Fixed Point Theory, Volume 9, No. 1, 2008, 221-225 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

FIXED POINTS FOR DIRECTIONAL CONTRACTIONS

PETRU TÜNDE PETRA

Department of Applied Mathematics Babeş-Bolyai University Kogălniceanu Str., 400084, Cluj-Napoca, Romania E-mail: ptpetru@econ.ubbcluj.ro

Abstract. The aim of this note is to present a fixed point result for a multivalued directional φ -contraction. Our result extends the main theorem in Uderzo [4].

Key Words and Phrases: Multivalued directional contraction, multivalued directional φ -contractions.

2000 Mathematics Subject Classification: 47H10, 54H25, 54C60.

1. INTRODUCTION

Let (E, d) be a metric space. Given points $x, y \in E$, the open segment (x, y) defined by x and y is the set of points z in E (if any) distinct from x and y and satisfying d(x, z) + d(z, y) = d(x, y).

A single valued map $f : X \to X$ is said to be a *directional contraction* provided f is continuous and there exists a number $\sigma \in (0, 1)$ with the following property: whenever $v \in X$ is such that $f(v) \neq v$, there exists $w \in (v, f(v))$ such that

$$d(f(v), f(w)) \le \sigma d(v, w).$$

The notion of directional contractions was introduced by Clarke (see [1]). The following result was given by Clarke too.

Theorem 1.1 (Clarke [1]). Let (E, d) be a complete metric space. Then every directional single-valued contraction has a fixed point.

This paper was presented at the International Conference on Nonlinear Operators, Differential Equations and Applications held in Cluj-Napoca (Romania) from July 4 to July 8, 2007.

²²¹

PETRU TÜNDE PETRA

2. Directional φ -contractions

Let (E, d) be a metric space. Let $\mathcal{P}(E)$ be the set of all subsets of E, and P(E) the set of all nonempty subsets of E, i.e. $P(E) = \{Y | \emptyset \neq Y \subseteq E\}$. We denote by $P_b(E)$ the set of all nonempty and bounded subsets, $P_{cl,b}(E)$ the set of all nonempty closed and bounded subsets, $P_{cp}(E)$ the set of all nonempty compact subsets.

Definition 2.1. A multivalued operator $F : E \to P_{cl,b}(E)$ is said to be a directional contraction provided F is upper semicontinuous with respect to the Pompeiu-Hausdorff distance H and there exists a number $\sigma \in (0,1)$ with the following property: whenever $v \in E$ is such that $v \notin F(v)$ and $u \in F(v)$, there exists $w \in (v, u)$ such that

$$H(F(v), F(w)) \le \sigma \cdot d(v, w).$$

Definition 2.2. Given an increasing function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ with the property $\varphi(t) < t$ for each t > 0, a multivalued operator F on a metric space (E, d) is said to be a multivalued φ -contraction if

$$H(F(x), F(y)) \le \varphi(d(x, y)), \text{ for } x, y \in E.$$

Definition 2.3. Let $K \in P_{cl}(E)$. A map $F : K \to P_{cl,b}(E)$ is called a *multivalued directional* φ -contraction if there exist a strictly increasing mapping a : $]0, +\infty[\rightarrow]0, +\infty[$ (with a(0) = 0 and $\lim_{t\to+\infty} a(t) = +\infty$) and a comparison function φ : $]0, +\infty[\rightarrow]0, +\infty[$ such that for every $x \in K$ with $x \notin F(x)$ there exists $y \in K \setminus \{x\}$ such that

$$a(d(x,y)) + D(y,F(x)) \le D(x,F(x))$$

and

$$\rho(F(y), F(x)) \le \varphi(d(x, y)).$$

For the proof of the main result we will need the following well-known theorem (see [2]):

Lemma 2.1 (Ekeland's ε -Variational Principle). Let (E, d) be a complete metric space and let $F : E \to \mathbb{R} \cup \{+\infty\}$ be a lower semicontinuous function which is bounded below. If u is a point in E satisfying

$$F(u) < \inf_E F + \varepsilon$$

for some $\varepsilon > 0$, then, for every $\lambda > 0$, exists a point v in E such that

- i) $F(v) \leq F(u);$
- ii) $d(u, v) \leq \lambda;$
- iii) For all $w \neq v$ in E, one has

$$F(v) < F(w) + \frac{\varepsilon}{\lambda} \cdot d(v, w).$$

3. MAIN RESULT

Our result extends the main theorem of Uderzo in [4].

