A FUNCTIONAL-INTEGRAL EQUATION WITH LINEAR MODIFICATION OF THE ARGUMENT, VIA WEAKLY PICARD OPERATORS

VIORICA MUREŞAN
Department of Mathematics
Technical University of Cluj-Napoca
E-mail: vmuresan@math.utcluj.ro

Abstract

In this paper we give existence results for the solutions of a functional-integral equation with linear modification of the argument, in Banach space. By weakly Picard operators' technique (see I.A. Rus [19], [23]-[25] and I.A. Rus, S. Muresan [27]), the data dependence is also studied.

Key Words and Phrases: Picard operators, weakly Picard operators, functional-integral equations, solutions set, data dependence.
2000 Mathematics Subject Classification: 34K15, 34G20, 45N05, 47H10.

1. Introduction

Functional-integral equations with modified argument arise in a wide variety of scientific and technical applications, including the modeling of problems from the natural and social sciences such as physics, chemistry, biology, economics, engineering. The theory of functional-integral equations has developed very much. Many monographs appeared: Bellman and Cooke [2](1963), Halanay [7](1966), Elsgoltz and Norkin [5](1971), Bernfeld and Lakshmikantham [3](1974), Hale [8](1977), Azbelev, Maksimov and Rahmatulina [1](1991), Hale and Verdyn Lunel [9](1993), Guo and Lakshmikantham $[6](1996)$ such as a large number of papers. We quote here [11], [12], [16], [25], [27], [28].

[^0]The aim of this paper is to study the following functional-integral equation with linear modification of the argument, in Banach space:

$$
\begin{equation*}
x(t)=g\left(t, x(t), x(\lambda t), x(0)+\int_{0}^{t} K(t, s, x(s), x(\lambda s)) d s, \quad t \in[0, b], 0<\lambda<1 .\right. \tag{1.1}
\end{equation*}
$$

We use weakly Picard operators' technique and the same method as in the paper [25].

In [4] and [6] were considered some particular cases of this equation.

2. Weakly Picard operators

Let (X, d) be a metric space and $A: X \longrightarrow X$ an operator. We shall use the following notations:

$$
\begin{aligned}
& P(X):=\{Y \subseteq X \mid Y \neq \emptyset\} ; \\
& F_{A}:=\{x \in X \mid A(x)=x\} \text { - the fixed point set of } A ; \\
& I(A):=\{Y \in P(X) \mid A(Y) \subseteq Y\} ; \\
& A^{0}:=1_{X}, A^{1}:=A, \ldots, A^{n+1}:=A \circ A^{n}, \ldots, n \in \mathbb{N} .
\end{aligned}
$$

Definition 2.1. (Rus [20]) A is Picard operator if there exists $x^{*} \in X$ such that

1) $F_{A}=\left\{x^{*}\right\}$;
2) the successive approximation sequence $\left(A^{n}\left(x_{0}\right)\right)_{n \in \mathbb{N}}$ converges to x^{*}, for all $x_{0} \in X$.

Definition 2.2. (Rus[19]) A is weakly Picard operator if the sequence $\left(A^{n}\left(x_{0}\right)\right)_{n \in \mathbb{N}}$ converges for all $x_{0} \in X$ and its limit (which may depend on x_{0}) is a fixed point of A.

If A is weakly Picard operator we consider $A^{\infty}: X \longrightarrow X, A^{\infty}(x)=$ $\lim _{n \rightarrow \infty} A^{n}(x)$. We remark that $A^{\infty}(X)=F_{A}$.

Definition 2.3. (Rus[24]) Let A be a weakly Picard operator and $c>0 . A$ is c-weakly Picard operator if

$$
d\left(x, A^{\infty}(x)\right) \leq c d(x, A(x)), \quad \text { for all } \quad x \in X
$$

We have

Theorem 2.1. (Rus[23], [24]) Let (X, d) be a metric space and $A: X \longrightarrow X$ an operator. A is weakly Picard operator (c-weakly Picard operator) if and only if there exists a partition of $X, X=\underset{\mu \in \Lambda}{\cup} X_{\mu}$, such that:
(a) $X_{\mu} \in I(A)$, for all $\mu \in \Lambda$;
(b) $\left.A\right|_{X_{\mu}}: X_{\mu} \longrightarrow X_{\mu}$ is a Picard (c-Picard) operator, for all $\mu \in \Lambda$.

