
Fixed Point Theory, Volume 9, No. 1, 2008, 309-318

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

MONOTONE ITERATIVE METHODS FOR SYSTEMS OF
NONLINEAR EQUATIONS INVOLVING MIXED

MONOTONE OPERATORS

MIRCEA-DAN RUS

Department of Mathematics

Faculty of Automation and Computer Science

Technical University of Cluj-Napoca

Str. C. Daicoviciu, Nr. 15

400020 Cluj-Napoca, Romania

E-mail: rmdan@math.utcluj.ro

Abstract. In this paper, we study the existence and uniqueness of fixed points for systems

of mixed monotone operators in a partially ordered Banach space. As an application of the

results obtained, the existence and uniqueness of positive solutions for a class of systems of

integral equations are presented.

Key Words and Phrases: Cone, ordered Banach space, mixed monotone operator, positive

fixed point, system of nonlinear equations, monotone iterative technique, integral equations.

2000 Mathematics Subject Classification: 47H07, 47H10.

1. Introduction

The study of mixed monotone operators was started 20 years ago in 1987
by D. J. Guo and V. Lakshmikantham [2] and during this time it has proven
to have not only an important theoretical meaning, but also a wide spread
of applications in engineering, the nuclear industry, biological chemistry tech-
nology. From the abstract mathematical point of view, the mixed monotone
operators have great significance for studying nonlinear functional, differential
or integral equations.

This paper was presented at the International Conference on Nonlinear Operators, Dif-

ferential Equations and Applications held in Cluj-Napoca (Romania) from July 4 to July 8,

2007.
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In this paper we make the connection between the theory of mixed monotone
operators in two variables as they were introduced in [2] and the study of fixed
points for systems of mixed monotone operators in several variables. We will
use known results and techniques for mixed monotone operators. The study
is made in the case of partially ordered real Banach spaces.

2. Preliminaries

Consider (E, ‖·‖) a real Banach space, partially ordered by a cone P , i.e.,
x ≤ y if and only if y − x ∈ P . Recall that a non-empty closed convex set
P ⊂ E is a cone if it satisfies

x ∈ P, λ ≥ 0 ⇒ λx ∈ P

and

x,−x ∈ P ⇒ x = θ

where θ denotes the zero element of E.
P is said to be:

i. solid if its interior
◦
P is non-empty

ii. normal if there exists some positive constant c such that θ ≤ x ≤ y

implies ‖x‖ ≤ c ‖y‖.
iii. regular if every nondecreasing and bounded above in order sequence is

convergent.

Let D ⊂ E and A : D × D → E. A is said to be mixed monotone if A is
nondecreasing in the first variable and nonincreasing in the last variable, i.e.
x1 ≤ x2 (x1, x2 ∈ D) implies A(x1, y) ≤ A(x2, y) for any y ∈ D and y1 ≤ y2

(y1, y2 ∈ D) implies A(x, y1) ≥ A(x, y2) for any x ∈ D. A point (x∗, y∗) is
called a coupled fixed point of A if A(x∗, y∗) = x∗ and A(y∗, x∗) = y∗. x∗ is
called a fixed point for A if A(x∗, x∗) = x∗. Clearly, x∗ is a fixed point of A if
and only if (x∗, x∗) is a coupled fixed point of A.

For any x, y ∈ E, the notation x ≷ y means that there exists 0 < λ ≤ µ

such that λx ≤ y ≤ µx. Clearly, ≷ is an equivalence relation and for any
h > θ (i.e. h ≥ θ and h 6= θ) we denote by Ph the equivalence class of h. It is

easy to see that Ph ⊂ P and that Ph =
◦
P if h ∈

◦
P .
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2.1. Fixed point results for mixed monotone operators. There are
many results regarding the coupled fixed points and the fixed points of mixed
monotone operators (see [2-5,7,8] and the references therein). We limit our-
selves here to some of the most known fixed point and coupled fixed point
theorems which use explicitly the monotone iteration technique (i.e. the fixed
point is obtained as the limit of some sequence which is given recursively).

Theorem 2.1. [2] Let x0, y0 ∈ E, x0 ≤ y0 and A : [x0, y0]× [x0, y0] → E be a
mixed monotone operator such that

x0 ≤ A(x0, y0), A(y0, x0) ≤ y0. (1)

Suppose that one of the following two conditions are satisfied:

(H1) P is normal and A is completely continuous;
(H2) P is regular and A is demicontinuous, i.e. xn → x and yn → y strongly

implies A(xn, yn) → A(x, y) weakly.