Theorem 3.1 (Uderzo [4]). Let K be a closed nonempty subset of a complete metric space (E, d) and let $F : K \to P_{cl,b}(E)$ be an u.s.c. directional multivalued $k(\cdot)$ -contraction. Assume that there exists $x_0 \in K$, $\delta > 0$ and $\alpha \in (0, 1]$ such that $D(x_0, F(x_0)) \leq \alpha \delta$ and

$$\sup_{t \in (0,\delta]} k(t) < \inf_{t \in (0,\delta]} a(t)$$

where $a:]0, +\infty[\rightarrow [\alpha, 1] \text{ and } k: (0, +\infty) \rightarrow [0, 1) \text{ such that for every } x \in K,$ with $x \notin F(x)$, there is $y \in K \setminus \{x\}$ satisfying the inequalities

$$a(d(x,y)) \cdot d(x,y) + D(y,F(x)) \le D(x,F(x))$$

and

$$\rho(F(y), F(x)) \le k(d(x, y)) \cdot d(x, y)$$

Then F admits a fixed point.

Our main result is:

Theorem 3.2. Let (E, d) be a complete metric space, $K \in P_{cl}(E)$ and let $F: K \to P_{cl,b}(E)$ be an u.s.c. directional φ -contraction. Assume that there exists $x_0 \in K$, $\delta > 0$ and $\alpha \in]0,1]$ such that $D(x_0, F(x_0)) \leq \delta \alpha$, $a(\delta) \geq \alpha \delta$ and there exists $\beta > 0$ such that

$$\sup_{t\in]0,\delta]}\varphi(t) - \inf_{t\in]0,\delta]}a(t) \le -\beta\delta.$$

Then $FixF \neq \emptyset$.

Proof. By hypothesis, there exists $\beta > 0$ and $\delta > 0$ such that

$$\sup_{t\in]0,\delta]} (\varphi(t) - a(t)) \le \sup_{t\in]0,\delta]} \varphi(t) - \inf_{t\in]0,\delta]} a(t) \le -\beta\delta$$
(3.1)

Since F is u.s.c., $f: K \to \mathbb{R}_+$, where f(x) = D(x, F(x)) is l.s.c. in K. Since K is complete is equipped with the metric induced by d, and $f(x_0) \leq \delta \alpha := \varepsilon$, then it is possible to apply Ekeland variational principle around x_0 , to get for any $\lambda > 0$ the existance of $x_\lambda \in K$ such that

$$f(x_{\lambda}) \le f(x_0), \tag{3.2}$$

$$d(x_0, x_\lambda) \le \lambda, \tag{3.3}$$

$$f(x_{\lambda}) < f(x) + \frac{\alpha \delta}{\lambda} \cdot d(x_{\lambda}, x), \forall x \in K \setminus \{x_{\lambda}\}.$$
(3.4)

Suppose that $f(x_{\lambda}) > 0, \ \forall \lambda > 0.$

Since F is directional φ -contraction, we have that there exists $y \in K \setminus \{x_{\lambda}\}$ such that

$$a(d(x_{\lambda}, y)) + D(y, F(x_{\lambda})) \le D(x_{\lambda}, F(x_{\lambda})) = f(x_{\lambda})$$
(3.5)

and

$$\rho(F(y), F(x_{\lambda})) \le \varphi(d(x_{\lambda}, y)) \tag{3.6}$$

From (3.5) we have that $a(d(x_{\lambda}, y)) \leq f(x_{\lambda}) - D(y, F(x_{\lambda})) \leq f(x_{\lambda})$, thus

$$0 < d(x_{\lambda}, y) \le a^{-1}(f(x_{\lambda})) \le a^{-1}(f(x_0)) \le a^{-1}(\alpha \delta) \le \delta$$

and

$$D(y, F(x_{\lambda})) \le f(x_{\lambda}) - a(d(x_{\lambda}, y)).$$

 So

$$f(y) = D(y, F(y)) \le D(y, F(x_{\lambda})) + \rho(F(y), F(x_{\lambda})) \le$$

$$\le f(x_{\lambda}) - a(d(x_{\lambda}, y)) + \varphi(d(x_{\lambda}, y)).$$

Putting x := y in (3.4) and $\lambda := \frac{2\alpha\delta}{\beta}$ we obtain

$$f(x_{\lambda}) < f(y) + \frac{\alpha \delta}{\lambda} \cdot d(x_{\lambda}, y) \leq$$

$$\leq f(x_{\lambda}) - a(d(x_{\lambda}, y)) + \varphi(d(x_{\lambda}, y)) + \frac{\beta}{2} \cdot d(x_{\lambda}, y) \leq$$

$$\leq f(x_{\lambda}) - \beta \delta + \frac{\beta}{2} \cdot \delta < f(x_{\lambda}).$$

Contradiction. Thus $f(x_{\lambda}) = 0$. \Box

Remark 3.1. If we are in the following particular case $a(t) = A(t) \cdot t$ and $\varphi(t) = k(t) \cdot t$ we regain Uderzo's theorem in [4].

224

References

- [1] F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, 1983.
- [2] I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47(1974), 324-353.
- [3] A. Petruşel, G. Moţ, *Multivalued Analysis and Mathematical Economics*, House of the Book Science, Cluj-Napoca, 2004.
- [4] A. Uderzo, Fixed Points for Directional Multi-Valued k(·)-Contractions, Journal of Global Optimization, 31(2005), 455-469.

Received: November 10, 2007; Accepted: December 18, 2007.