1+a2r2
r2

}
),

due to Czerwik-Matkowski Theorem, Theorem 3.1.5.

3.3. Generalization. In this subsection we extend the Theorem 3.1.1 to the
case of c-Picard operator. For the convenience of the reader we recall the
following definitions:

Definition 3.3.1. Let (X, d) be a metric space. A : X → X is called a Picard
operator (briefly PO) if:

(i) FA = {x∗};
(ii) An(x) → x∗ as n →∞, for all x ∈ X.

Definition 3.3.2. Let (X, d) be a metric space. A is c-Picard operator (briefly
c-PO) if A is PO and there exists c > 0 such that

d (x, x∗) ≤ c · d (x, A (x)) , ∀x ∈ X.
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Example 3.3.1. (S. Reich-I.A. Rus-L. Ćirić, (1971)) Let (X, d) be a complete
metric space and f : X → X. There exist αi ∈ R+, i = 1, 3 with α1 + 2α2 +
2α3 < 1 such that

d(f(x), f(y)) ≤ α1 d(x, y) + α2 · [d(x, f(x)) + d(y, f(y))] +
+α3 · [d(x, f(y)) + d(y, f(x))] ,

then f is c-PO operator with c = 1
1−a where a = α1+α2+α3

1−α2−α3
.

For other examples of PO and c-PO see I.A. Rus [23], [26], M.A. Şerban
[30].

Theorem 3.3.1. Let (X, d) be a complete metric space, (Y, ρ) be a metric
space and f : X × Y → X × Y , f = (f1, f2), such that:

(i) f1(·, y) : X → X is c1-PO ∀y ∈ Y ;
(ii) f2(x, ·) : Y → Y is c2-PO ∀x ∈ X;
(iii) f1(x, ·) : Y → X is L1-lipschitz ∀x ∈ X;
(iv) f2(·, y) : X → Y is L2-lipschitz ∀y ∈ Y ;
(v) c1L1c2L2 < 1.

Then f has a unique fixed point.

Proof. From (i) and (ii) we have:

d (x, P (y)) ≤ c1d (x, f1 (x, y)) , ∀x ∈ X

ρ (y, Q (x)) ≤ c2ρ (y, f2 (x, y)) , ∀y ∈ Y

therefore if we take x = P (y1) we get

d (P (y1) , P (y2)) ≤ c1d (P (y1) , f1 (P (y1) , y2)) =
= c1d (f1 (P (y1) , y1) , f1 (P (y1) , y2)) ≤ c1L1ρ(y1, y2), ∀y1, y2 ∈ Y

In the same way we have:

ρ(Q(x1), Q(x2)) ≤ c2L2d (x1, x2) ∀x1, x2 ∈ X.

�

From the Example 3.3.1 point of view we get the following corollary:

Corollary 3.3.1. Let (X, d) and (Y, ρ) two complete metric spaces and f :
X × Y → X × Y , f = (f1, f2), such that:
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(i) there exist αi ∈ R+, i = 1, 3 with α1 + 2α2 + 2α3 < 1 such that:

d(f1(x1, y), f1(x2, y)) ≤ α1 d(x1, x2)+α2 · [d(x1, f1(x1, y)) + d(x2, f1(x2, y))] +

+α3 · [d(x1, f1(x2, y)) + d(x2, f1(x1, y1))] ,

∀x1, x2 ∈ X, y ∈ Y ;
(ii) there exist βi ∈ R+, i = 1, 3 with β1 + 2β2 + 2β3 < 1 such that:

ρ(f2(x, y1), f2(x, y2)) ≤ β1 ρ(y1, y2) + β2 · [ρ(y1, f2(x, y1)) + ρ(y2, f2(x, y2))]+

+β3 · [ρ(y1, f2(x, y2)) + ρ(y2, f2(x, y1))] ,

∀x ∈ X, y1, y2 ∈ Y.

(iii) f1(x, ·) : Y → X is L1-lipschitz ∀x ∈ X;
(iv) f2(·, y) : X → Y is L2-lipschitz ∀y ∈ Y ;
(v) L1

1−a1
· L2

1−a2
< 1 where a1 = α1+α2+α3

1−α2−α3
and a2 = β1+β2+β3

1−β2−β3
.

