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1. Introduction

Functional-integral equations with modified argument arise in a wide
variety of scientific and technical applications, including the modeling of prob-
lems from the natural and social sciences such as physics, chemistry, biol-
ogy, economics, engineering. The theory of functional-integral equations has
developed very much. Many monographs appeared: Bellman and Cooke
[2](1963), Halanay [7](1966), Elsgoltz and Norkin [5](1971), Bernfeld and
Lakshmikantham [3](1974), Hale [8](1977), Azbelev, Maksimov and Rahmat-
ulina [1](1991), Hale and Verdyn Lunel [9](1993), Guo and Lakshmikantham
[6](1996) such as a large number of papers. We quote here [11], [12], [16], [25],
[27], [28].

This paper was presented at the International Conference on Nonlinear Operators, Dif-

ferential Equations and Applications held in Cluj-Napoca (Romania) from July 4 to July 8,

2007.
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The aim of this paper is to study the following functional-integral equation
with linear modification of the argument, in Banach space:

x(t) = g(t, x(t), x(λt), x(0) +
∫ t

0
K(t, s, x(s), x(λs))ds, t ∈ [0, b], 0 < λ < 1.

(1.1)
We use weakly Picard operators’ technique and the same method as in the
paper [25].

In [4] and [6] were considered some particular cases of this equation.

2. Weakly Picard operators

Let (X, d) be a metric space and A : X −→ X an operator. We shall
use the following notations:

P (X) := {Y ⊆ X|Y 6= ∅};
FA := {x ∈ X|A(x) = x} - the fixed point set of A;
I(A) := {Y ∈ P (X)|A(Y ) ⊆ Y };
A0 := 1X , A1 := A, . . . , An+1 := A ◦An, . . . , n ∈ N.

Definition 2.1. (Rus [20]) A is Picard operator if there exists x∗ ∈ X such
that

1) FA = {x∗};
2) the successive approximation sequence (An(x0))n∈N converges to x∗,

for all x0 ∈ X.

Definition 2.2. (Rus[19]) A is weakly Picard operator if the sequence
(An(x0))n∈N converges for all x0 ∈ X and its limit (which may depend on
x0) is a fixed point of A.

If A is weakly Picard operator we consider A∞ : X −→ X, A∞(x) =
limn→∞An(x). We remark that A∞(X) = FA.

Definition 2.3. (Rus[24]) Let A be a weakly Picard operator and c > 0. A is
c-weakly Picard operator if

d(x,A∞(x)) ≤ cd(x,A(x)), for all x ∈ X.

We have
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Theorem 2.1. (Rus[23], [24]) Let (X, d) be a metric space and A : X −→ X

an operator. A is weakly Picard operator (c-weakly Picard operator) if and
only if there exists a partition of X, X = ∪

µ∈Λ
Xµ, such that:

(a) Xµ ∈ I(A), for all µ ∈ Λ;
(b) A|Xµ : Xµ −→ Xµ is a Picard (c-Picard) operator, for all µ ∈ Λ.

Theorem 2.2. (Rus[24]) Let (X, d) be a metric space and Ai : X −→ X, i =
1, 2. We suppose that

(i) the operator Ai is ci-weakly Picard operator, i = 1, 2;
(ii) there exists η > 0 such that

d(A1(x), A2(x)) ≤ η, for all x ∈ X.

Then
H(FA1 , FA2) ≤ η max(c1, c2),

where H stands for Pompeiu-Hausdorff functional defined by

H(FA1 , FA2) : max{ sup
a∈FA1

inf
b∈FA2

d(a, b), sup
b∈FA2

inf
a∈FA1

d(a, b)} ∪ {∞}.

Theorem 2.3. (Rus[23]) Let (X, d,≤) be an ordered metric space and A :
X −→ X such that

(i) A is monotone increasing;
(ii) A is weakly Picard operator.

Then the operator A∞ is monotone increasing.

Theorem 2.4. (Rus[23]) Let (X, d,≤) be an ordered metric space and
A,B, C : X −→ X be such that:

(i) A ≤ B ≤ C;
(ii) the operators A,B, C are weakly Picard operators;
(iii) the operator B is monotone increasing

Then x ≤ y ≤ z implies A∞(x) ≤ B∞(y) ≤ C∞(z).

