ABSTRACT MODELS OF STEP METHOD WHICH IMPLY THE CONVERGENCE OF SUCCESSIVE APPROXIMATIONS

IOAN A. RUS
Babeş-Bolyai University
Department of Applied Mathematics
Kogălniceanu Nr. 1
400084 Cluj-Napoca, Romania
E-mail: iarus@math.ubbcluj.ro

Abstract

This paper has three goals: - to present two abstract models: forward step model and backward step model; - to prove that the global operator which appear in these models are weakly Picard; - to give applications to functional differential equations with retarded argument and to functional differential equations with advanced argument. Key Words and Phrases: operators on cartesian product, step method, Picard operators, weakly Picard operators, functional differential equations, retarded argument, advanced argument.

2000 Mathematics Subject Classification: 47H10, 34K07, 34K12, 65L99.

1. Introduction

We formulate our problem by the following example:

$$
\begin{gather*}
x^{\prime}(t)=f(t, x(t), x(r-h)), \quad t \in[a, b], h>0, \tag{1.1}\\
x(t)=\varphi(t), \quad t \in[a-h, a], \tag{1.2}\\
x \in C([a-h, b], \mathbb{B}) \cap C^{1}([a, b], \mathbb{B}),
\end{gather*}
$$

and the conditions

[^0]$\left(C_{1}\right)(\mathbb{B},\|\cdot\|, \leq)$ is an ordered Banach space and $f \in C([a, b] \times \mathbb{B} \times \mathbb{B}, \mathbb{B})$, $\varphi \in C([a-h, a], \mathbb{B}) ;$
$\left(C_{2}\right) \exists L_{f}>0:\left\|f\left(t, u_{1}, v_{1}\right)-f\left(t, u_{2}, v_{2}\right)\right\| \leq L_{f}\left(\left\|u_{1}-u_{2}\right\|+\left\|v_{1}-v_{2}\right\|\right)$, $\forall t \in[a, b], \forall u_{i}, v_{i} \in \mathbb{B}, i=1,2 ;$
$\left(C_{3}\right) \exists L_{f}>0:\left\|f\left(t, u_{1}, v\right)-f\left(t, u_{2}, v\right)\right\| \leq L_{f}\left\|u_{1}-u_{2}\right\|, \forall t \in[a, b]$, $\forall u_{1}, u_{2}, v \in \mathbb{B}$.
Let $m \in \mathbb{N}^{*}$ be such that:
$$
a+(m-1) h<b \quad \text { and } \quad a+m h \geq b
$$

We denote $t_{-1}:=a-h, t_{0}:=a, t_{i}:=a+i h, i=\overline{1, m-1}, t_{m}:=b$.
In what follow we consider on $C\left(\left[t_{-1}, t_{m}\right], \mathbb{B}\right)$ the Bielecki norm,

$$
\|x\|_{B}:=\max _{t_{-1} \leq t \leq t_{m}}\left(\|x(t)\| e^{-\tau\left|t-t_{0}\right|}\right)
$$

and on $C\left(\left[t_{i-1}, t_{i}\right], \mathbb{B}\right)$ the norm

$$
\left\|x_{i}\right\|_{B}:=\max _{t_{i-1} \leq t \leq t_{i}}\left(\|x(t)\| e^{-\tau\left(t-t_{i-1}\right)}\right)
$$

The equation (1.1) is equivalent with the fixed point equation

$$
x=E_{f}(x), \quad x \in C\left(\left[t_{-1}, t_{m}\right], \mathbb{B}\right),
$$

and the problem $(1.1)+(1.2)$ is equivalent with

$$
x=B_{f}(x), \quad x \in C\left(\left[t_{-1}, t_{m}\right], \mathbb{B}\right)
$$

where

$$
E_{f}(x)(t):= \begin{cases}x(t), & t \in\left[t_{-1}, t_{0}\right] \\ x\left(t_{0}\right)+\int_{t_{0}}^{t} f(s, x(s), x(s-h)) d s, & t \in\left[t_{0}, t_{m}\right]\end{cases}
$$

and

$$
B_{f}(x)(t):= \begin{cases}\varphi(t), & t \in\left[t_{-1}, t_{0}\right] \\ \varphi\left(t_{0}\right)+\int_{t_{0}}^{t} f(s, x(s), x(s-h)) d s, & t \in\left[t_{0}, t_{m}\right]\end{cases}
$$

The following results are well known (see [1]-[7], [9]-[11], [15], [16]-[21], [27], [28]):
Theorem 1.1. In the conditions $\left(C_{1}\right)+\left(C_{2}\right)$ we have:
(i) the problem (1.1) $+(1.2)$ has in $C\left(\left[t_{-1}, t_{m}\right], \mathbb{B}\right)$ a unique solution x^{*} and

$$
x^{*} \in C\left(\left[t_{-1}, t_{m}\right], \mathbb{B}\right) \cap C^{1}\left(\left[t_{0}, t_{m}\right], \mathbb{B}\right) ;
$$

(ii) the successive approximations

$$
x^{n+1}(t)= \begin{cases}\varphi(t), & t \in\left[t_{-1}, t_{0}\right] \\ \varphi\left(t_{0}\right)+\int_{t_{0}}^{t} f\left(s, x^{n}(s), x^{n}(s-h)\right) d s, & t \in\left[t_{0}, t_{m}\right]\end{cases}
$$

converges to x^{*}, for all $x^{0} \in C\left(\left[t_{-1}, t_{m}\right], \mathbb{B}\right)$;
(iii) the operator E_{f} is weakly Picard operator and B_{f} is Picard operator (see [26]).