Then A has a coupled fixed point (x∗, y∗) ∈ [x0, y0]×[x0, y0] which is minimal
and maximal in the sense that x∗ ≤ x ≤ y∗ and x∗ ≤ y ≤ y∗ for any coupled
fixed point (x, y) ∈ [x0, y0]× [x0, y0] of A. Moreover, we have

x∗ = lim
n→∞

xn, y∗ = lim
n→∞

yn (2)

where

xn = A(xn−1, yn−1), yn = A(yn−1, xn−1) (n = 1, 2, . . .) (3)

satisfy
x0 ≤ x1 ≤ . . . ≤ xn ≤ . . . ≤ yn ≤ . . . ≤ y1 ≤ y0. (4)

Theorem 2.2. [3] Let P be a normal cone such that the norm is monotone
with respect to P (i.e. θ ≤ x ≤ y implies ‖x‖ ≤ ‖y‖), h > θ and A : Ph×Ph →
Ph a mixed monotone operator for which there exists a lower semicontinuos
function φ : (0, 1) → (0, 1) such that φ(t) > t for every t and

A(tx, t−1x) ≥ φ(t)A(x, x) (5)

holds for all x ∈ Ph and t ∈ (0, 1). Then A has exactly one fixed point x∗ in

Ph and for any initial point x0 ∈
◦
P , the sequence

xn = A(xn−1, xn−1) (n = 1, 2, . . .) (6)

converges to x∗.
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Theorem 2.3. [8] Let P be a normal cone, h > θ and A : Ph × Ph → Ph a
mixed monotone operator for which there exists a function α : (0, 1) → (0, 1)
such that

A(tx, t−1y) ≥ tα(t)A(x, y) (7)

holds for all x, y ∈ Ph and t ∈ (0, 1). Then A has exactly one fixed point x∗ in
Ph.

Moreover, constructing successively the sequences

xn = A(xn−1, yn−1), yn = A(yn−1, xn−1) (n = 1, 2, . . .) (8)

for any initial point x0, y0 ∈ Ph, we have

x∗ = lim
n→∞

xn, x∗ = lim
n→∞

yn. (9)

2.2. The fixed point problem for multi-mixed monotone operators.
Consider X a Banach space partially ordered by a cone K, Y ⊆ X a non-empty
subset of X, N a positive integer. We say that an operator T : Y N → X is
multi-mixed monotone on Y if T is monotone (nondecreasing or nonincreasing)
with respect to each variable.

We would like to study the following system of equations

xi = Ti(x1, x2, . . . , xN ), i = 1, 2, . . . , N (10)

where Ti are multi-mixed monotone operators. Obviously, if we take E = XN

and P = KN then (E,P ) is an ordered Banach space with x ≤ y if and only
if xi ≤ yi in (X, K) for every i = 1, 2, . . . , N . Then (10) can be viewed as a
fixed point problem on the set D = Y N ⊂ E

x = T(x), x ∈ D (11)

where x = (x1, x2, . . . , xN ) and T = (T1, T2, . . . , TN ) : D → E (we will say
that T is a multi-mixed monotone operator). In general, T is not a monotone
operator, so we can not apply directly any monotone iterative technique (see
[1,6].

The idea is to find a suitable mixed monotone operator A : D × D → E

such that
A(x,x) = T(x), ∀x ∈ D (12)

hence any fixed point result for A will give a solution to our original problem
(10).
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3. Main results

3.1. The connection between systems of multi-mixed monotone oper-
ators and mixed monotone operators. For every multi-mixed monotone
operator T : D = Y N → X we consider the vector µT ∈ {0, 1}N defined by

µT
j =

{
1, if T is nondecreasing in the j-th variable
0, if T is nonincreasing in the j-th variable

(13)

If T is constant with respect to some variable, then µT
j can be chosen either 0

or 1. Remark that

µ−T
j = 1− µT

j , ∀j = 1, 2, . . . , N. (14)

Consider also the following two operators σT and λT associated to T and
defined by:

σT : D ×D → E, σT (x,y) =
(
µT

j xj + µ−T
j yj

)
j=1,2,...,N

(15)

and

λT : (0,∞)×D → E, λT (t;x) = σT (tx,x) =
(
tµ

T
j xj

)
j=1,2,...,N

(16)

Remark that if Y is convex, then σT : D ×D → D.
It is easy to see that

σ−T (x,y) = σT (y,x) (17)

and
λ−T (t;x) = tλT (t−1;x) (18)

for every x,y ∈ D and t ∈ (0,∞). Also, if y = λT (t;x) then x = λT (t−1;y).
There is one more identity which will provide useful:

