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1. Introduction

We formulate our problem by the following example:

x′(t) = f(t, x(t), x(r − h)), t ∈ [a, b], h > 0, (1.1)

x(t) = ϕ(t), t ∈ [a− h, a], (1.2)

x ∈ C([a− h, b], B) ∩ C1([a, b], B),

and the conditions
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(C1) (B, ‖ · ‖,≤) is an ordered Banach space and f ∈ C([a, b] × B × B, B),
ϕ ∈ C([a− h, a], B);

(C2) ∃ Lf > 0 : ‖f(t, u1, v1) − f(t, u2, v2)‖ ≤ Lf (‖u1 − u2‖ + ‖v1 − v2‖),
∀ t ∈ [a, b], ∀ ui, vi ∈ B, i = 1, 2;

(C3) ∃ Lf > 0 : ‖f(t, u1, v) − f(t, u2, v)‖ ≤ Lf‖u1 − u2‖, ∀ t ∈ [a, b],
∀ u1, u2, v ∈ B.

Let m ∈ N∗ be such that:

a + (m− 1)h < b and a + mh ≥ b.

We denote t−1 := a− h, t0 := a, ti := a + ih, i = 1,m− 1, tm := b.
In what follow we consider on C([t−1, tm], B) the Bielecki norm,

‖x‖B := max
t−1≤t≤tm

(‖x(t)‖e−τ |t−t0|),

and on C([ti−1, ti], B) the norm

‖xi‖B := max
ti−1≤t≤ti

(‖x(t)‖e−τ(t−ti−1)).

The equation (1.1) is equivalent with the fixed point equation

x = Ef (x), x ∈ C([t−1, tm], B),

and the problem (1.1)+(1.2) is equivalent with

x = Bf (x), x ∈ C([t−1, tm], B),

where

Ef (x)(t) :=


x(t), t ∈ [t−1, t0]

x(t0) +
∫ t

t0

f(s, x(s), x(s− h))ds, t ∈ [t0, tm]

and

Bf (x)(t) :=


ϕ(t), t ∈ [t−1, t0]

ϕ(t0) +
∫ t

t0

f(s, x(s), x(s− h))ds, t ∈ [t0, tm].

The following results are well known (see [1]-[7], [9]-[11], [15], [16]-[21], [27],
[28]):
Theorem 1.1. In the conditions (C1) + (C2) we have:

(i) the problem (1.1)+(1.2) has in C([t−1, tm], B) a unique solution x∗ and

x∗ ∈ C([t−1, tm], B) ∩ C1([t0, tm], B);
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(ii) the successive approximations

xn+1(t) =


ϕ(t), t ∈ [t−1, t0]

ϕ(t0) +
∫ t

t0

f(s, xn(s), xn(s− h))ds, t ∈ [t0, tm]

converges to x∗, for all x0 ∈ C([t−1, tm], B);
(iii) the operator Ef is weakly Picard operator and Bf is Picard operator

(see [26]).
In what follow we suppose that we are in the conditions (C1) and (C3).
The step method for the problem (1.1)+(1.2) consists in:

(e0) x0(t) = ϕ(t), t ∈ [t−1, t0]

(e1) x1(t) = ϕ(t0) +
∫ t

t0

f(s, x1(s), ϕ(s− h))ds, t ∈ [t0, t1]

(e2) x2(t) = x∗1(t1) +
∫ t

t1

f(s, x2(s), x∗1(s− h))ds, t ∈ [t1, t2]

. . . . . . . . . . . . . . . . . .

(em) xm(t) = x∗m−1(tm−1) +
∫ t

tm−1

f(s, xm(s), x∗m−1(s− h))ds, t ∈ [tm−1, tm]

where x∗i ∈ C([t−1, ti], B) is the unique solution of the equation (ei), i = 1,m.
We have

Theorem 1.2. In the conditions (C1) and (C3) we have that:
(i) the problem (1.1)+(1.2) has in C([t−1, tm], B) a unique solution x∗ where

x∗(t) =


ϕ(t), t ∈ [t−1, t0],
x∗1(t), t ∈ [t0, t1],
. . .

x∗m(t), t ∈ [tm−1, tm];

(ii) the functions x∗i are the limit of the successive approximations

xn+1
i (t) = x∗i−1(ti−1) +

∫ t

ti−1

f(s, xn
i (s), x∗i−1(s− h))ds, t ∈ [ti−1, ti]

in (C([ti−1, ti], B), ‖ · ‖B), i = 1,m.
In this paper we shall study the following problem:

Problem 1.1. Can we put xn
i−1 instead of x∗i−1, i = 2,m, in the conclusion

(ii) of the above theorem?
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For to study this problem we need some notions and results from weakly
Picard operator theory.