3. The solutions set of the equation (1.1)

Let (X, ‖ · ‖,≤) be an ordered Banach space and C([0, b], X) endowed
with the following Bielecki norm:

‖x‖B := max
t∈[0,b]

(‖x(t)‖e−τt), where τ > 0.
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So, (C([0, b], X), ‖ · ‖B) is a Banach space denoted in what follows by
C([0, b], X).

Consider the equation(1.1) and suppose that the following conditions are
satisfied:

(c1) g ∈ C([0, b]×X ×X ×X, X), K ∈ C([0, b]× [0, b]×X ×X, X);
(c2) there exists Lk > 0 such that

‖K(t, s, u1, u2)−K(t, s, v1, v2)‖ ≤ Lk(‖u1 − v1‖+ ‖u2 − v2‖),

for all t, s ∈ [0, b] and all ui, vi ∈ X, i = 1, 2;
(c3) there exists Lg < 1

2 such that

‖g(t, u1, u2, α)− g(t, v1, v2, α)‖ ≤ Lg(‖u1 − v1‖+ ‖u2 − v2‖),

for all t ∈ [0, b] and all ui, vi, α ∈ X, i = 1, 2.

Consider the operator A : C([0, b], X) −→ C([0, b], X) defined by
A(x)(t) := g(t, x(t), x(λt), x(0))+

∫ t
0 K(t, s, x(s), x(λs))ds, t ∈ [0, b], λ ∈]0, 1[.

In our considerations the following equation

g(0, α, α, α) = α, α ∈ X (3.1)

plays an important role. We denote by Sg the solutions set of the equation
(3.1).

Then we have

Remark 3.1. If x is a solution of the equation (1.1) (i.e. x ∈ FA), then
x(0) ∈ Sg.

Remark 3.2. Let Xα := {x ∈ C([0, b], X) | x(0) = α} be.
It is clear that

C([0, b], X) = ∪
α∈X

Xα

is a partition of C([0, b], X).

Remark 3.3. Xα ∈ I(A) if and only if α ∈ Sg.

We denote by Aα := A |Xα : Xα −→ Xα.

We have
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Theorem 3.1. We suppose that the conditions (c1), (c2) and (c3) are satisfied.
Then the operator

A | ∪
α∈Sg

Xα : ∪
α∈Sg

Xα −→ ∪
α∈Sg

Xα

is a weakly Picard operator and CardFA = CardSg.

Proof. By using (c2) and (c3) we obtain

‖Aα(x)(t)−Aα(z)(t)‖ ≤ ‖g(t, x(t), x(λt), α)− g(t, z(t), z(λt), α)‖

+
t∫
0

‖K(t, s, x(s), x(λs))−K(t, s, z(s), z(λs))‖ds ≤

Lg(‖x(t)− z(t)‖e−τteτt + ‖x(λt)− z(λt)‖e−τλteτλt +

+LK

t∫
0

(‖x(s)− z(s)‖e−τseτs + ‖x(λs)− z(λs)‖e−τλseτλs)ds

≤ Lg‖x− z‖B(eτt + eτλt) + Lk‖x− z‖B(
t∫
0

eτsds +
t∫
0

eτλsds)

≤ 2Lg‖x− z‖Beτt + LK‖x− z‖B

(
eτt−1

τ + eτλt−1
λτ

)
≤ eτt

(
2Lg + Lk

1+ 1
λ

τ

)
‖x− z‖B, for all t ∈ [0, b].

So,

‖Aα(x)(t)−Aα(z)(t)‖e−τt ≤
[
2Lg +

Lk(1 + 1
λ)

τ

]
‖x− z‖B, for all t ∈ [0, b].

Therefore,

‖Aα(x)(t)−Aα(z)(t)‖B ≤
[
2Lg +

Lk(1 + 1
λ)

τ

]
‖x− z‖B.

It follows that Aα is a Lipschitz operator with a Lipschitz constant

LA = 2Lg +
Lk

τ
(1 +

1
λ

).

But 2Lg < 1 and by choosing τ large enough we have that A is a contraction.
The proof follows from Contraction principle and from the result of Theorem
2.1.

By using Remark 3.1 we can define the operator ϕ : FA −→ Sg, x −→ x(0)
and ϕ is a bijective operator. So, CardFA = CardSg. �
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Theorem 3.2. Consider the equation (1.1) with the conditions (c1), (c2), (c3).
We suppose that
(c4) g(t, ·, ·, ·) and K(t, s, ·, ·) are increasing, for all t, s ∈ [0, b].

