Fixed Point Theory, Volume 9, No. 1, 2008, 383-384 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

FIXED POINT THEOREMS FOR OCCASIONALLY WEAKLY COMPATIBLE MAPPINGS, ERRATUM

G. JUNGCK^{*} AND B. E. RHOADES^{**}

*Department of Mathematics, Bradley University Peoria, Illinois 62625 E-mail: gfj@hilltop.bradley.edu

**Department of Mathematics, Indiana University, Bloomington Indiana 47405-5701, USA E-mail: rhoades@indiana.edu

Abstract. We correct the errors that appeared in [1]. **Key Words and Phrases**: occasionally weakly compatible, fixed point theorem, symmetric space.

2000 Mathematics Subject Classification: 54H25, 47H10.

We correct the errors that appeared in [1]. 291^4 , (X,d) should read (X,r). 291^5 Delete such that $f(X) \subset S(X)$, $291^8 \quad s, y$ should read x, y $291_9 - 291_8$ Insert a new line which reads:

Define $\psi : \mathbb{R}^+ \to \mathbb{R}^+$ which is upper semicontinuous, nondcreasing, and satisfying $\psi(t) < t$ for each t > 0.

Because important items were left out of inequality (6) in the statement of Theorem 3 in [1], we shall state the correct Theorem 3 and include a proof.

383

Theorem 3. Let X be a symmetric space with symmetric r, f, g, S, and T selfmaps of X satisfying

$$(r(fx,gy))^{p} \leq \psi(a(r(fx,Ty))^{p} + (1) + (1-a) \max\{\alpha(r(fx,Sx))^{p}, \beta(r(gy,Ty))^{p}\}, (r(fx,Sx))^{p/2}(r(fx,Ty))^{p/2}, (r(Ty,fx))^{p/2}(r(Sx,gy))^{p/2}\frac{1}{2}[r^{p}(Sx,fx) + r^{p}(Ty,gy)]\})$$

for all $x, y \in X$, where $0 < a, \alpha, \beta \le 1$, and $p \ge 1$. If $\{f, S\}$ and $\{g, T\}$ are owe, then f, g, S, and T have a unique common fixed point.

Proof. By hypothesis there exist points x and y such that fx = Sx and gy = Ty. Suppose that $fx \neq gy$. Then, from (6),

$$(r(fx,gy))^{p} \leq \psi(a(r(fx,gy))^{p} + (1-a)\max\{0,0,0,(r(fx,gy))^{p},0\})$$
$$= \psi(r(fx,gy))^{p}) < r(fx,gy))^{p},$$

a contradiction. Therefore r(fx, gy) = 0, which implies that fx = gy. Suppose that there exists another point z such that fz = Sz. Then, using (6) one obtains fz = Sz = gy = Ty = fx = Sx and hence w = fx = fz is the unique point of coincidence of f and S. By symmetry there exists a unique point $v \in X$ such that v = gz = Tv. It then follows that w = v, w is a common fixed point of f, g, S, and T, and w is unique. $\Box 293_3 - 293_2$ Delete "satisfying $f(X) \subset T(X), g(X) \subset S(X), and$ "

 294_3 Replace the period at the end of the line with a comma.

294₂ If should read for each $x, y \in X$ such that $Tx \neq Ty$. If

 $295^1 - 295_2$ implies should read , along with SX or TX complete and (10) imply

Acknowledgement. We are indebted to Professor Valeriu Popa for bringing some of these errors to our attention.

References

 G. Jungck and B. E. Rhoades, Fixed point theorems for occasionally weakly compatible mappings, Fixed Point Theory, 7(2006), 287-296.

Received: August 21, 2007; Accepted: September 13, 2007.