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Let X, Y be two non-empty sets and f : X × Y → R a given function.
The object of minimax theory, in its classical sense, is to find conditions on

X, Y and f which are sufficient to guarantee the validity of the equality

sup
y∈Y

inf
x∈X

f(x, y) = inf
x∈X

sup
y∈Y

f(x, y) . (1)

The aim of this paper is to review some minimax theorems which share the
following basic assumption: Y is a real interval. More properly, our primary
aim is to give an overview of the various applications of some of these theorems.

This paper was presented at the International Conference on Nonlinear Operators, Dif-

ferential Equations and Applications held in Cluj-Napoca (Romania) from July 4 to July 8,

2007.
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Of course, assuming that Y is a real interval is a severe restriction. But,
once we pay such a price, we are then allowed to assume conditions on f(·, y)
which are extremely more general than those appearing in the results where
Y is, on the contrary, of general nature.

Let us start with our review.
Probably, the first minimax theorem belonging to the class we are dealing

with is due to O. Yu. Borenshtein and V. S. Shul’man ([11]). The statement
is as follows:
Theorem 1. Let X be a compact metric space and let Y ⊆ R be an interval.
Assume that f is continuous in X × Y and that
(i) for each y ∈ Y , each local minimum of f(·, y) is a global minimum;
(ii) for each x ∈ X, f(x, ·) is concave in Y .

Then, equality (1) holds.
Though Theorem 1 is affected by two rather heavy assumptions (that is to

say, compactness of X and joint continuity of f in X × Y ), the authors were
able to apply it to give a new proof of the following remarkable result by E.
Asplund and V. Pták ([1]):
Theorem 2. Let H be a real Hilbert space and A,B : H → H two continuous
linear operators.

Then, for every interval I ⊆ R, one has

inf
λ∈I

‖A− λB‖L(H) = sup
‖x‖=1

inf
λ∈I

‖A(x)− λB(x)‖ .

We will come back to Theorem 1 later.
Continuing in chronological order, we find the following result ([47]):

Theorem 3. Let X be a topological space and Y a compact real interval.
Assume that, for each ρ ∈ R, x0 ∈ X, y0 ∈ Y , the sets

{x ∈ X : f(x, y0) ≤ ρ}

and

{y ∈ Y : f(x0, y) > ρ}

are connected. In addition, assume that at least one of the following three sets
of conditions is satisfied:
(h1) f(x, ·) is upper semicontinuous in Y for each x ∈ X, and f(·, y) is lower
semicontinuous in X for each y ∈ Y ;
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(h2) f is upper semicontinuous in X × Y ;
(h3) X is compact, and f is lower semicontinuous in X × Y .

Then, equality (1) holds.
Theorem 3 has successfully been applied to integral functionals on Lp spaces.
Precisely, let (T,F , µ) be a σ-finite non-atomic measure space, E a real

Banach space (E 6= {0}), and p a real number greater than or equal to 1.
Let Lp(T,E) denote the space of all (equivalence classes of) strongly µ-

measurable functions u : T → E such that∫
T
‖ u(t) ‖p dµ < +∞

equipped with the norm

‖ u ‖Lp(T,E)= (
∫

T
‖ u(t) ‖p dµ)

1
p .

A set D ⊆ Lp(T,E) is said to be decomposable if, for every u, v ∈ D and
every S ∈ F , the function

t → χS(t)u(t) + (1− χS(t))v(t)

belongs to S, where χS denotes the characteristic function of S.
A function ϕ : T ×E → R is said to be sup-measurable if for every strongly

µ-measurable function u : T → E, the function t → ϕ(t, u(t)) is µ-measurable.
In [67], J. Saint Raymond established the following very interesting result:

Theorem 4. Let ϕ : T × E → R be a sup-measurable function, and let
D ⊆ Lp(T,E) be a decomposable set.

Then, if we put

S = {u ∈ D : ϕ(·, u(·)) ∈ L1(T )},

for each ρ ∈ R, the set {
u ∈ S :

∫
T

ϕ(t, u(t))dµ ≤ ρ

}
is arcwise connected.