In what follow we suppose that we are in the conditions $\left(C_{1}\right)$ and $\left(C_{3}\right)$.
The step method for the problem (1.1)+(1.2) consists in:
$\left(e_{0}\right) \quad x_{0}(t)=\varphi(t), t \in\left[t_{-1}, t_{0}\right]$
$\left(e_{1}\right) \quad x_{1}(t)=\varphi\left(t_{0}\right)+\int_{t_{0}}^{t} f\left(s, x_{1}(s), \varphi(s-h)\right) d s, t \in\left[t_{0}, t_{1}\right]$
$\left(e_{2}\right) \quad x_{2}(t)=x_{1}^{*}\left(t_{1}\right)+\int_{t_{1}}^{t} f\left(s, x_{2}(s), x_{1}^{*}(s-h)\right) d s, t \in\left[t_{1}, t_{2}\right]$
$\left(e_{m}\right) \quad x_{m}(t)=x_{m-1}^{*}\left(t_{m-1}\right)+\int_{t_{m-1}}^{t} f\left(s, x_{m}(s), x_{m-1}^{*}(s-h)\right) d s, t \in\left[t_{m-1}, t_{m}\right]$
where $x_{i}^{*} \in C\left(\left[t_{-1}, t_{i}\right], \mathbb{B}\right)$ is the unique solution of the equation $\left(e_{i}\right), i=\overline{1, m}$.
We have
Theorem 1.2. In the conditions $\left(C_{1}\right)$ and $\left(C_{3}\right)$ we have that:
(i) the problem $(1.1)+(1.2)$ has in $C\left(\left[t_{-1}, t_{m}\right], \mathbb{B}\right)$ a unique solution x^{*} where

$$
x^{*}(t)= \begin{cases}\varphi(t), & t \in\left[t_{-1}, t_{0}\right] \\ x_{1}^{*}(t), & t \in\left[t_{0}, t_{1}\right] \\ \cdots & \\ x_{m}^{*}(t), & t \in\left[t_{m-1}, t_{m}\right]\end{cases}
$$

(ii) the functions x_{i}^{*} are the limit of the successive approximations

$$
x_{i}^{n+1}(t)=x_{i-1}^{*}\left(t_{i-1}\right)+\int_{t_{i-1}}^{t} f\left(s, x_{i}^{n}(s), x_{i-1}^{*}(s-h)\right) d s, \quad t \in\left[t_{i-1}, t_{i}\right]
$$

in $\left(C\left(\left[t_{i-1}, t_{i}\right], \mathbb{B}\right),\|\cdot\|_{B}\right), i=\overline{1, m}$.
In this paper we shall study the following problem:
Problem 1.1. Can we put x_{i-1}^{n} instead of $x_{i-1}^{*}, i=\overline{2, m}$, in the conclusion (ii) of the above theorem?

For to study this problem we need some notions and results from weakly Picard operator theory.

2. Fibre weakly Picard operators

Let (X, d) be a metric space and $A: X \rightarrow X$ an operator.
Definition 2.1. (see [26]). The operator A is weakly Picard operator (WPO) if the sequence

$$
\left(A^{n}(x)\right)_{n \in \mathbb{N}}
$$

converges, for all $x \in X$, and the limit (which may depend on x) is a fixed point of A.
Definition 2.2. (see [26]). If the operator A is WPO and $F_{A}=\left\{x^{*}\right\}$, then by definition A is Picard operator (PO).
Definition 2.3. (see [26]). If A is WPO, then we consider the operator A^{∞} defined by

$$
A^{\infty}: X \rightarrow X, \quad A^{\infty}(x):=\lim _{n \rightarrow \infty} A^{n}(x)
$$

It is clear that $A^{\infty}(x) \in F_{A}$ and $A^{\infty}(X)=F_{A}$.
In this paper we need the following results (see [12], [23]-[26]):
Theorem 2.1. Let (X, d) and (Y, ρ) be two metric spaces and $A=(B, C)$: $X \times Y \rightarrow Y \times Y$ a triangular operator, i.e., $B: X \rightarrow X, C: X \times Y \rightarrow Y$.

We suppose that:
(i) (Y, ρ) is a complete metric space;
(ii) $B: X \rightarrow X$ is WPO;
(iii) there exists $\alpha \in(0,1)$ such that $C(x, \cdot): Y \rightarrow Y$ is α-contraction, for all $x \in X$;
(iv) if $\left(x^{*}, y^{*}\right) \in F_{A}$, then $C\left(\cdot, y^{*}\right)$ is continuous in x^{*}.

Then the operator A is WPO.
If B is $P O$, then A is $P O$.
By induction, from the above results we have (see [26]):
Theorem 2.2. Let $\left(X_{i}, d_{i}\right), i=\overline{0, m}, m \geq 1$ be some metric spaces. Let $A_{i}: X_{0} \times \cdots \times X_{i} \rightarrow X_{i}, i=\overline{0, m}$ be some operator. We suppose that:
(i) $\left(X_{i}, d_{i}\right), i=\overline{1, m}$, are complete metric spaces;
(ii) the operator A_{0} is WPO;
(iii) there exist $\alpha_{i} \in(0,1)$ such that

$$
A_{i}\left(x_{0}, \ldots, x_{i-1}, \cdot\right): X_{i} \rightarrow X_{i}, \quad i=\overline{1, m}
$$

are α_{i}-contractions;
(iv) the operator $A_{i}, i=\overline{1, m}$ are continuous.