σT (tx,y) = λT (t;σT (x,y)), x,y ∈ D, t ∈ (0,∞) (19)

which is easy to prove on components: if µT
j = 1, then

σT (tx,y)j = txj = tµ
T
j σT (x,y)j = λT (t;σT (x,y))j

and if µT
j = 0, then

σT (tx,y)j = yj = tµ
T
j σT (x,y)j = λT (t;σT (x,y))j

and this is true for every j = 1, 2, . . . , N which concludes our argument.
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For example, if T is a mixed monotone operator (N = 2), then µT = (1, 0),
σT (x,y) = (x1, y2), λT (t;x) = (tx1, x2) and µ−T = (0, 1), σ−T (x,y) =
(x2, y1), λ−T (t;x) = (x1, tx2). Another example, if T is a nondecreasing oper-
ator, then σT (x,y) = x and λT (t;x) = tx.

The following lemma is straightforward, but fundamental:

Lemma 3.1. Assume that Y is convex and consider T = (T1, T2, . . . , TN ) :
D → E a multi-mixed monotone operator. Then the operator A : D×D → E,
A = (A1, A2, . . . , AN ) whose components are defined by

Ai = Tiσ
Ti , i = 1, 2, . . . , N (20)

is mixed monotone with respect to the cone P in E and the fixed point sets of
operators A and T coincide.

Proof. It is not hard to see, by the definition of the operators σTi , that
for every i = 1, 2, . . . , N , Ti(σTi(·,y)) : D → X is nondecreasing for every
y ∈ D . This takes place because for a fixed y ∈ D, σTi(x,y) equals x on
the components where Ti is nondecreasing and is constant on the components
where Ti is nonincreasing.

Also Ti(σTi(x, ·)) : D → X is nonincreasing for every y ∈ D because for a
fixed x ∈ D, σTi(x,y) equals y on the components where Ti is nonincreasing
and is constant on the components where Ti is nondecreasing.

Because σTi(x,x) = x for every x ∈ D and i = 1, 2, . . . , N , we obtain

A(x,x) = T(x), ∀x ∈ D (21)

which concludes our proof. �

In the next section we will use this lemma, together with the fixed point
results for mixed monotone operators presented in the Section 2, in order to
obtain existence results for system (10).

3.2. Fixed point results for multi-mixed monotone operators. If T =
(T1, T2, . . . , TN ) : D → E is a multi-mixed monotone operator, we will say
that (x∗,y∗) is a coupled fixed point of T if{

x∗i = Tiσ
Ti(x∗,y∗)

y∗i = Tiσ
Ti(y∗,x∗)

, ∀i = 1, 2, . . . , N. (22)
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Theorem 3.2. Let x0,y0 ∈ E, x0 ≤ y0 and T : [x0,y0] → E be a multi-mixed
monotone operator such that{

x0
i ≤ Tiσ

Ti(x0,y0)
y0

i ≥ Tiσ
Ti(y0,x0)

, ∀i = 1, 2, . . . , N (23)

Suppose that one of the following two conditions are satisfied:

(H1) K is normal and Ti are completely continuous for every i = 1, 2, . . . , N ;
(H2) K is regular and Ti are demicontinuous for every i = 1, 2, . . . , N , i.e.

xn → x strongly implies Ti(xn) → Ti(x) weakly.

Then T has a coupled fixed point (x∗,y∗) ∈ [x0,y0] × [x0,y0] which is
minimal and maximal in the sense that x∗ ≤ x ≤ y∗ and x∗ ≤ y ≤ y∗ for any
coupled fixed point (x,y) ∈ [x0,y0]× [x0,y0] of T. Moreover, we have

x∗ = lim
n→∞

xn, y∗ = lim
n→∞

yn (24)

where {
xn

i = Tiσ
Ti(xn−1,yn−1)

yn
i = Tiσ

Ti(yn−1,xn−1)
, ∀i = 1, 2, . . . , N (25)

satisfy
x0 ≤ x1 ≤ . . . ≤ xn ≤ . . . ≤ yn ≤ . . . ≤ y1 ≤ y0. (26)

Proof. Consider the operator A from Lemma 3.1 corresponding to the opera-
tor T and apply directly Theorem 2.1. Notice that σTi are linear and bounded
which assures the conditions (H 1) and (H 2) in Theorem 2.1. �

Theorem 3.3. Let K be normal cone, hi > θ (i = 1, 2, . . . , N), h =
(h1, h2, . . . , hN ), Ki the class of equivalence for hi in K and Ph = K1 ×K2 ×
· · · × KN the class of equivalence of h in P . Consider T = (T1, T2, . . . , TN )
a multi-mixed monotone operator such that Ti : Ki → Ki for every i =
1, 2, . . . , N and assume that there exists a function α : (0, 1) → (0, 1) such
that

Ti

(
λTi(t;x)

)
≥ tα(t)Ti(λ−Ti(t;x)) (27)

holds for all x ∈ Ph and t ∈ (0, 1). Then T has exactly one fixed point x∗ in
Ph.