Then, applying Theorem 3 via Theorem 4, we get
Theorem 5. Let Y ⊆ R be a compact interval, X ⊆ Lp(T,E) a decomposable
set, ϕ : T × E × Y → R a function which is sup-measurable in T × E, and
concave in Y . Moreover, assume that ϕ(·, u(·), y) ∈ L1(T ) for all u ∈ X,
y ∈ Y .
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Finally, suppose that the functional u →
∫
T ϕ(t, u(t), y)dµ is lower semi-

continuous in X for each y ∈ Y , and that the function y →
∫
T ϕ(t, u(t), y)dµ

is upper semicontinuous in Y for each u ∈ X.
Then, one has

sup
y∈Y

inf
u∈X

∫
T

ϕ(t, u(t), y)dµ = inf
u∈X

sup
y∈Y

∫
T

ϕ(t, u(t), y)dµ.

From Theorem 5, in turn, many consequences follow. Let us here recall
some of them ([48]-[51]).
Theorem 6. Let ϕ : T × E → R be a sup-measurable function. Assume that
there exist α ∈ L1(T ), γi ∈]0, 1[ and βi ∈ L

p
p−γi (T ) (i = 1, ..., k) such that

−α(t) ≤ ϕ(t, x) ≤ α(t) +
k∑

i=1

βi(t) ‖ x ‖γi

for almost every t ∈ T and for every x ∈ E.
Then, for every decomposable linear subspace X of Lp(T,E) and every

closed hyperplane V of X, one has

inf
u∈V

∫
T

ϕ(t, u(t))dµ = inf
u∈X

∫
T

ϕ(t, u(t))dµ .

Let us now observe a consequence of Theorem 6 which extends the classical
fact that, for γ ∈]0, 1[, the topological dual of Lγ(T,E) reduces to zero. Pre-
cisely, we denote by M the set of all metrics d on Lp(T,E) of the following
type:

d(u, v) =
k∑

i=1

∫
T

βi(t) ‖ u(t)− v(t) ‖γi dµ

where u, v ∈ Lp(T,E), γi ∈]0, 1[, βi ∈ L
p

p−γi (T ), βi > 0 in T (i = 1, ..., k).
Note that each d ∈M is a metric inducing a vector topology which is weaker
than the ‖ · ‖Lp(T,E)-topology.
Theorem 7. For every d ∈ M and every decomposable linear subspace X of
Lp(T,E), the topological dual of (X, d) reduces to zero.

When we take X = Lp(T,E), the conclusion of Theorem 6 can be extended
to a class of functions ϕ with a more general growth.
Theorem 8. Let ϕ : T × E → [0,+∞[ be such that ϕ(·, x) is µ-measurable
for each x ∈ E and ϕ(t, ·) is Lipschitzian with Lipschitz constant M(t) for
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almost every t ∈ T , where M ∈ L
p

p−1 (T ). Assume that ϕ(·, 0) ∈ L1(T ) and
that there exists a sequence {λn} in ]0,+∞[, with limn→+∞ λn = +∞, such
that, for almost every t ∈ T and for every x ∈ E, one has

lim
n→+∞

ϕ(t, λnx)
λn

= 0.

Then, for every closed hyperplane V of Lp(T,E), one has

inf
u∈V

∫
T

ϕ(t, u(t))dµ = inf
u∈Lp(T,E)

∫
T

ϕ(t, u(t))dµ.

Let us recall that a multifunction F : T → 2E is said to be measurable if,
for every open set Ω ⊆ E, one has {t ∈ T : F (t) ∩ Ω 6= ∅} ∈ F . A function
u : T → E is a selection of the multifunction F : T → 2E if u(t) ∈ F (t) for all
t ∈ T . We denote by SF the set of all selections of F belonging to L1(T,E).

An application of Theorem 8 gives
Theorem 9. Let E be separable, and let F : T → 2E be a measurable mul-
tifunction, with non-empty closed values. Assume that dist(0, F (·)) ∈ L1(T )
and that there exists a sequence {λn} in ]0,+∞[, with limn→+∞ λn = +∞,
such that, for almost every t ∈ T and for every x ∈ E, one has

lim
n→+∞

dist(λnx, F (t))
λn

= 0.