Then f has a unique fixed point.

Proof. In this case we have the operators f1(·, y) : X → X and f2(x, ·) : Y →
Y satisfies the condition from Example 3.3.1 which means that f1(·, y) : X →
X is c1-PO for every y ∈ Y with:

c1 =
1

1− a1

where a1 = α1+α2+α3
1−α2−α3

and f2(x, ·) : Y → Y is c2-PO for every x ∈ X with:

c2 =
1

1− a2

where a2 = β1+β2+β3

1−β2−β3
. Now we apply the Theorem 3.3.1 and we get the

conclusion. �

3.4. Fibre generalized contractions.

Definition 3.1. A : X → X is said to be a weakly Picard operator (briefly
WPO) if the sequence (An(x))n∈N converges for all x ∈ X and the limit (which
may depend on x) is a fixed point of A.

If A : X → X is a WPO, then we may define the operator A∞ : X → X by

A∞(x) := lim
n→∞

An(x).

Obviously A∞(X) = FA. Moreover, if A is a PO and we denote by x∗ its
unique fixed point, then A∞(x) = x∗, for each x ∈ X.
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The following open problem was posed, (see Problem 10.5, in [23]), by I. A.
Rus:

Fibre Picard operator problem. Let
(
X,

1→
)

and
(
Y,

2→
)

be two L-
spaces. Let B : X → X be a WPO and C : X × Y → Y be such that
C (x, ·) : Y → Y is a WPO for every x ∈ X. Consider the triangular operator
A defined as follows:

A : X × Y → X × Y, A (x, y) := (B (x) , C (x, y))

In which conditions A is a WPO ?

By (X,→) we will denote an L-space. Actually, an L-space is any set
endowed with a structure implying a notion of convergence for sequences.
For example, Hausdorff topological spaces, metric spaces, generalized metric
spaces in Perov’ sense: d(x, y) ∈ Rm

+ , in Luxemburg-Jung’ sense: d(x, y) ∈
R+ ∪ {+∞}, d(x, y) ∈ K, K a cone in an ordered Banach space, d(x, y) ∈ E,
E an ordered linear space with a notion of linear convergence, etc. ), 2-
metric spaces, D-R-spaces, probabilistic metric spaces, syntopogenous spaces,
are examples of L-spaces. For more details see Fréchet [10], Blumenthal [6]
and I. A. Rus [23].

For results on fibre WPO’s see S. Andrász [2], C. Bacoţiu [4], I.A. Rus [19],
[20], [21], M.A. Şerban [28], [30].

In this section we present a result in the case of (X,→) an L-space and
(Y, ρ) a generalized metric space in the Luxemburg-Jung’ sense, ρ(x, y) ∈
R+ ∪ {+∞}. This result generalize a result from M.A. Şerban [27] to the
case of ϕ−contractions. First we recall the definition of ϕ−contraction in the
generalized metric space:

Definition 3.4.1. A function ϕ : R+ → R+ is a strong comparison function
if it satisfies the conditions:

(iϕ) ϕ is increasing;

(iiϕ)
∞∑

n=0
ϕn (t) < +∞, ∀t ∈ R+ .

For more informations about comparison functions see I.A. Rus [22] (p.
41-42), V. Berinde [5], M.A. Şerban [30] (p. 33-36) and J. Jachymski and I.
Jóźwik [11].
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Definition 3.4.2. Let (Y, ρ) be a generalized metric space, (ρ(x, y) ∈ R+ ∪
{+∞}), A : Y → Y an operator and ϕ : R+ → R+ be a strong comparison
function. A is a ϕ−contraction if

ρ (A (y1) , A (y2)) ≤ ϕ (y1, y2)

for all y1, y2 ∈ Y with ρ (y1, y2) < +∞.

Theorem 3.4.1. Let (X,→) be an L-space, (Y, ρ) a complete generalized met-
ric space, B : X → X and C : X × Y → Y . We suppose that:

(i) B is weakly Picard operator;
(ii) C (x, ·) : Y → Y is a ϕ−contraction for any x ∈ X, where ϕ is a

subadditive strong comparison function;
(iii) C is continuous
(iv) ∀y ∈ Y , ρ (y, C (x, y)) < +∞, ∀x ∈ X.