Then the operator $A: X_{0} \times \cdots \times X_{m} \rightarrow X_{0} \times \cdots \times X_{m}$,

$$
A\left(x_{0}, \ldots, x_{m}\right):=\left(A_{0}\left(x_{0}\right), A_{1}\left(x_{0}, x_{1}\right), \ldots, A_{m}\left(x_{0}, \ldots, x_{m}\right)\right)
$$

is WPO.
If A_{0} is $P O$, then A is $P O$.

3. Forward step method

Let $t_{i} \in \mathbb{R}, i \in\{-1,0,1, \ldots, m\}$ be such that $t_{-1}<t_{0}<t_{1}<\cdots<t_{m}$. Let $(\mathbb{B},\|\cdot\|, \leq)$ be an ordered Banach space. We consider on $X_{i}:=C\left(\left[t_{i-1}, t_{i}\right], \mathbb{B}\right)$ a complete metric $d_{i}, i=\overline{0, m}$. Let $A_{0}: X_{0} \rightarrow X_{0}, A_{i}: X_{i-1} \times X_{i} \rightarrow X_{i}$, $i=\overline{1, m}$ be some operators and the operator

$$
A: X_{0} \times X_{1} \times \cdots \times X_{m} \rightarrow X_{0} \times X_{1} \times \cdots \times X_{m}
$$

be defined by

$$
A\left(x_{0}, x_{1}, \ldots, x_{m}\right):=\left(A_{0}\left(x_{0}\right), A_{1}\left(x_{0}, x_{1}\right), \ldots, A_{m}\left(x_{m-1}, x_{m}\right)\right)
$$

We consider the following subset of $X_{0} \times \cdots \times X_{m}$,

$$
U:=\left\{\left(x_{0}, x_{1}, \ldots, x_{m}\right) \in X_{0} \times X_{1} \times \cdots \times X_{m} \mid x_{i}\left(t_{i}\right)=x_{i+1}\left(t_{i}\right), i=\overline{0, m-1}\right\}
$$

and the operator

$$
R: C\left(\left[t_{-1}, t_{m}\right], \mathbb{B}\right) \rightarrow U
$$

defined by

$$
R(x):=\left(\left.x\right|_{\left[t_{-1}, t_{0}\right]},\left.x\right|_{\left[t_{0}, t_{1}\right]}, \ldots,\left.x\right|_{\left[t_{m-1}, t_{m}\right]}\right)
$$

It is clear that R is an increasing bijection.
Remark 3.1. In general U is not an invariant subset of A.
First our abstract result is the following
Theorem 3.1. We suppose that:
(i) A_{0} is WPO;
(ii) $A_{i}\left(x_{i-1}, \cdot\right): X_{i} \rightarrow X_{i}$ is α_{i}-contraction, for all $x_{i-1} \in X_{i-1}, i=\overline{1, m}$;
(iii) $A_{i}\left(x_{i-1}, x_{i}\right)\left(t_{i-1}\right)=x_{i-1}\left(t_{i-1}\right), i=\overline{1, m}$.

Then:
(a) A is WPO;
(b) if A_{0} is $P O$, then A is $P O$;
(c) if $\left(x_{0}^{*}, x_{1}^{*}, \ldots, x_{m}^{*}\right) \in F_{A}$, then $\left(x_{0}^{*}, x_{1}^{*}, \ldots, x_{m}^{*}\right) \in U$ and

$$
R^{-1}\left(x_{0}^{*}, x_{1}^{*}, \ldots, x_{m}^{*}\right) \in C\left(\left[t_{-1}, t_{m}\right], \mathbb{B}\right)
$$

Proof. (a) $+(\mathrm{b})$. This part of the theorem is a particular case of the Theorem 2.2. A direct proof follows from the fibre contraction theorem (Theorem 2.1; see also M.W. Hirsch and C.C. Pugh [12] and I.A. Rus [24] and [25]).
(c) From $A\left(x_{0}^{*}, \ldots, x_{m}^{*}\right)=\left(x_{0}^{*}, x_{1}^{*}, \ldots, x_{m}^{*}\right)$ it follows that

$$
A_{i}\left(x_{i-1}^{*}, x_{i}^{*}\right)\left(t_{i-1}\right)=x_{i}^{*}\left(t_{i-1}\right)
$$

So, by (iii) we have $x_{i}^{*}\left(t_{i-1}\right)=x_{i-1}^{*}\left(t_{i-1}\right), i=\overline{1, m}$.
Remark 3.2. Let A be as in the Theorem 3.1. If A is increasing, then the operator

$$
R^{-1} A^{\infty} R: C\left(\left[t_{-1}, t_{m}\right], \mathbb{B}\right) \rightarrow C\left(\left[t_{-1}, t_{m}\right], \mathbb{B}\right)
$$

is increasing. Indeed, from (c) we have that U is an invariant set of A^{∞}, i.e., $R^{-1} A^{\infty} R$ is defined. On the other hand R^{-1}, A^{∞}, R are increasing operators. Theorem 3.2. (Gronwall lemma). Let A be as in Theorem 3.1. We suppose that A is an increasing operator. Let $x \in C\left(\left[t_{-1}, t_{m}\right], \mathbb{B}\right)$ be such that $R(x) \leq$ $A R(x)$. Then, $x \leq R^{-1} A^{\infty} R(x)$.
Proof. A increasing WPO imply that

$$
R(x) \leq A R(x) \leq A^{2} R(x) \leq \cdots \leq A^{\infty} R(x)
$$

From $R(x) \leq A^{\infty} R(x)$, it follows that, $x \leq R^{-1} A^{\infty} R(x)$.
Theorem 3.3. (Comparison lemma). Let $A, B, C: X_{0} \times \cdots \times X_{m} \rightarrow X_{0} \times$ $\cdots \times X_{m}$ be as in Theorem 3.1. We suppose that:
(1) B is increasing operator;
(2) $A \leq B \leq C$.