Then, SF intersects each closed hyperplane of L1(T,E).
Other related papers are [45], [46] and [27].
Now, come back to Theorem 1. In [68], J. Saint Raymond improved it

weakening, in particular, the joint continuity assumption on f . Indeed, he
obtained the following
Theorem 10. Let X, Y be as in Theorem 1, and let f satisfy the following
conditions:
(b1) for every x ∈ X, the function f(x, ·) is concave and continuous;
(b2) for every y ∈ Y , the function f(·, y) is lower semicontinuous;
(b3) there exists a set D ⊆ Y , dense in Y , such that, for every y ∈ D, each
local minimum of the f(·, y) is a global minimum.

Then, equality (1) holds.
In [52], we applied Theorem 10 to get the following result:
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Theorem 11. Let X be a separable and reflexive real Banach space; Φ : X →
R a sequentially weakly lower semicontinuous C1 functional whose derivative
admits a continuous inverse on X∗; Ψ : X → R a C1 functional with compact
derivative; I ⊆ R an interval. Assume that

lim
‖x‖→+∞

(Φ(x) + λΨ(x)) = +∞

for all λ ∈ I, and that there exists a continuous concave function h : I → R
such that

sup
λ∈I

inf
x∈X

(Φ(x) + λΨ(x) + h(λ)) < inf
x∈X

sup
λ∈I

(Φ(x) + λΨ(x) + h(λ)) .

Then, there exist an open interval J ⊆ I and a positive real number ρ such
that, for each λ ∈ J , the equation

Φ′(x) + λΨ′(x) = 0

has at least three solutions in X whose norms are less than ρ.
In turn, Theorem 11 (jointly with its variants obtained in [7] and in [43])

proved itself to be one of the most used results in the last years for the study
of multiple solutions of nonlinear boundary value problems (see, for instance,
[2]-[10], [18]-[20], [28]-[38], [40]-[44], [69],[70], [73]-[75]).

In [54], we improved Theorem 1 not only weakening the joint continuity
assumption on f (as Saint Raymond did with Theorem 10), but also supposing
that X simply is a topological space. Indeed, we obtained the following
Theorem 12. Let X be a topological space, Y ⊆ R an interval, and let f

satisfy the conditions:
(i) for every x ∈ X, the function f(x, ·) is quasi-concave and continuous;
(ii) for every y ∈ Y , the function f(·, y) is lower semicontinuous and each of
its local minima is a global minimum;
(iii) there exist ρ > supY infX f and y0 ∈ Y such that the set

{x ∈ X : f(x, y0) ≤ ρ}

is compact.
Then, equality (1) holds.
Theorem 12 was then applied in [56], jointly with a recent result of I. G.

Tsar’kov on Chebyshev sets ([72]), to get the following general multiplicity
theorem:
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Theorem 13. Let X be a real Hilbert space and let J : X → R be a C1

nonconstant functional, with compact derivative, such that

lim inf
‖x‖→+∞

J(x)
‖x‖2

≥ 0 .

Then, for each r ∈] infX J, supX J [ for which the set J−1(]−∞, r]) is not convex
and for each convex set S ⊆ X dense in X, there exist x0 ∈ S ∩ J−1(]r, +∞[)
and λ > 0 such that the equation

x + λJ ′(x) = x0

has at least three solutions.
Theorem 13 has been extended by F. Faraci and A. Iannizzotto ([21]) to

a more general class of Banach spaces. Some applications of the method
introduced in [56] to differential equations, hemivariational inequalities and
discrete boundary value problems can be found in [12], [13], [22], [24], [33].

Let H be a real Hilbert space.
As usual, for a generic operator T : H → H, we say that T is a local

homeomorphism at a point x0 ∈ H if there are a neighbourhood U of x0

and a neighbourhood V of T (x0) such that the restriction of T to U is a
homeomorphism between U and V . If T is not a local homeomorphism at x0,
we say that x0 is a singular point of T .

The set of all singular points of T is called the singular set of T and we
denote it by ST . Clearly, the set ST is closed.