Theorem 2.2. (Rus[24]) Let (X, d) be a metric space and $A_{i}: X \longrightarrow X, i=$ 1,2 . We suppose that
(i) the operator A_{i} is c_{i}-weakly Picard operator, $i=1,2$;
(ii) there exists $\eta>0$ such that

$$
d\left(A_{1}(x), A_{2}(x)\right) \leq \eta, \quad \text { for all } \quad x \in X
$$

Then

$$
H\left(F_{A_{1}}, F_{A_{2}}\right) \leq \eta \max \left(c_{1}, c_{2}\right)
$$

where H stands for Pompeiu-Hausdorff functional defined by

$$
H\left(F_{A_{1}}, F_{A_{2}}\right): \max \left\{\sup _{a \in F_{A_{1}}} \inf _{b \in F_{A_{2}}} d(a, b), \sup _{b \in F_{A_{2}}} \inf _{a \in F_{A_{1}}} d(a, b)\right\} \cup\{\infty\} .
$$

Theorem 2.3. (Rus[23]) Let (X, d, \leq) be an ordered metric space and A : $X \longrightarrow X$ such that
(i) A is monotone increasing;
(ii) A is weakly Picard operator.

Then the operator A^{∞} is monotone increasing.
Theorem 2.4. (Rus[23]) Let (X, d, \leq) be an ordered metric space and $A, B, C: X \longrightarrow X$ be such that:
(i) $A \leq B \leq C$;
(ii) the operators A, B, C are weakly Picard operators;
(iii) the operator B is monotone increasing

Then $x \leq y \leq z$ implies $A^{\infty}(x) \leq B^{\infty}(y) \leq C^{\infty}(z)$.

3. The solutions set of the equation (1.1)

Let $(X,\|\cdot\|, \leq)$ be an ordered Banach space and $C([0, b], X)$ endowed with the following Bielecki norm:

$$
\|x\|_{B}:=\max _{t \in[0, b]}\left(\|x(t)\| e^{-\tau t}\right), \quad \text { where } \quad \tau>0
$$

So, $\left(C([0, b], X),\|\cdot\|_{B}\right)$ is a Banach space denoted in what follows by $C([0, b], X)$.

Consider the equation(1.1) and suppose that the following conditions are satisfied:
$\left(c_{1}\right) g \in C([0, b] \times X \times X \times X, X), K \in C([0, b] \times[0, b] \times X \times X, X) ;$
$\left(c_{2}\right)$ there exists $L_{k}>0$ such that

$$
\left\|K\left(t, s, u_{1}, u_{2}\right)-K\left(t, s, v_{1}, v_{2}\right)\right\| \leq L_{k}\left(\left\|u_{1}-v_{1}\right\|+\left\|u_{2}-v_{2}\right\|\right)
$$

for all $t, s \in[0, b]$ and all $u_{i}, v_{i} \in X, i=1,2 ;$
$\left(c_{3}\right)$ there exists $L_{g}<\frac{1}{2}$ such that

$$
\left\|g\left(t, u_{1}, u_{2}, \alpha\right)-g\left(t, v_{1}, v_{2}, \alpha\right)\right\| \leq L_{g}\left(\left\|u_{1}-v_{1}\right\|+\left\|u_{2}-v_{2}\right\|\right)
$$

for all $t \in[0, b]$ and all $u_{i}, v_{i}, \alpha \in X, i=1,2$.
Consider the operator $A: C([0, b], X) \longrightarrow C([0, b], X)$ defined by $\left.A(x)(t):=g(t, x(t), x(\lambda t), x(0))+\int_{0}^{t} K(t, s, x(s), x(\lambda s)) d s, t \in[0, b], \lambda \in\right] 0,1[$.

In our considerations the following equation

$$
\begin{equation*}
g(0, \alpha, \alpha, \alpha)=\alpha, \quad \alpha \in X \tag{3.1}
\end{equation*}
$$

plays an important role. We denote by S_{g} the solutions set of the equation (3.1).

Then we have

Remark 3.1. If x is a solution of the equation (1.1) (i.e. $x \in F_{A}$), then $x(0) \in S_{g}$.

Remark 3.2. Let $X_{\alpha}:=\{x \in C([0, b], X) \mid x(0)=\alpha\}$ be.
It is clear that

$$
C([0, b], X)=\cup_{\alpha \in X} X_{\alpha}
$$

is a partition of $C([0, b], X)$.
Remark 3.3. $X_{\alpha} \in I(A)$ if and only if $\alpha \in S_{g}$.
We denote by $A_{\alpha}:=\left.A\right|_{X_{\alpha}}: X_{\alpha} \longrightarrow X_{\alpha}$.
We have