Then A = (B,C) : X × Y → X × Y is WPO.

Proof. (Y, ρ) is a generalized metric space, thus we have a partition Y =
⋃
i∈I

Yi

from the equivalence relation and

X × Y =
⋃
i∈I

X × Yi.

Let x0 ∈ X, y0 ∈ Yi, i ∈ I. We consider the following sequences

xn = Bn (x0) ,

yn = C (xn−1, yn−1) , n ∈ N.

We have that
(xn, yn) = An (x0, y0) , n ∈ N.

Since C (B∞ (x0) , ·) is ϕ−contraction and ρ (y0, C (B∞ (x0) , y0)) < +∞ (con-
dition (iv)) there exists an unique y∗ ∈ Yi ∩ FC(B∞(x0),·) and therefore
(B∞ (x0) , y∗) ∈ FA. Now we prove that (xn, yn) → (B∞ (x0) , y∗) which will
imply that A is WPO. From condition (i) we have that xn → B∞ (x0) ∈ FB.
It remains to prove that yn → y∗.

First we show that yn ∈ Yi. Using condition (iv) we get

ρ (y0, y1) = ρ (y0, C (x0, y0)) < +∞

which implies that y1 ∈ Yi.

ρ (y1, y2) = ρ (y1, C (x1, y1)) < +∞,
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so y2 ∈ Yi and by induction we obtain that yn ∈ Yi, n ∈ N.
We have

ρ (yn+1, y
∗) ≤ ρ (C (xn, yn) , C (xn, y∗)) + ρ (C (xn, y∗) , C (B∞ (x0) , y∗)) ≤

≤ ϕ (ρ (yn, y∗)) + ρ (C (xn, y∗) , C (B∞ (x0) , y∗)) ≤

≤ ϕ2 (ρ (yn−1, y
∗)) + ϕ (ρ (C (xn−1, y

∗) , C (B∞ (x0) , y∗)))+

+ρ (C (xn, y∗) , C (B∞ (x0) , y∗)) ≤

≤ ... ≤

≤ ϕn+1 (ρ (y0, y
∗)) + ϕn (ρ (C (x0, y

∗) , C (B∞ (x0) , y∗))) + ...+

+ϕ (ρ (C (xn−1, y
∗) , C (B∞ (x0) , y∗))) + ρ (C (xn, y∗) , C (B∞ (x0) , y∗)) .

We take
an = ρ (C (xn, y∗) , C (B∞ (x0) , y∗))

Using conditions (ii) and (iii) we have that an → 0. Applying the convergence

Lemma 3.1 from M.A. Şerban [28] we obtain that
n∑

k=0

ϕn−k (ak) → 0, as n →

+∞, which implies that ρ (yn+1, y
∗) → 0, as n → +∞, and the theorem is

proved. �

4. Operators on cartesian product of topological spaces

Definition 4.1. A topological space (X, τ) has the fixed point property
(shortly fpp) if any continuous map A : X → X has a fixed point.

It is well known that the Kuratowski problem (1930) stated as follows:
Kuratowski Problem. If spaces X and Y have the fixed point property,
does their cartesian product X × Y have the fixed point property?

has a negative answer even for Peano continuum (compact, connected and
locally connected metric spaces). The study of behavior of fixed point property
under cartesian product was suggested by the Brouwer Fixed Point Theorem
which states that In has the fpp, where I is the unit interval from R, but in
1967 E. Fadell and W. Lopez presented an example of Peano continuum X

with the fpp such that X× I doesn’t have the fpp. For details see R.F. Brown
[7], [8].

In this section we consider the case of (X, d) a metric space and (Y, τ) a
Hausdorff topological space with the fpp. A general principle for the existence
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of the fixed point of operator f = (f1, f2) in this case can be formulated as
follows:

Theorem 4.1. (I.A. Rus [17]) Let (X, τ1), (Y, τ2) be two Hausdorff topological
spaces and f : X × Y → X × Y , f = (f1, f2). Suppose that:

(i) f1 (·, y) : X → X satisfies condition (H1′);
(ii) the operator P : Y → X defined by (4) is continuous;
(iii) f2 : X × Y → Y is continuous;
(iv) the topological space (Y, τ2) has the fixed point property.