Then:

$$
\begin{gathered}
x, y, z \in C\left(\left[t_{-1}, t_{m}\right], \mathbb{B}\right), x \leq y \leq z \Rightarrow \\
R^{-1} A^{\infty} R(x) \leq R^{-1} B^{\infty} R(y) \leq R^{-1} C^{\infty} R(z)
\end{gathered}
$$

Proof. $x \leq y \leq z$ implies that $R(x) \leq R(y) \leq R(z)$. Since A, B, C are WPOs and B is increasing, it follows from Lemma 7.4 in [26], that $A^{\infty} R(x) \leq$ $B^{\infty} R(y) \leq C^{\infty} R(z)$. But R^{-1} is an increasing operator. So, $R^{-1} A^{\infty} R(x) \leq$ $R^{-1} B^{\infty} R(y) \leq R^{-1} C^{\infty} R(z)$.

In the next section we present an application of the above results.

4. Applications to the Problem (1.1) $+(1.2)$

From Theorem 3.1 we have
Theorem 4.1. In the conditions $\left(C_{1}\right)$ and $\left(C_{3}\right)$, the problem (1.1) $+(1.2)$ has in $C\left(\left[t_{-1}, t_{m}\right], \mathbb{B}\right)$ a unique solution, x^{*},

$$
x^{*}(t):= \begin{cases}\varphi(t), & t \in\left[t_{-1}, t_{0}\right], \\ x_{1}^{*}(t), & t \in\left[t_{0}, t_{1}\right], \\ \cdots & \\ x_{m}^{*}(t), & t \in\left[t_{m-1}, t_{m}\right],\end{cases}
$$

and the functions $x_{i}^{*}, i=\overline{1, m}$, are the limit of the successive approximations

$$
x_{i}^{n+1}(t):=x_{i-1}^{n}\left(t_{i-1}\right)+\int_{t_{i-1}}^{t} f\left(s, x_{i}^{n}(s), x_{i-1}^{n}(s-h)\right) d s, \quad t \in\left[t_{i-1}, t_{i}\right],
$$

in $\left(C\left(\left[t_{i-1}, t_{i}\right], \mathbb{B}\right),\|\cdot\|_{B}\right), i=\overline{1, m}$.
Proof. We consider the following operators

$$
B_{0 f}: C\left(\left[t_{-1}, t_{0}\right], \mathbb{B}\right) \rightarrow C\left(\left[t_{-1}, t_{0}\right], \mathbb{B}\right), \quad x_{0} \mapsto \varphi
$$

and

$$
B_{i f}: C\left(\left[t_{i-2}, t_{i-1}\right], \mathbb{B}\right) \times C\left(\left[t_{i-1}, t_{i}\right], \mathbb{B}\right) \rightarrow C\left(\left[t_{i-1}, t_{i}\right], \mathbb{B}\right)
$$

defined by

$$
\begin{gathered}
B_{i f}\left(x_{i-1}, x_{i}\right)(t):=x_{i-1}\left(t_{i-1}\right)+\int_{t_{i-1}}^{t} f\left(s, x_{i}(s), x_{i-1}(s-h)\right) d s, \\
t \in\left[t_{i-1}, t_{i}\right], i=\overline{1, m} .
\end{gathered}
$$

Condition $\left(C_{1}\right)$ and $\left(C_{3}\right)$ imply that we are in the conditions of the Theorem 3.1, where $A_{i}=B_{i f}$ and

$$
A=\widetilde{B}_{f}:=\left(B_{0 f}\left(x_{0}\right), B_{1 f}\left(x_{0}, x_{1}\right), \ldots, B_{m f}\left(x_{m-1}, x_{m}\right)\right) .
$$

Since $B_{0 f}$ is PO, hence that \widetilde{B}_{f} is PO and $R^{-1}(\widetilde{B})^{\infty}\left(x_{0}^{0}, \ldots, x_{n}^{0}\right)$ is the unique solution of the problem (1.1)+(1.2), for all $x_{i}^{0} \in X_{i}, i=\overline{0, m}$.
Remark 4.1. If we take $E_{0 f}:=1_{C\left(\left[t-1, t_{0}\right], \mathbb{B}\right)}$ and

$$
E_{i f}: C\left(\left[t_{i-2}, t_{i-1}\right], \mathbb{B}\right) \times C\left(\left[t_{i-1}, t_{i}\right], \mathbb{B}\right) \rightarrow C\left(\left[t_{i-1}, t_{i}\right], \mathbb{B}\right)
$$

defined by

$$
E_{i f}\left(x_{i-1}, x_{i}\right)(t):=x_{i-1}\left(t_{i-1}\right)+\int_{t_{i-1}}^{t} f\left(s, x_{i}(s), x_{i-1}(s-h)\right) d s, \quad t \in\left[t_{i-1}, t_{i}\right],
$$

then, in the conditions of the Theorem 4.1, the operator

$$
\widetilde{E}_{f}\left(x_{0}, x_{1}, \ldots, x_{m}\right):=\left(E_{0 f}\left(x_{0}\right), E_{1 f}\left(x_{0}, x_{1}\right), \ldots, E_{m f}\left(x_{m-1}, x_{m}\right)\right)
$$

is WPO and $R^{-1}\left(\widetilde{E}_{f}\right)^{\infty}\left(x_{0}^{0}, \ldots, x_{m}^{0}\right)$ is a solution of the equation (1.1) and for each solution $x \in\left(C\left[t_{-1}, t_{m}\right], \mathbb{B}\right)$ there exists $x_{i}^{0} \in C\left(\left[t_{i-1}, t_{i}\right], \mathbb{B}\right), i=\overline{0, m}$, such that

$$
x=R^{-1}\left(\widetilde{E}_{f}\right)^{\infty}\left(x_{0}^{0}, x_{1}^{0}, \ldots, x_{m}^{0}\right) .
$$