2. Fibre weakly Picard operators

Let (X, d) be a metric space and A : X → X an operator.
Definition 2.1. (see [26]). The operator A is weakly Picard operator (WPO)
if the sequence

(An(x))n∈N

converges, for all x ∈ X, and the limit (which may depend on x) is a fixed
point of A.
Definition 2.2. (see [26]). If the operator A is WPO and FA = {x∗}, then
by definition A is Picard operator (PO).
Definition 2.3. (see [26]). If A is WPO, then we consider the operator A∞

defined by
A∞ : X → X, A∞(x) := lim

n→∞
An(x).

It is clear that A∞(x) ∈ FA and A∞(X) = FA.
In this paper we need the following results (see [12], [23]-[26]):

Theorem 2.1. Let (X, d) and (Y, ρ) be two metric spaces and A = (B,C) :
X × Y → Y × Y a triangular operator, i.e., B : X → X, C : X × Y → Y .

We suppose that:
(i) (Y, ρ) is a complete metric space;
(ii) B : X → X is WPO;
(iii) there exists α ∈ (0, 1) such that C(x, ·) : Y → Y is α-contraction, for

all x ∈ X;
(iv) if (x∗, y∗) ∈ FA, then C(·, y∗) is continuous in x∗.
Then the operator A is WPO.
If B is PO, then A is PO.
By induction, from the above results we have (see [26]):

Theorem 2.2. Let (Xi, di), i = 0,m, m ≥ 1 be some metric spaces. Let
Ai : X0 × · · · ×Xi → Xi, i = 0,m be some operator. We suppose that:

(i) (Xi, di), i = 1,m, are complete metric spaces;
(ii) the operator A0 is WPO;
(iii) there exist αi ∈ (0, 1) such that

Ai(x0, . . . , xi−1, ·) : Xi → Xi, i = 1,m,
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are αi-contractions;
(iv) the operator Ai, i = 1,m are continuous.
Then the operator A : X0 × · · · ×Xm → X0 × · · · ×Xm,

A(x0, . . . , xm) := (A0(x0), A1(x0, x1), . . . , Am(x0, . . . , xm)),

is WPO.
If A0 is PO, then A is PO.

3. Forward step method

Let ti ∈ R, i ∈ {−1, 0, 1, . . . ,m} be such that t−1 < t0 < t1 < · · · < tm. Let
(B, ‖ · ‖,≤) be an ordered Banach space. We consider on Xi := C([ti−1, ti], B)
a complete metric di, i = 0,m. Let A0 : X0 → X0, Ai : Xi−1 × Xi → Xi,
i = 1,m be some operators and the operator

A : X0 ×X1 × · · · ×Xm → X0 ×X1 × · · · ×Xm

be defined by

A(x0, x1, . . . , xm) := (A0(x0), A1(x0, x1), . . . , Am(xm−1, xm)).

We consider the following subset of X0 × · · · ×Xm,

U := {(x0, x1, . . . , xm) ∈ X0×X1× · · · ×Xm | xi(ti) = xi+1(ti), i = 0,m− 1}

and the operator
R : C([t−1, tm], B) → U

defined by
R(x) := (x|[t−1,t0], x|[t0,t1], . . . , x|[tm−1,tm]).

It is clear that R is an increasing bijection.
Remark 3.1. In general U is not an invariant subset of A.

First our abstract result is the following
Theorem 3.1. We suppose that:

(i) A0 is WPO;
(ii) Ai(xi−1, ·) : Xi → Xi is αi-contraction, for all xi−1 ∈ Xi−1, i = 1,m;
(iii) Ai(xi−1, xi)(ti−1) = xi−1(ti−1), i = 1,m.