Then the operator f has a fixed point.

Proof. We consider the operator H : Y → Y defined by (6). From (ii) and
(iii) we have that H is continuous and using the fixed point property of the
topological space (Y, τ2) we get that FH 6= ∅. Applying the Theorem 1.2 we
obtain that Ff 6= ∅. �

In order to give some applications of the Theorem 4.1 we present an auxiliary
result which gives sufficient conditions for the continuity of the operator P :
Y → X defined by (4).

Lemma 4.1. Let (X, d) be a metric space, (Y, τ) a Hausdorff topological space
and f : X × Y → X such that

(i) f (·, y) : X → X is c-PO for every y ∈ Y ;
(ii) f (x, ·) : Y → X is continuous for every x ∈ X.

Then the operator P : Y → X defined by (4) is continuous.

Proof. From condition (i) we have that

d (x, x∗ (y)) = d (x, P (y)) ≤ c · d (x, f (x, y)) , ∀x ∈ X, y ∈ Y. (9)

Let y ∈ Y and (yn)n∈N ⊂ Y such that yn → y. Applying (9) for x = P (y)
and x∗ (yn) = P (yn) we obtain:

d (P (y) , P (yn)) ≤ c · d (P (y) , f (P (y) , yn)) .

Making yn → y and using condition (ii) we have that f (P (y) , yn) →
f (P (y) , y) = P (y) therefore d (P (y) , P (yn)) → 0 which shows the conti-
nuity of P . �

Theorem 4.2. Let (X, d) be a metric space and (Y, τ2) be a Hausdorff topo-
logical spaces and f : X × Y → X × Y , f = (f1, f2). Suppose that:
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(i) f1 (·, y) : X → X is c-PO for every y ∈ Y ;
(ii) f2 : X × Y → Y is continuous;
(iii) the topological space (Y, τ2) has the fixed point property.

Then the operator f has a fixed point.

Proof. From (i) we have that f1 (·, y) : X → X satisfies condition (H1′).
From (i), (ii) and Lemma 4.1 we get that P : Y → X, defined by (4), is
continuous and thus all the conditions of Theorem 4.1 are satisfied, therefore
we have the conclusion. �

To get consequences of this result we just combine results which imply that
f1 (·, y) : X → X is c-PO for every y ∈ Y with results which imply that (Y, τ2)
has the fixed point property. For example we have the following corollary:

Corollary 4.1. Let (X, d) be a complete metric space, Y a Hausdorff locally
convex space and f : X × Y → X × Y , f = (f1, f2). Suppose that:

(i) Z ⊂ Y is a compact convex nonempty set and f (X × Z) ⊆ X × Z;
(ii) there exist αi ∈ R+, i = 1, 3 with α1 + 2α2 + 2α3 < 1 such that:

d(f1(x1, y), f1(x2, y)) ≤ α1 d(x1, x2)+α2 · [d(x1, f1(x1, y)) + d(x2, f1(x2, y))] +

+α3 · [d(x1, f1(x2, y)) + d(x2, f1(x1, y1))] ,

∀x1, x2 ∈ X, y ∈ Z;
(iii) f1 (x, ·) : Z → X is continuous for every x ∈ X;
(iv) f2 : X × Z → Z is continuous.

Then the operator f has a fixed point.

Proof. From (ii) we have that f1(·, y) : X → X is c-PO for every y ∈ Y with:

c =
1

1− a

where a = α1+α2+α3
1−α2−α3

(see Example 3.3.1). From conditions (iii) and (iv) we
have that H : Z → Z, defined by (6), is continuous and Z has the fixed point
property due the Theorem of Tihonov, therefore we get the conclusion. �

If in condition (ii) of Corollary 4.1 we take α2 = α3 = 0 we obtain a result
given by C. Avramescu in [3]. Similar results with Corollary 4.1 can be found
also in I.A. Rus [17], M. A. Şerban [29], [30].
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