In [64], combining the ideas of [56] (so, in particular, making an essential
use of Theorem 12) with a remarkable result by R. S. Sadyrkhanov ([66]), we
obtained the following
Theorem 14. Let H be an infinite-dimensional real Hilbert space and let
J : H → R be a C1 functional. Assume that J is sequentially weakly lower
semicontinuous, not quasi-convex, and positively homogeneous of degree α 6=
2. If α > 2 assume also that J is non-negative. Denote by T the operator
x → x + J ′(x). Suppose that T is closed.

Then, both the sets ST and T (ST ) are not σ-compact.
For instance, an application of Theorem 14 gives the following bifurcation

result:
Theorem 15. Let Ω ⊂ Rn be a smooth bounded domain, let β ∈ L∞(Ω), with
ess supΩβ > 0, and let q ∈]0, 1[.
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For each ϕ ∈ H1
0 (Ω), denote by Λϕ the set of all weak solutions of the

problem {
−∆u = β(x)|u + ϕ(x)|q−1(u + ϕ(x)) in Ω
u = 0 on ∂Ω

Then, there exist two closed, not σ-compact sets A,B ⊂ H1
0 (Ω) with the fol-

lowing properties:
(i) for each ϕ ∈ B there exist w ∈ A and three sequences {uk}, {vk} and {ϕk}
in H1

0 (Ω) such that

lim
k→∞

uk = lim
k→∞

vk = w − ϕ, lim
k→∞

ϕk = ϕ

and, for each k ∈ N,

uk 6= vk and uk, vk ∈ Λϕk
;

(ii) for each ϕ ∈ H1
0 (Ω) \B, the set Λϕ is non-empty, finite and disjoint from

A− ϕ.
Another application of Theorem 14 can be found in [26].
Recently, in [58], [63], we revisited Theorem 3, proving the following

Theorem 16. Let X be a topological space, Y ⊆ R an interval and let f(x, ·)
be upper semicontinuous for each x ∈ X. Assume that there exist a number
ρ∗ > supY infX f , a point ŷ ∈ Y and a set D ⊆ Y , dense in Y , such that for
each ρ ∈]−∞, ρ∗[, the following conditions hold:
(i) the set {y ∈ Y : f(x, y) > ρ} is an interval for all x ∈ X ;
(ii) the set {x ∈ X : f(x, y) ≤ ρ} is closed for all y ∈ Y and compact for
y = ŷ, while the set {x ∈ X : f(x, y) < ρ} is connected for all y ∈ D.

Then, equality (1) holds.
Here is a consequence of Theorem 16.

Theorem 17. Let X be a reflexive real Banach space and Y a real interval.
Assume that f(x, ·) is concave in Y for all x ∈ X and that f(·, y) is continuous,
coercive and sequentially weakly lower semicontinuous in X for all y ∈ Y .
Further, assume that

sup
Y

inf
X

f < inf
X

sup
Y

f .

Then, for each ρ > supY infX f , there exist a non-empty open set A ⊆ Y with
the following property: for every λ ∈ A and every sequentially weakly lower
semicontinuous functional g : X → R, there exists δ > 0, such that, for each



MINIMAX THEOREMS 283

µ ∈ [0, δ], the functional f(·, λ) + µg(·) has at least two local minima lying in
the set {x ∈ X : f(x, λ) < ρ}.

There are already several papers where Theorem 17 has been applied to
differential problems (see [14]-[17], [23], [39]).

For instance, one obtains results of this kind:
Theorem 18. Let ϕ : R → R be a continuous function and let F (x) =∫ x
0 ϕ(t)dt. Assume that

lim sup
|x|→+∞

F (x)
x2

≤ 0

and that there is r > 0 such that

sup
|x|≤2

√
r

F (x) < 2r sup
|x|>

√
2r

F (x)
x2

.