Then:
(a) A is WPO;
(b) if A0 is PO, then A is PO;
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(c) if (x∗0, x
∗
1, . . . , x

∗
m) ∈ FA, then (x∗0, x

∗
1, . . . , x

∗
m) ∈ U and

R−1(x∗0, x
∗
1, . . . , x

∗
m) ∈ C([t−1, tm], B).

Proof. (a)+(b). This part of the theorem is a particular case of the Theorem
2.2. A direct proof follows from the fibre contraction theorem (Theorem 2.1;
see also M.W. Hirsch and C.C. Pugh [12] and I.A. Rus [24] and [25]).

(c) From A(x∗0, . . . , x
∗
m) = (x∗0, x

∗
1, . . . , x

∗
m) it follows that

Ai(x∗i−1, x
∗
i )(ti−1) = x∗i (ti−1).

So, by (iii) we have x∗i (ti−1) = x∗i−1(ti−1), i = 1,m.
Remark 3.2. Let A be as in the Theorem 3.1. If A is increasing, then the
operator

R−1A∞R : C([t−1, tm], B) → C([t−1, tm], B)

is increasing. Indeed, from (c) we have that U is an invariant set of A∞, i.e.,
R−1A∞R is defined. On the other hand R−1, A∞, R are increasing operators.
Theorem 3.2. (Gronwall lemma). Let A be as in Theorem 3.1. We suppose
that A is an increasing operator. Let x ∈ C([t−1, tm], B) be such that R(x) ≤
AR(x). Then, x ≤ R−1A∞R(x).
Proof. A increasing WPO imply that

R(x) ≤ AR(x) ≤ A2R(x) ≤ · · · ≤ A∞R(x).

From R(x) ≤ A∞R(x), it follows that, x ≤ R−1A∞R(x).
Theorem 3.3. (Comparison lemma). Let A,B, C : X0 × · · · × Xm → X0 ×
· · · ×Xm be as in Theorem 3.1. We suppose that:

(1) B is increasing operator;
(2) A ≤ B ≤ C.

Then:

x, y, z ∈ C([t−1, tm], B), x ≤ y ≤ z ⇒

R−1A∞R(x) ≤ R−1B∞R(y) ≤ R−1C∞R(z).

Proof. x ≤ y ≤ z implies that R(x) ≤ R(y) ≤ R(z). Since A,B, C are
WPOs and B is increasing, it follows from Lemma 7.4 in [26], that A∞R(x) ≤
B∞R(y) ≤ C∞R(z). But R−1 is an increasing operator. So, R−1A∞R(x) ≤
R−1B∞R(y) ≤ R−1C∞R(z).

In the next section we present an application of the above results.
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4. Applications to the Problem (1.1)+(1.2)

From Theorem 3.1 we have
Theorem 4.1. In the conditions (C1) and (C3), the problem (1.1)+(1.2) has
in C([t−1, tm], B) a unique solution, x∗,

x∗(t) :=


ϕ(t), t ∈ [t−1, t0],
x∗1(t), t ∈ [t0, t1],
. . .

x∗m(t), t ∈ [tm−1, tm],

and the functions x∗i , i = 1,m, are the limit of the successive approximations

xn+1
i (t) := xn

i−1(ti−1) +
∫ t

ti−1

f(s, xn
i (s), xn

i−1(s− h))ds, t ∈ [ti−1, ti],

in (C([ti−1, ti], B), ‖ · ‖B), i = 1,m.
Proof. We consider the following operators

B0f : C([t−1, t0], B) → C([t−1, t0], B), x0 7→ ϕ

and
Bif : C([ti−2, ti−1], B)× C([ti−1, ti], B) → C([ti−1, ti], B)

defined by

Bif (xi−1, xi)(t) := xi−1(ti−1) +
∫ t

ti−1

f(s, xi(s), xi−1(s− h))ds,

t∈ [ti−1, ti], i = 1,m.

Condition (C1) and (C3) imply that we are in the conditions of the Theorem
3.1, where Ai = Bif and

A = B̃f := (B0f (x0), B1f (x0, x1), . . . , Bmf (xm−1, xm)).

Since B0f is PO, hence that B̃f is PO and R−1(B̃)∞(x0
0, . . . , x

0
n) is the unique

solution of the problem (1.1)+(1.2), for all x0
i ∈ Xi, i = 0,m.