Theorem 4.2. We suppose that f is as in the Theorem 4.1 and $f(t, \cdot, \cdot)$: $\mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B}$ is increasing for all $t \in[a, b]$. Then:

$$
x \in C\left(\left[t_{-1}, t_{m}\right], \mathbb{B}\right), \quad R(x) \leq \widetilde{E}_{f} R(x) \Rightarrow x \leq R^{-1}\left(\widetilde{E}_{f}\right)^{\infty} R(x)
$$

Proof. The proof follows from Remark 4.1 and Theorem 3.2.
Remark 4.2. From Theorem 4.2 we have that if $x^{*} \in C([a-h, b], \mathbb{B})$ is the solution of the problem $(1.1)+(1.2)$ and $x \in C([a-h, b], \mathbb{B})$ is a solution of the differential inequality

$$
\begin{gathered}
x^{\prime}(t) \leq f(t, x(t), x(t-h)), \quad t \in[a, b], \\
x(t) \leq \varphi(t), \quad t \in[a-h, a]
\end{gathered}
$$

then, $x \leq x^{*}$.
Theorem 4.3. Let f, g, h be as in the Theorem 4.1. We suppose that:
(1) $g(t, \cdot, \cdot): \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B}$ is increasing;
(2) $f \leq g \leq h$.

Let x be a solution of the equation (1.1), y a solution of the equation

$$
y^{\prime}(t)=g(t, y(t), y(t-h)), \quad t \in[a, b]
$$

and z a solution of the equation

$$
z^{\prime}(t)=h(t, z(t), z(t-h)), \quad t \in[a, b] .
$$

Then:

$$
\left.x\right|_{[a-h, a]} \leq\left. y\right|_{[a-h, a]} \leq\left. z\right|_{[a-h, a]} \Rightarrow x \leq y \leq z
$$

Proof. Let

$$
\widetilde{x}(t):= \begin{cases}x(t), & t \in[a-h, a] \\ x(a), & t \in[a, b] .\end{cases}
$$

In a similar way we define $\widetilde{y}, \widetilde{z}$. It is clear that, $\widetilde{x} \leq \widetilde{y} \leq \widetilde{z}$ and

$$
x=R^{-1}\left(\widetilde{E}_{f}\right)^{\infty} R(\widetilde{x}), \quad y=R^{-1}\left(\widetilde{E}_{g}\right)^{\infty} R(\widetilde{y}) \quad \text { and } \quad z=R^{-1}\left(\widetilde{E}_{h}\right)^{\infty} R(\widetilde{z})
$$

From Theorem 3.3 it follows that $x \leq y \leq z$.
Example 4.1. Let us consider the following problem (see [15], p. 27):

$$
\begin{gather*}
x^{\prime}(t)=p(t) x(t)+q(t) x(t-2) e^{-x(t-2)}, \quad t \in[0,5] \tag{4.1}\\
x(t)=\varphi(t), \quad t \in[-2,0] . \tag{4.2}
\end{gather*}
$$

If $p, q \in C[0,5]$ and $\varphi \in C[-2,0]$, then by the Theorem 4.1 the problem (4.1) $+(4.2)$ has a unique solution

$$
x^{*}(t)= \begin{cases}\varphi(t), & t \in[-2,0] \\ x_{1}^{*}(t), & t \in[0,2] \\ x_{2}^{*}(t), & t \in[2,4] \\ x_{3}^{*}(t), & t \in[4,5]\end{cases}
$$

and $x_{1}^{*}, x_{2}^{*}, x_{3}^{*}$ are the limits of the following sequences, respectively

$$
\begin{array}{cc}
x_{1}^{n+1}(t)=\varphi(0)+\int_{0}^{t}\left[p(s) x_{1}^{n}(s)+q(s) \varphi(s-2) e^{-\varphi(s-2)}\right] d s, & t \in[0,2], \\
x_{2}^{n+1}(t)=x_{1}^{n}(2)+\int_{2}^{t}\left[p(s) x_{2}^{n}(s)+q(s) x_{1}^{n}(s-2) e^{-x_{1}^{n}(s-2)}\right] d s, & t \in[2,4], \\
x_{3}^{n+1}(t)=x_{2}^{n}(4)+\int_{4}^{t}\left[p(s) x_{3}^{n}(s)+q(s) x_{2}^{n}(s-2) e^{-x_{2}^{n}(s-2)}\right] d s, & t \in[4,5] .
\end{array}
$$

Remark 4.3. In the case of the equation

$$
x^{\prime}(t)=p(t) x(t)+q(t, x(t-h)), \quad t \in[a, b]
$$

if $p \in C[a, b], q \in C([a, b] \times \mathbb{R})$ then we are in the conditions of the Theorem 4.1.

