FIXED POINT THEOREMS FOR OCCASIONALLY WEAKLY COMPATIBLE MAPPINGS, ERRATUM

G. JUNGCK* AND B. E. RHOADES**
*Department of Mathematics, Bradley University
Peoria, Illinois 62625
E-mail: gfj@hilltop.bradley.edu
**Department of Mathematics, Indiana University, Bloomington Indiana 47405-5701, USA
E-mail: rhoades@indiana.edu

Abstract. We correct the errors that appeared in [1].
Key Words and Phrases: occasionally weakly compatible, fixed point theorem, symmetric space.
2000 Mathematics Subject Classification: $54 \mathrm{H} 25,47 \mathrm{H} 10$.

We correct the errors that appeared in [1].
2914,$\quad(X, d) \quad$ should read $\quad(X, r)$.
291^{5} Delete such that $f(X) \subset S(X)$,
$291^{8} \quad s, y \quad$ should read x, y
$291_{9}-291_{8}$ Insert a new line which reads:
Define $\psi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$which is upper semicontinuous, nondcreasing, and satisfying $\psi(t)<t$ for each $t>0$.

Because important items were left out of inequality (6) in the statement of Theorem 3 in [1], we shall state the correct Theorem 3 and include a proof.

Theorem 3. Let X be a symmetric space with symmetric r, f, g, S, and T selfmaps of X satisfying

$$
\begin{align*}
(r(f x, g y))^{p} \leq \psi & \left(a(r(f x, T y))^{p}+\right. \tag{1}\\
& +(1-a) \max \left\{\alpha(r(f x, S x))^{p}, \beta(r(g y, T y))^{p}\right\} \\
& (r(f x, S x))^{p / 2}(r(f x, T y))^{p / 2} \\
& \left.\left.(r(T y, f x))^{p / 2}(r(S x, g y))^{p / 2} \frac{1}{2}\left[r^{p}(S x, f x)+r^{p}(T y, g y)\right]\right\}\right)
\end{align*}
$$

for all $x, y \in X$, where $0<a, \alpha, \beta \leq 1$, and $p \geq 1$. If $\{f, S\}$ and $\{g, T\}$ are owc, then f, g, S, and T have a unique common fixed point.
Proof. By hypothesis there exist points x and y such that $f x=S x$ and $g y=T y$. Suppose that $f x \neq g y$. Then, from (6),

$$
\begin{aligned}
(r(f x, g y))^{p} & \leq \psi\left(a(r(f x, g y))^{p}+(1-a) \max \left\{0,0,0,(r(f x, g y))^{p} .0\right\}\right) \\
& \left.\left.=\psi(r(f x, g y))^{p}\right)<r(f x, g y)\right)^{p}
\end{aligned}
$$

a contradiction. Therefore $r(f x, g y)=0$, which implies that $f x=g y$. Suppose that there exists another point z such that $f z=S z$. Then, using (6) one obtains $f z=S z=g y=T y=f x=S x$ and hence $w=f x=f z$ is the unique point of coincidence of f and S. By symmetry there exists a unique point $v \in X$ such that $v=g z=T v$. It then follows that $w=v, w$ is a common fixed point of f, g, S, and T, and w is unique. $293_{3}-293_{2} \quad$ Delete "satisfying $f(X) \subset T(X), g(X) \subset S(X)$, and"
2943 Replace the period at the end of the line with a comma.
294_{2} If should read for each $x, y \in X$ such that $T x \neq T y$. If
$295^{1}-295_{2}$ implies should read , along with $S X$ or $T X$ complete and (10) imply

Acknowledgement. We are indebted to Professor Valeriu Popa for bringing some of these errors to our attention.

References

[1] G. Jungck and B. E. Rhoades, Fixed point theorems for occasionally weakly compatible mappings, Fixed Point Theory, 7(2006), 287-296.

Received: August 21, 2007; Accepted: September 13, 2007.