Then, there exist ρ > 0 and a non-empty open set A ⊂]0,+∞[ with the follow-
ing property: for each λ ∈ A and for each continuous function g : [0, 1]×R →
R, there exists δ > 0 such that, for every µ ∈ [0, δ], the problem{

−u′′ + u = λϕ(u) + µg(t, u) in [0, 1]
u′(0) = u′(1) = 0

has at least three classical solutions whose norms in H1(0, 1) are less than ρ.
Finally, let us arrive to the last minimax theorem of the present review. It

reads as follows ([65]):
Theorem 19. Let X be a Hausdorff topological space and Y ⊆ R be an
interval. Assume that there exist a number ρ∗ > supY infX f and a point
ŷ ∈ Y such that, for each ρ ≤ ρ∗, the following conditions hold:
(i) the set {y ∈ Y : f(x, y) > ρ} is connected for all x ∈ X ;
(ii) the set {x ∈ X : f(x, y) ≤ ρ} is sequentially closed for all y ∈ Y and
sequentially compact for y = ŷ ;
(iii) for each compact interval I ⊆ Y for which supI infX f < ρ, there exists
a continuous function ϕ : I → X such that f(ϕ(y), y) < ρ for all y ∈ I.

Then, equality (1) holds.
Theorem 19 has been the main tool that we have used to obtain a very

general well-posedness result: Theorem 20 below.
Before stating it, let us introduce some notation.
Let X be a Hausdorff topological space, let a, b be two numbers in

[−∞,+∞], with a < b, and let J,Φ : X → R be two given functions.
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If a ∈ R (resp. b ∈ R), we denote by Ma (resp. Mb) the set of all global
minima of the function J + aΦ (resp. J + bΦ), while if a = −∞ (resp. b =
+∞), Ma (resp. Mb) stands for the empty set. We adopt the conventions
inf ∅ = +∞, sup ∅ = −∞.

We set

α := max

{
inf
X

Φ, sup
Mb

Φ

}
,

β := min
{

sup
X

Φ, inf
Ma

Φ
}

.

A usual, given a function ϕ : X → R and a set C ⊆ X, we say that the
problem of minimizing ϕ over C is well-posed if the following two conditions
hold:
- the restriction of ϕ to C has a unique global minimum, say x̂ ;
- every sequence {xn} in C such that limn→∞ ϕ(xn) = infC ϕ converges to x̂.

We then have
Theorem 20. Assume that α < β and that, for each λ ∈]a, b[, the function
J + λΦ has sequentially compact sub-level sets and admits a unique global
minimum in X.

Then, for each r ∈]α, β[, the problem of minimizing J over Φ−1(r) is well-
posed.

Moreover, if we denote by x̂r the unique global minimum of J|Φ−1(r) (r ∈
]α, β[), the functions r → x̂r and r → J(x̂r) are continuous in ]α, β[.

When a = 0 and b = +∞, it is also interesting to reformulate Theorem
20 in terms of an alternative, stressing, in this way, the variety of its possible
uses.
Theorem 21. Assume that, for each λ > 0, the function J + λΦ has sequen-
tially compact sub-level sets.

Then, at least one of the following assertions holds:
(i) J has at least one global minimum .
(ii) There exists λ∗ > 0 such that the function J + λ∗Φ has at least two global
minima .
(iii) For each r ∈] infX Φ, supX Φ[, the problem of minimizing J over Φ−1(r)
is well-posed and, if x̂r denotes the unique global minimum of J|Φ−1(r), the
functions r → x̂r and r → J(x̂r) are continuous in ] infX Φ, supX Φ[ .
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Theorem 20 is the definitive abstract result coming out from the minimax
method that we had previously developed in specific settings ([59]-[62]). In
these latter papers, for instance, we obtained the following two results. The
symbol B(x, r) (resp. S(x, r)) stands for the closed ball (resp. the sphere) of
radius r centered at x.
Theorem 22. Let X be a real Hilbert space and let J : X → R be a C1

functional with locally Lipschitzian derivative.
Then, for each x0 ∈ X with J ′(x0) 6= 0, there exists δ > 0 such that, for

every r ∈]0, δ[, one has

inf
B(x0,r)

J = inf
S(x0,r)

J

and the problems of minimizing J over S(x0, r) and over B(x0, r) are well-
posed.

Moreover, if we denote by x̂r the unique global minimum of J|S(x0,r) (r ∈
]0, δ[), the function r → x̂r is Lipschitzian in ]0, δ[.

Let Ω ⊂ Rn be a smooth bounded domain.
The space H1(Ω) is endowed with the usual norm

‖u‖ =
(∫

Ω
(|∇u(x)|2 + |u(x)|2)dx

) 1
2

.