If x and y are two solutions of the equation (1.1) then

x(0) ≤ y(0) implies x ≤ y.

Proof. From the Theorem 3.1, the operator A is weakly Picard operator. By
using (c4) and the Theorem 2.3 we obtain that A∞ is increasing. For α ∈ X

we define α̃ : [0, b] −→ X, α̃(t) := α, for all t ∈ [0, b]. We have x = A∞(x̃(0))
and y = A∞(ỹ(0). So, x(0) ≤ y(0) implies x ≤ y. �

Theorem 3.3. Let gi,Ki, i = 1, 2, 3 be with the corresponding conditions
(c1), (c2), (c3). We suppose that

(i) g2(t, ·, ·, ·) and K2(t, s, ·, ·) are increasing;
(ii) g1 ≤ g2 ≤ g3 and K1 ≤ K2 ≤ K3.
(iii) Let Sgi be the solution set of the equation

gi(0, α, α, α) = α, i = 1, 2, 3

and we suppose that Sg1 = Sg2 = Sg3.

If xi is a solution of the corresponding equation (1.1), for gi,Ki, i =
1, 2, 3, then

x1(0) ≤ x2(0) ≤ x3(0) implies x1 ≤ x2 ≤ x3.

Proof. Let Ai, i = 1, 2, 3 be the corresponding operator for gi,Ki, i = 1, 2, 3.
We remark that

xi = A∞i (x̃i(0)), i = 1, 2, 3.

The proof follows from the Theorem 2.4. �

Theorem 3.4. Let gi,Ki, i = 1, 2 be with the corresponding conditions
(c1), (c2), (c3).We suppose that

(i) there exist ηi > 0, i = 1, 2 such that

|g1(t, u1, u2, u3)− g2(t, u1, u2, u3)| ≤ η1,

for all t ∈ [0, b] and all ui ∈ X, i = 1, 2, 3, and

|K1(t, s, v1, v2)−K2(t, s, v1, v2)| ≤ η2,

for all t, s ∈ [0, b] and all vi ∈ X, i = 1, 2;



A FUNCTIONAL-INTEGRAL EQUATION 195

(ii) Sg1 = Sg2.

Then
HB(FA1 , FA2) ≤

η1 + η2b

1− 2Lg − LK
τ (1 + 1

λ)
,

where Lg = max(Lg1 , Lg2), LK = max(LK1 , LK2), HB is the Pompeiu-
Hausdorff functional corresponding to ‖ · ‖B and τ is suitable chosen.

Proof. We have
‖A1(x)(t)−A2(x)(t)‖ ≤ ‖g1(t, x(t), x(λt), x(0))− g2(t, x(t), x(λt), x(0))‖

+

b∫
0

‖K1(t, s, x(s), x(λs))−K2(t, s, x(s), x(λs))‖ds ≤ η1 + η2b.

It follows that ‖A1(x)−A2(x)‖B ≤ η1 + η2b.

The operator Ai, i = 1, 2 is c-weakly Picard operator with the constant

c =
1

1− 2Lg − Lk
τ (1 + 1

λ)
,

where Lg = max(Lg1 , Lg2), LK = max(LK1 , LK2) and τ is suitable chosen such
that 2Lg + LK

τ (1 + 1
λ) < 1. So, the proof follows from the Theorem 2.2. �

Example 3.1. Consider the following equation:

x(t) = t + a1x(t) + a2x(
t

2
) + x(0)− a3+

t∫
0

(t + s + sin(x(s)) + cos
(
x
(s

2

)))
ds, t ∈ [0, 3],

(3.2)

where ai ∈ R, i = 1, 3.

We have

Theorem 3.5. We suppose that a1 +a2 6= 0, |a1| < 1
4 and |a2| < 1

4 . Then the
equation (3.2) has a unique solution.

Proof. Here g(t, u, v, w) = t + a1u + a2v + w − a3 and the condition (c3)
is satisfied with Lg = max(|a1|, |a2|). The equation g(0, α, α, α) = α has a
unique solution

α =
a3

a1 + a2
.

So, the proof follows from the Theorem 3.1. �
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