Remark 4.1. If we take E0f := 1C([t−1,t0],B) and

Eif : C([ti−2, ti−1], B)× C([ti−1, ti], B) → C([ti−1, ti], B)

defined by

Eif (xi−1, xi)(t) := xi−1(ti−1) +
∫ t

ti−1

f(s, xi(s), xi−1(s− h))ds, t ∈ [ti−1, ti],
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then, in the conditions of the Theorem 4.1, the operator

Ẽf (x0, x1, . . . , xm) := (E0f (x0), E1f (x0, x1), . . . , Emf (xm−1, xm))

is WPO and R−1(Ẽf )∞(x0
0, . . . , x

0
m) is a solution of the equation (1.1) and for

each solution x ∈ (C[t−1, tm], B) there exists x0
i ∈ C([ti−1, ti], B), i = 0,m,

such that
x = R−1(Ẽf )∞(x0

0, x
0
1, . . . , x

0
m).

Theorem 4.2. We suppose that f is as in the Theorem 4.1 and f(t, ·, ·) :
B× B → B is increasing for all t ∈ [a, b]. Then:

x ∈ C([t−1, tm], B), R(x) ≤ ẼfR(x) ⇒ x ≤ R−1(Ẽf )∞R(x).

Proof. The proof follows from Remark 4.1 and Theorem 3.2.
Remark 4.2. From Theorem 4.2 we have that if x∗ ∈ C([a − h, b], B) is the
solution of the problem (1.1)+(1.2) and x ∈ C([a−h, b], B) is a solution of the
differential inequality

x′(t) ≤ f(t, x(t), x(t− h)), t ∈ [a, b],

x(t) ≤ ϕ(t), t ∈ [a− h, a]

then, x ≤ x∗.
Theorem 4.3. Let f, g, h be as in the Theorem 4.1. We suppose that:

(1) g(t, ·, ·) : B× B → B is increasing;
(2) f ≤ g ≤ h.
Let x be a solution of the equation (1.1), y a solution of the equation

y′(t) = g(t, y(t), y(t− h)), t ∈ [a, b],

and z a solution of the equation

z′(t) = h(t, z(t), z(t− h)), t ∈ [a, b].

Then:
x|[a−h,a] ≤ y|[a−h,a] ≤ z|[a−h,a] ⇒ x ≤ y ≤ z.

Proof. Let

x̃(t) :=

{
x(t), t ∈ [a− h, a]
x(a), t ∈ [a, b].

In a similar way we define ỹ, z̃. It is clear that, x̃ ≤ ỹ ≤ z̃ and

x = R−1(Ẽf )∞R(x̃), y = R−1(Ẽg)∞R(ỹ) and z = R−1(Ẽh)∞R(z̃).
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From Theorem 3.3 it follows that x ≤ y ≤ z.
Example 4.1. Let us consider the following problem (see [15], p. 27):

x′(t) = p(t)x(t) + q(t)x(t− 2)e−x(t−2), t ∈ [0, 5] (4.1)

x(t) = ϕ(t), t ∈ [−2, 0]. (4.2)

If p, q ∈ C[0, 5] and ϕ ∈ C[−2, 0], then by the Theorem 4.1 the problem
(4.1)+(4.2) has a unique solution

x∗(t) =


ϕ(t), t ∈ [−2, 0]
x∗1(t), t ∈ [0, 2]
x∗2(t), t ∈ [2, 4]
x∗3(t), t ∈ [4, 5]

and x∗1, x
∗
2, x

∗
3 are the limits of the following sequences, respectively

xn+1
1 (t) = ϕ(0) +

∫ t

0
[p(s)xn

1 (s) + q(s)ϕ(s− 2)e−ϕ(s−2)]ds, t ∈ [0, 2],

xn+1
2 (t) = xn

1 (2) +
∫ t

2
[p(s)xn

2 (s) + q(s)xn
1 (s− 2)e−xn

1 (s−2)]ds, t ∈ [2, 4],

xn+1
3 (t) = xn

2 (4) +
∫ t

4
[p(s)xn

3 (s) + q(s)xn
2 (s− 2)e−xn

2 (s−2)]ds, t ∈ [4, 5].