Moreover, constructing successively the sequences (xn)n≥0 and (yn)n≥0{
xn

i = Tiσ
Ti(xn−1,yn−1)

yn
i = Tiσ

Ti(yn−1,xn−1)
, ∀i = 1, 2, . . . , N
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for any initial point x0,y0 ∈ Ph, we have

x∗ = lim
n→∞

xn, y∗ = lim
n→∞

yn. (28)

Proof. Consider the operator A from Lemma 3.1 corresponding to the op-
erator T and apply directly Theorem 2.3. We just have to prove that (27)
guarantees (7).

First, note that (7) can be written in the more symmetrical form

A(tx,y) ≥ tα(t)A(x, ty), ∀x,y ∈ Ph,∀t ∈ (0, 1) (29)

which in this case means

Ti

(
σTi (tx,y)

)
≥ tα(t)Ti(σTi (x, ty)), ∀x,y ∈ Ph,∀t ∈ (0, 1),∀i = 1, 2, . . . , N

By applying the properties of σTi and λTi and denoting z = σTi (x,y), we have
from identity (19) that

σTi (tx,y) = λTi(t;σTi (x,y)) = λTi(t; z)

σTi (x, ty) = tσTi
(
t−1x,y

)
= tλTi(t−1; z) = λ−Ti(t; z)

Hence (7) is equivalent to

Ti

(
λTi(t; z)

)
≥ tα(t)Ti(λ−Ti(t; z))

which is guaranteed by (27). This concludes our proof. �

Remark 3.4. By applying Theorem 2.2, we obtain a similar result but which
is less general because of the additional continuity condition for the function φ

and the monotonicity of the norm. It spite of the fact that the condition (19)
is more demanding then (5), for our case where A is defined by Lemma 3.1
the two conditions are similar. By using the same properties of σTi and λTi,
it is easy to prove that (5) is equivalent to (27), with α(t) = ln φ(t)

ln t .

4. Application

Let Ω ⊂ Rm be an open and bounded set and X = C
(
Ω; Rm

)
the Banach

space of continuous functions on Ω with values in Rm ordered by the cone K

of the nonnegative functions (u ∈ K if and only if u(x) ∈ Rm
+ for every x ∈ Ω).

It is a well known and easy to check result that K is regular. Take also a
family of real valued functions ki ∈ L1

(
Ω2

)
such that ki are positive a.e. on

Ω2 (i = 1, 2, . . . , N) and (aij)
N
i,j=1 a matrix whose elements lie in (−1, 1).
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Consider the following system of equations

ui(x) =
∫
Ω

ki(x, s)
∑N

j=1uj(s)aij ds, x ∈ Ω (30)

with the unknowns ui ∈ X, where yr denotes (yr
1, y

r
2, . . . , y

r
N ) for y ∈ RN and

r ∈ R.
By applying Theorem 3.3, it is easy to check that the operators Ti

Ti(u1, u2, . . . uN ) =
∫
Ω

ki(·, s)
∑N

j=1uj(s)aij ds

are multi-mixed monotone and that the condition (27) is easily satisfied by
taking α ≥ max (|aij |)N

i,j=1. By the positivity of the kernels ki, we have that

Ti :
◦
K →

◦
K, hence the system (30) has a unique positive solution vector

u∗ = (u∗1, u
∗
2, . . . , u

∗
N ) which can be obtained recursively as the limit in X of

the sequences (wn)n≥0 and (ωn)n≥0 from XN given by
wn

i =
∫
Ω

ki(·, s)
∑N

j=1w̃
n−1
ij (s)aij ds

ωn
i =

∫
Ω

ki(·, s)
∑N

j=1ω̃
n−1
ij (s)aij ds

, ∀i = 1, 2, . . . , N (31)

for any initial positive functions w0
i and ω0

i in X, where w̃ij and ω̃ij denote

w̃k
ij =

{
wk

j if aij ≥ 0
ωk

j if aij < 0
(32)

ω̃ij =

{
ωk

j if aij ≥ 0
wk

j if aij < 0
(33)
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