5. Backward step method

Let $t_{i} \in \mathbb{R}, t_{0}<t_{1}<\cdots<t_{m}<t_{m+1}$ and

$$
X_{i}:=C\left(\left[t_{i-1}, t_{i}\right], \mathbb{B}\right), \quad i=\overline{1, m+1} .
$$

Let $A_{i}: X_{i} \times X_{i+1} \rightarrow X_{i}, i=\overline{1, m}$ and $A_{m+1}: X_{m+1} \rightarrow X_{m+1}$ be some operators and

$$
A: X_{1} \times \cdots \times X_{m+1} \rightarrow X_{1} \times \cdots \times X_{m+1}
$$

be defined by

$$
A\left(x_{1}, \ldots, x_{m+1}\right):=\left(A_{1}\left(x_{1}, x_{2}\right), A_{2}\left(x_{2}, x_{3}\right), \ldots, A_{m}\left(x_{m}, x_{m+1}\right), A_{m+1}\left(x_{m+1}\right)\right) .
$$

We consider the following subset of $X_{1} \times \cdots \times X_{m+1}$,

$$
U:=\left\{\left(x_{1}, \ldots, x_{m+1}\right) \in X_{1} \times \cdots \times X_{m+1} \mid x_{i}\left(t_{i}\right)=x_{i+1}\left(t_{i}\right), i=\overline{1, m}\right\}
$$

and the operator $R: C\left(\left[t_{0}, t_{m+1}\right], \mathbb{B}\right) \rightarrow U$ defined by

$$
R(x):=\left(\left.x\right|_{\left[t_{0}, t_{1}\right]}, \ldots,\left.x\right|_{\left[t_{m}, t_{m+1}\right]}\right)
$$

We remark that the operator R is an increasing bijection.
The second our abstract result is the following
Theorem 5.1. We suppose that:
(i) A_{m+1} is WPO;
(ii) $A_{i}\left(\cdot, x_{i+1}\right): X_{i} \rightarrow X_{i}$ is α_{i}-contraction, $i=\overline{1, m}$;
(iii) $A_{i}\left(x_{i}, x_{i+1}\right)\left(t_{i}\right)=x_{i+1}\left(t_{i}\right), i=\overline{1, m}$.

Then:
(a) A is WPO;
(b) if A_{m+1} is $P O$, then A is $P O$;
(c) if $\left(x_{1}^{*}, \ldots, x_{m+1}^{*}\right) \in F_{A}$, then $\left(x_{1}^{*}, \ldots, x_{m+1}^{*}\right) \in U$ and

$$
R^{-1}\left(x_{1}^{*}, \ldots, x_{m+1}^{*}\right) \in C\left(\left[t_{0}, t_{m+1}\right], \mathbb{B}\right)
$$

Proof. The proof is similar with that of Theorem 3.1.
Remark 5.1. Let A be as in Theorem 5.1. If A is increasing operator, then the operator $R^{-1} A^{\infty} R: C\left(\left[t_{0}, t_{m+1}\right], \mathbb{B}\right) \rightarrow C\left(\left[t_{0}, t_{m+1}\right], \mathbb{B}\right)$ is increasing.

In a similar way as in section 3 we have:
Theorem 5.2. Let A as in Theorem 5.1. We suppose that A is increasing operator. Then:

$$
x \in C\left(\left[t_{0}, t_{m+1}\right], \mathbb{B}\right), \quad R(x) \leq A R(x) \Rightarrow x \leq R^{-1} A^{\infty} R(x)
$$

Theorem 5.3. Let $A, B, C: X_{1} \times \cdots \times X_{m+1} \rightarrow X_{1} \times \cdots \times X_{m+1}$ be as in Theorem 5.1. We suppose that
(1) B is increasing operator;
(2) $A \leq B \leq C$.

Then:

$$
\begin{gathered}
x, y, z \in C\left(\left[t_{1}, t_{m+1}\right], \mathbb{B}\right), \quad x \leq y \leq z \Rightarrow \\
R^{-1} A^{\infty} R(x) \leq R^{-1} B^{\infty} R(y) \leq R^{-1} C^{\infty} R(z)
\end{gathered}
$$

In what follow we shall give some applications of the above results.

6. Applications to differential equations with advanced ARGUMENT

We consider the following Cauchy problem for a functional differential equation with advanced argument (see [8], [14], [15], [22],...)

$$
\begin{gather*}
x^{\prime}(t)=f(t, x(t), x(t+h)), \quad t \in[a, b], h>0 \tag{6.1}\\
x(t)=\varphi(t), \quad t \in[b, b+h] \tag{6.2}
\end{gather*}
$$

in the following conditions:

$$
\begin{aligned}
& \left(C_{1}^{\prime}\right) f \in C([a, b] \times \mathbb{B} \times \mathbb{B}, \mathbb{B}), \varphi \in C([b, b+h], \mathbb{B}) ; \\
& \left(C_{3}^{\prime}\right) \exists L_{f}>0:\left\|f\left(t, u_{1}, v\right)-f\left(t, u_{2}, v\right)\right\| \leq L_{f}\left\|u_{1}-u_{2}\right\|, \\
& \forall t \in[a, b], \forall u_{1}, u_{2}, v \in \mathbb{B} .
\end{aligned}
$$

Let $m \in \mathbb{N}^{*}$ be such that

$$
b-(m-1) h>a \quad \text { and } \quad b-m h \leq a .
$$

We denote

$$
t_{0}:=a, \quad t_{1}:=b-(m-1) h, \ldots, t_{m}=b, \quad t_{m+1}:=b+h
$$

and $X_{i}:=C\left(\left[t_{i-1}, t_{i}\right], \mathbb{B}\right), i=\overline{1, m+1}$.
The equation (6.1) is equivalent with the fixed point equation

$$
x=E_{f}(x), \quad x \in C\left(\left[t_{0}, t_{m+1}\right], \mathbb{B}\right)
$$

and the problem $(6.1)+(6.2)$ is equivalent with

$$
x=B_{f}(x), \quad x \in C\left(\left[t_{0}, t_{m+1}\right), \mathbb{B}\right),
$$

where

$$
E_{f}(x)(t):= \begin{cases}x(t), & t \in\left[t_{m}, t_{m+1}\right] \\ x\left(t_{m}\right)+\int_{t_{m}}^{t} f(s, x(s), x(s+h)) d s, & t \in\left[t_{s}, t_{m}\right]\end{cases}
$$

and

$$
B_{f}(x)(t):= \begin{cases}\varphi(t), & t \in\left[t_{m}, t_{m+1}\right] \\ \varphi\left(t_{m}\right)+\int_{t_{m}}^{t} f(s, x(s), x(s+h)) d s, & t \in\left[t_{0}, t_{m}\right]\end{cases}
$$