Remark 4.3. In the case of the equation

x′(t) = p(t)x(t) + q(t, x(t− h)), t ∈ [a, b]

if p ∈ C[a, b], q ∈ C([a, b] × R) then we are in the conditions of the Theorem
4.1.

5. Backward step method

Let ti ∈ R, t0 < t1 < · · · < tm < tm+1 and

Xi := C([ti−1, ti], B), i = 1,m + 1.

Let Ai : Xi × Xi+1 → Xi, i = 1,m and Am+1 : Xm+1 → Xm+1 be some
operators and

A : X1 × · · · ×Xm+1 → X1 × · · · ×Xm+1

be defined by

A(x1, . . . , xm+1) := (A1(x1, x2), A2(x2, x3), . . . , Am(xm, xm+1), Am+1(xm+1)).
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We consider the following subset of X1 × · · · ×Xm+1,

U := {(x1, . . . , xm+1) ∈ X1 × · · · ×Xm+1 | xi(ti) = xi+1(ti), i = 1,m}

and the operator R : C([t0, tm+1], B) → U defined by

R(x) := (x|[t0,t1], . . . , x|[tm,tm+1]).

We remark that the operator R is an increasing bijection.
The second our abstract result is the following

Theorem 5.1. We suppose that:
(i) Am+1 is WPO;
(ii) Ai(·, xi+1) : Xi → Xi is αi-contraction, i = 1,m;
(iii) Ai(xi, xi+1)(ti) = xi+1(ti), i = 1,m.

Then:
(a) A is WPO;
(b) if Am+1 is PO, then A is PO;
(c) if (x∗1, . . . , x

∗
m+1) ∈ FA, then (x∗1, . . . , x

∗
m+1) ∈ U and

R−1(x∗1, . . . , x
∗
m+1) ∈ C([t0, tm+1], B).

Proof. The proof is similar with that of Theorem 3.1.
Remark 5.1. Let A be as in Theorem 5.1. If A is increasing operator, then
the operator R−1A∞R : C([t0, tm+1], B) → C([t0, tm+1], B) is increasing.

In a similar way as in section 3 we have:
Theorem 5.2. Let A as in Theorem 5.1. We suppose that A is increasing
operator. Then:

x ∈ C([t0, tm+1], B), R(x) ≤ AR(x) ⇒ x ≤ R−1A∞R(x).

Theorem 5.3. Let A,B, C : X1 × · · · × Xm+1 → X1 × · · · × Xm+1 be as in
Theorem 5.1. We suppose that

(1) B is increasing operator;
(2) A ≤ B ≤ C.

Then:

x, y, z ∈ C([t1, tm+1], B), x ≤ y ≤ z ⇒

R−1A∞R(x) ≤ R−1B∞R(y) ≤ R−1C∞R(z).

In what follow we shall give some applications of the above results.
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6. Applications to differential equations with advanced

argument

We consider the following Cauchy problem for a functional differential equa-
tion with advanced argument (see [8], [14], [15], [22],. . . )

x′(t) = f(t, x(t), x(t + h)), t ∈ [a, b], h > 0; (6.1)

x(t) = ϕ(t), t ∈ [b, b + h]; (6.2)

in the following conditions:
(C ′

1) f ∈ C([a, b]× B× B, B), ϕ ∈ C([b, b + h], B);
(C ′

3) ∃ Lf > 0 : ‖f(t, u1, v)− f(t, u2, v)‖ ≤ Lf‖u1 − u2‖,

∀ t ∈ [a, b], ∀ u1, u2, v ∈ B.

Let m ∈ N∗ be such that

b− (m− 1)h > a and b−mh ≤ a.