Theorem 23. Let ϕ : Rn+1 → R be a C1 function whose gradient is non-
constant and Lipschitzian (with respect to the Euclidean metric), and let V be
a closed linear subspace of H1(Ω) containing a v0 such that∫

Ω
(ϕξ(0)v0(x) +∇ηϕ(0)∇v0(x))dx 6= 0 .

Denote by ML the set (possibly empty) of all global minima of the restriction
to V of the functional

u → L

2
‖u‖2 +

∫
Ω

ϕ(u(x),∇u(x))dx ,

where L is the Lipschitz constant of ∇ϕ.
Then, 0 6∈ ML and for every r ∈]0,dist (0,ML) [ the problem of minimizing

the functional

u →
∫

Ω
ϕ(u(x),∇u(x))dx

over the sphere {u ∈ V : ‖u‖ = r} is well-posed.
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F. Faraci and A. Iannizzotto in [25], using the ideas of [62], proved the
following best approximation result:
Theorem 24. Let X be a real Hilbert space, let C be a non-empty subset of
X. For each r > 0, set

Ar = {x ∈ X : dist(x,C) ≥ r} .

Then, for every y ∈ X \ conv(C) and every r > 0, the problem of minimizing
the function

x → ‖x− y‖

over Ar is well-posed.

In connection with Theorem 24, the following problem arises:
PROBLEM 1. Is there a subset C of X such that, for some r > 0, the set

Ar is not convex and, for every y ∈ conv(C), there is a unique x̂ ∈ Ar for
which

‖x̂− y‖ = dist(y, Ar) ?

In view of Theorem 24, a positive answer to Problem 1 would provide an
example of a not convex Chebyshev set in a Hilbert space, solving a classical
problem still open.

Here are the two last results of this review.
Let us recall that a set in a topological space is said to be totally discon-

nected if each of its connected components is a singleton.
A joint application of Theorem 21 with Theorem 2 of [55] gives

Theorem 25. Let X be a real Hilbert space and let J : X → R be a C1

functional, with compact derivative, such that

lim inf
‖x‖→+∞

J(x)
‖x‖2

≥ 0 .

Then, at least one of the following assertions holds:
(a) J has at least one global minimum.
(b) There exists λ∗ > 0 such that, for every C1 functional Φ : X → R, with
compact derivative, satisfying

lim inf
‖x‖→+∞

Φ(x)
‖x‖2

> −∞ ,
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there exists δ > 0 such that, for each µ ∈ [0, δ], the equation

x + λ∗J ′(x) + µΦ′(x) = 0

has at least three solutions.
(c) There exists λ̂ > 0 such that the set of all global minima of the functional

x → ‖x‖2 + λ̂J(x)

is not totally disconnected.
(d) For each r > 0, the problem of minimizing J over S(0, r) is well-posed.

Finally, a joint application of Theorem 21 with Theorem 1 of [57] gives
Theorem 26. Let ϕ : R → R be a continuous function such that, for each
λ > 0 and each non-degenerate interval I, there is x ∈ I with ϕ(x) 6= λx. Let
F (x) =

∫ x
0 ϕ(t)dt. Assume that there exists x0 > 0 such that

F (−x0) = F (x0) .

Finally, suppose that F has no global maxima in R and that

lim
|x|→+∞

ϕ(x)
x

= 0 .

Then, for each positive and continuous function α : [0, 1] → R, there exist λ∗ >

0 with the following property: for each continuous function g : [0, 1]×R → R
there exists δ > 0 such that, for every µ ∈ [0, δ], the problem{

−u′′ + α(t)u = λ∗α(t)ϕ(u) + µg(t, u) in [0, 1]
u′(0) = u′(1) = 0

admits at least three classical solutions.
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[29] A. Kristály, Existence of two nontrivial solutions for a class of quasilinear elliptic vari-

ational systems on strip-like domains, Proc. Edinb. Math. Soc., 48(2005), 465-477.
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[38] H. Lisei, Cs. Varga and A. Horváth, Multiplicity results for a class of quasilinear prob-

lems on unbounded domains, Arch. Math. (Basel), 90(2008), 256-266.
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