The step method for the problem (6.1) $+(6.2)$ consists in the following:

$$
\begin{aligned}
& x_{m+1}(t)=\varphi(t), \quad t \in\left[t_{m}, t_{m+1}\right], \\
& x_{m}(t)=\varphi\left(t_{m}\right)+\int_{t_{m}}^{t} f\left(s, x_{m}(s), \varphi(s+h)\right) d s, t \in\left[t_{m+1}, t_{m}\right], \\
& x_{m-1}(t)=x_{m}^{*}\left(t_{m-1}\right)+\int_{t_{m-1}}^{t} f\left(s, x_{m-1}(s), x_{m}^{*}(s+h)\right), t \in\left[t_{m-2}, t_{m-1}\right], \\
& \ldots \ldots \ldots \ldots \ldots \ldots \\
& x_{1}(t)=x_{2}^{*}\left(t_{1}\right)+\int_{t_{1}}^{t} f\left(s, x_{1}(s), x_{2}^{*}(s+h)\right), t \in\left[t_{0}, t_{1}\right]
\end{aligned}
$$

where x_{m-i}^{*} is the unique solution of the integral equation in the i-step.
The following result is well known ([6], [8], [14], [15],...).
Theorem 6.1. In the conditions $\left(C_{1}^{\prime}\right)+\left(C_{3}^{\prime}\right)$ we have that:
(i) the problem (6.1) + (6.2) has in $C\left(\left[t_{0}, t_{m+1}\right], \mathbb{B}\right)$ a unique solution $x^{*}\left(x^{*} \in\right.$ $\left.C\left(\left[t_{0}, t_{m+1}\right], \mathbb{B}\right) \cap C^{1}\left(\left[t_{0}, t_{m}\right], \mathbb{B}\right)\right)$, where

$$
x^{*}(t):= \begin{cases}\varphi(t), & t \in\left[t_{m}, t_{m+1}\right] \\ x_{m}^{*}(t), & t \in\left[t_{m-1}, t_{m}\right] \\ \cdots & \\ x_{1}^{*}(t), & t \in\left[t_{0}, t_{1}\right]\end{cases}
$$

(ii) the functions x_{i}^{*} are the limits of the successive approximations

$$
\begin{aligned}
& x_{m+1}^{n+1}(t)=\varphi(t), t \in\left[t_{m}, t_{m+1}\right], \\
& x_{m}^{n+1}(t)=\varphi\left(t_{m}\right)+\int_{t_{m}}^{t} f\left(s, x_{m}^{n}(s), \varphi(s+h)\right) d s, t \in\left[t_{m-1}, t_{m}\right], \\
& x_{m-1}^{n+1}(t)=x_{m}^{*}\left(t_{m-1}\right)+\int_{t_{m-1}}^{t} f\left(s, x_{m-1}^{n}(s), x_{m}^{*}(s+h)\right) d s, t \in\left[t_{m-2}, t_{m-1}\right], \\
& \cdots \cdots \cdots \cdots \cdots \cdots \\
& x_{1}^{n+1}(t)=x_{2}^{*}\left(t_{1}\right)+\int_{t_{1}}^{t} f\left(s, x_{1}^{n}(s), x_{2}^{*}(s+h)\right) d s, t \in\left[t_{0}, t_{1}\right]
\end{aligned}
$$

In this section we shall study the following problem:
Problem 6.1. Can we put x_{i+1}^{n} instead $x_{i+1}^{*}, i=\overline{1, m}$, in the conclusion (ii) of the Theorem 6.1?

We have

Theorem 6.1. In the conditions $\left(C_{1}^{\prime}\right)$ and $\left(C_{3}^{\prime}\right)$ the problem (6.1) + (6.2) has in $C\left(\left[t_{0}, t_{m+1}\right], \mathbb{B}\right)$ a unique solution x^{*},

$$
x^{*}(t):= \begin{cases}\varphi(t), & t \in\left[t_{m}, t_{m+1}\right] \\ x_{m}^{*}, & t \in\left[t_{m-1}, t_{m}\right] \\ \cdots & \\ x_{1}^{*}, & t \in\left[t_{0}, t_{1}\right]\end{cases}
$$

and the functions x_{i}^{*} are the limits of the successive approximations

$$
\begin{aligned}
& x_{m+1}^{n+1}(t)=\varphi(t), t \in\left[t_{m}, t_{m+1}\right] \\
& x_{m}^{n+1}(t)=\varphi\left(t_{m}\right)+\int_{t_{m}}^{t} f\left(s, x_{m}^{n}(s), \varphi(s+h)\right) d s, t \in\left[t_{m-1}, t_{m}\right] \\
& x_{m-1}^{n+1}(t)=x_{m}^{n}\left(t_{m-1}\right)+\int_{t_{m-1}}^{t} f\left(s, x_{m-1}^{n}(s), x_{m}^{n}(s+h)\right) d s, t \in\left[t_{m-2}, t_{m-1}\right] \\
& \ldots \ldots \ldots \ldots \ldots \ldots
\end{aligned} \begin{aligned}
& x_{1}^{n+1}(t)=x_{2}^{n}\left(t_{1}\right)+\int_{t_{1}}^{t} f\left(s, x_{1}^{n}(s), x_{2}^{n}(s+h)\right) d s, t \in\left[t_{0}, t_{1}\right]
\end{aligned}
$$

Proof. The proof follows from the Theorem 5.1. See the proof of the Theorem 4.1.