We denote

t0 := a, t1 := b− (m− 1)h, . . . , tm = b, tm+1 := b + h,

and Xi := C([ti−1, ti], B), i = 1,m + 1.
The equation (6.1) is equivalent with the fixed point equation

x = Ef (x), x ∈ C([t0, tm+1], B)

and the problem (6.1)+(6.2) is equivalent with

x = Bf (x), x ∈ C([t0, tm+1), B),

where

Ef (x)(t) :=


x(t), t ∈ [tm, tm+1]

x(tm) +
∫ t

tm

f(s, x(s), x(s + h))ds, t ∈ [ts, tm]

and

Bf (x)(t) :=


ϕ(t), t ∈ [tm, tm+1]

ϕ(tm) +
∫ t

tm

f(s, x(s), x(s + h))ds, t ∈ [t0, tm]
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The step method for the problem (6.1)+(6.2) consists in the following:

xm+1(t) = ϕ(t), t ∈ [tm, tm+1],

xm(t) = ϕ(tm) +
∫ t

tm

f(s, xm(s), ϕ(s + h))ds, t ∈ [tm+1, tm],

xm−1(t) = x∗m(tm−1) +
∫ t

tm−1

f(s, xm−1(s), x∗m(s + h)), t ∈ [tm−2, tm−1],

. . . . . . . . . . . . . . . . . .

x1(t) = x∗2(t1) +
∫ t

t1

f(s, x1(s), x∗2(s + h)), t ∈ [t0, t1]

where x∗m−i is the unique solution of the integral equation in the i-step.
The following result is well known ([6], [8], [14], [15],...).

Theorem 6.1. In the conditions (C ′
1) + (C ′

3) we have that:
(i) the problem (6.1)+(6.2) has in C([t0, tm+1], B) a unique solution x∗ (x∗ ∈

C([t0, tm+1], B) ∩ C1([t0, tm], B)), where

x∗(t) :=


ϕ(t), t ∈ [tm, tm+1]
x∗m(t), t ∈ [tm−1, tm]
. . .

x∗1(t), t ∈ [t0, t1]

(ii) the functions x∗i are the limits of the successive approximations

xn+1
m+1(t) = ϕ(t), t ∈ [tm, tm+1],

xn+1
m (t) = ϕ(tm) +

∫ t

tm

f(s, xn
m(s), ϕ(s + h))ds, t ∈ [tm−1, tm],

xn+1
m−1(t) = x∗m(tm−1) +

∫ t

tm−1

f(s, xn
m−1(s), x

∗
m(s + h))ds, t ∈ [tm−2, tm−1],

. . . . . . . . . . . . . . . . . .

xn+1
1 (t) = x∗2(t1) +

∫ t

t1

f(s, xn
1 (s), x∗2(s + h))ds, t ∈ [t0, t1]

In this section we shall study the following problem:
Problem 6.1. Can we put xn

i+1 instead x∗i+1, i = 1,m, in the conclusion (ii)
of the Theorem 6.1?

We have
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Theorem 6.1. In the conditions (C ′
1) and (C ′

3) the problem (6.1)+(6.2) has
in C([t0, tm+1], B) a unique solution x∗,

x∗(t) :=


ϕ(t), t ∈ [tm, tm+1]
x∗m, t ∈ [tm−1, tm]
. . .

x∗1, t ∈ [t0, t1]

and the functions x∗i are the limits of the successive approximations

xn+1
m+1(t) = ϕ(t), t ∈ [tm, tm+1],

xn+1
m (t) = ϕ(tm) +

∫ t

tm

f(s, xn
m(s), ϕ(s + h))ds, t ∈ [tm−1, tm],

xn+1
m−1(t) = xn

m(tm−1) +
∫ t

tm−1

f(s, xn
m−1(s), x

n
m(s + h))ds, t ∈ [tm−2, tm−1],

. . . . . . . . . . . . . . . . . .

xn+1
1 (t) = xn

2 (t1) +
∫ t

t1

f(s, xn
1 (s), xn

2 (s + h))ds, t ∈ [t0, t1].

Proof. The proof follows from the Theorem 5.1. See the proof of the Theorem
4.1.
Remark 6.1. f(t, ·, ·) : B×B → B increasing do not imply that the operators
B̃f and Ẽf are increasing.
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1)), Mem. Amer. Math. Soc., 51(1984), no. 310.
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with two delays, Studia Univ. Babeş-Bolyai, Math., 50(2005), no. 1, 99-100.

[20] D. Otrocol, Lotka-Volterra system with two delays via weakly Picard operators, Nonlinear

Analysis Forum, 10(2005), 193-199.

[21] D. Otrocol, Sisteme Lotka-Volterra cu argument ı̂ntârziat, Presa Univ. Clujeană, Cluj-
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99-108.
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