Remark 6.1. $f(t, \cdot, \cdot): \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B}$ increasing do not imply that the operators \widetilde{B}_{f} and \widetilde{E}_{f} are increasing.

References

[1] A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations, The Clarendon Press, New York, 2003.
[2] R. Bellman, A survey of the mathematical theory of time-lag, retarded central, and hereditary processes, The Rand Corporation, Santa Monica, 1954.
[3] R. Bellman and K.L. Cooke, Differential-Difference Equations, Academic Press, New York, 1963.
[4] G.A. Bocharov and A.A. Romanyukha, Numerical solution of differential equations with retarded argument on the basis of linear multistep, methods, Akad. Nauk SSSR, Moscow, Preprint 86-116, 1986.
[5] T.A. Burton, Stability by Fixed Point Theory for Functional Differential Equations, Dover Publications, Mineola, 2006.
[6] Gh. Coman, G. Pavel, I. Rus and I.A. Rus, Introducere în teoria ecuaţiilor operatoriale, Editura Dacia, Cluj-Napoca, 1976.
[7] K. Cooke, Existence, uniqueness and continuous dependence for hereditary systems, Annali di Mat. Pura Appl., 85(1970), 63-82.
[8] S. Doss and S.K. Nasr, On the functional equation $\frac{d y}{d x}=f(s, y(s), y(s+h)), h>0$, Amer. J. Math., 75(1953), 713-716.
[9] L.E. Elsgolts and S.B. Norkin, Introduction to the Theory of Differential Equations with Deviating Arguments, Nauka, Moscow, 1971 (in Russian).
[10] A. Halanay, Differential Equations: Stability, Oscillations, Time Lags, Acad. Press, New York, 1966.
[11] J.K. Hale, Theory of Functional Differential Equations, Springer, 1977.
[12] M.W. Hirsch and C.C. Pugh, Stable manifolds and hyperbolic sets, Proc. Symp. Pure Math., 14(1970), 133-163.
[13] V.-M. Kokkanen and G. Moroşan, Differentiability with respect to delay, Diff. Int. Eq., 11(1998), 589-603.
[14] J. Jankowski, Remarks on extremal solutions of differential equations with advanced argument, Rend. Circolo Mat. Palermo, 55(2006), 95-102.
[15] V. Kolmanovskii and A. Myshkis, Applied Theory of Functional Differential Equations, Kluwer Acad. Publ., Dordrecht, 1992.
[16] N.N. Krasovskii, Stability of Motion, Stanford Univ. Press, 1963.
[17] R.D. Nussbaum and H.-O. Peitgen, Special and spurious solutions of $\dot{x}(t)=-\alpha f(x(t-$ 1)), Mem. Amer. Math. Soc., 51(1984), no. 310.
[18] N.M. Oguztöreli, Time-lag Control Systems, Acad. Press, New York, 1966.
[19] D. Otrocol, A numerical method for approximating the solution of Lotka-Volterra system with two delays, Studia Univ. Babeş-Bolyai, Math., 50(2005), no. 1, 99-100.
[20] D. Otrocol, Lotka-Volterra system with two delays via weakly Picard operators, Nonlinear Analysis Forum, 10(2005), 193-199.
[21] D. Otrocol, Sisteme Lotka-Volterra cu argument întârziat, Presa Univ. Clujeană, ClujNapoca, 2007.
[22] M.R. Racliş, Théorèmes d'existence pour les équations fonctionnelles-différentielles, Bull. Soc. Math. Roumanie, 30(1927), 106-109.
[23] I.A. Rus, A fibre generalized contraction theorem and applications, Mathematica, 41(1999), no. 1, 85-90.
[24] I.A. Rus, Fiber Picard operators and applications, Studia Univ. Babeş-Bolyai, Math., 44(1999), 89-98.
[25] I.A. Rus, Generalized Contractions and Applications, Cluj Univ. Press, Cluj-Napoca, 2001.
[26] I.A. Rus, Picard operators and applications, Scientiae Mathematicae Japonicae, 58 (2003), no.1, 191-219.
[27] G. Sansone, Teorema di esistenza di soluzione per un sistema di equazioni funzionali differentiali, Ann. Mat. Pura Appl., 39(1955), 65-67.
[28] E. Schmidt, Über eine Klasse linearer funktionaler Differentialgleichungen, Math. Ann., 70(1911), 499-524.
[29] M.A. Şerban, Fiber φ-contraction, Studia Univ. Babeş-Bolyai, Math., 44(1999), no.3, 99-108.
[30] M.A. Şerban, Teoria punctului fix pentru operatori definiţi pe produs cartezian, Presa Univ. Clujeană, Cluj-Napoca, 2002.
[31] S. Sugiyama, On some problems of functional-differential equations with advanced argument, Proceed. United States-Japan Seminar on Differential and Functional Equations, 367-382, New York, 1967.

Received: October 15, 2007; Accepted: December 18, 2007.

[^0]: This paper was presented at the International Conference on Nonlinear Operators, Differential Equations and Applications held in Cluj-Napoca (Romania) from July 4 to July 8, 2007.