Theorem 3.1. We suppose that the conditions $\left(c_{1}\right),\left(c_{2}\right)$ and $\left(c_{3}\right)$ are satisfied. Then the operator

$$
A \mid \cup_{\alpha \in S_{g}} X_{\alpha}: \bigcup_{\alpha \in S_{g}} X_{\alpha} \longrightarrow \bigcup_{\alpha \in S_{g}} X_{\alpha}
$$

is a weakly Picard operator and $C a r d F_{A}=C a r d S_{g}$.
Proof. By using $\left(c_{2}\right)$ and $\left(c_{3}\right)$ we obtain

$$
\begin{aligned}
& \left\|A_{\alpha}(x)(t)-A_{\alpha}(z)(t)\right\| \leq\|g(t, x(t), x(\lambda t), \alpha)-g(t, z(t), z(\lambda t), \alpha)\| \\
& \quad+\int_{0}^{t}\|K(t, s, x(s), x(\lambda s))-K(t, s, z(s), z(\lambda s))\| d s \leq \\
& L_{g}\left(\|x(t)-z(t)\| e^{-\tau t} e^{\tau t}+\|x(\lambda t)-z(\lambda t)\| e^{-\tau \lambda t} e^{\tau \lambda t}+\right. \\
& +L_{K} \int_{0}^{t}\left(\|x(s)-z(s)\| e^{-\tau s} e^{\tau s}+\|x(\lambda s)-z(\lambda s)\| e^{-\tau \lambda s} e^{\tau \lambda s}\right) d s \\
& \leq L_{g}\|x-z\|_{B}\left(e^{\tau t}+e^{\tau \lambda t}\right)+L_{k}\|x-z\|_{B}\left(\int_{0}^{t} e^{\tau s} d s+\int_{0}^{t} e^{\tau \lambda s} d s\right) \\
& \leq 2 L_{g}\|x-z\|_{B} e^{\tau t}+L_{K}\|x-z\|_{B}\left(\frac{e^{\tau t}-1}{\tau}+\frac{e^{\tau \lambda t}-1}{\lambda \tau}\right) \\
& \leq e^{\tau t}\left(2 L_{g}+L_{k} \frac{1+\frac{1}{\lambda}}{\tau}\right)\|x-z\|_{B}, \quad \text { for all } t \in[0, b]
\end{aligned}
$$

So,
$\left\|A_{\alpha}(x)(t)-A_{\alpha}(z)(t)\right\| e^{-\tau t} \leq\left[2 L_{g}+\frac{L_{k}\left(1+\frac{1}{\lambda}\right)}{\tau}\right]\|x-z\|_{B}, \quad$ for all $\quad t \in[0, b]$.
Therefore,

$$
\left\|A_{\alpha}(x)(t)-A_{\alpha}(z)(t)\right\|_{B} \leq\left[2 L_{g}+\frac{L_{k}\left(1+\frac{1}{\lambda}\right)}{\tau}\right]\|x-z\|_{B}
$$

It follows that A_{α} is a Lipschitz operator with a Lipschitz constant

$$
L_{A}=2 L_{g}+\frac{L_{k}}{\tau}\left(1+\frac{1}{\lambda}\right)
$$

But $2 L_{g}<1$ and by choosing τ large enough we have that A is a contraction. The proof follows from Contraction principle and from the result of Theorem 2.1.

By using Remark 3.1 we can define the operator $\varphi: F_{A} \longrightarrow S_{g}, x \longrightarrow x(0)$ and φ is a bijective operator. So, $\operatorname{CardF} F_{A}=\operatorname{Card} S_{g}$.

Theorem 3.2. Consider the equation (1.1) with the conditions $\left(c_{1}\right),\left(c_{2}\right),\left(c_{3}\right)$. We suppose that $\left(c_{4}\right) g(t, \cdot, \cdot, \cdot)$ and $K(t, s, \cdot, \cdot)$ are increasing, for all $t, s \in[0, b]$. If x and y are two solutions of the equation (1.1) then

$$
x(0) \leq y(0) \text { implies } x \leq y
$$

Proof. From the Theorem 3.1, the operator A is weakly Picard operator. By using $\left(c_{4}\right)$ and the Theorem 2.3 we obtain that A^{∞} is increasing. For $\alpha \in X$ we define $\tilde{\alpha}:[0, b] \longrightarrow X, \tilde{\alpha}(t):=\alpha$, for all $t \in[0, b]$. We have $x=A^{\infty}(\tilde{x}(0))$ and $y=A^{\infty}(\tilde{y}(0)$. So, $x(0) \leq y(0)$ implies $x \leq y$.

Theorem 3.3. Let $g_{i}, K_{i}, i=1,2,3$ be with the corresponding conditions $\left(c_{1}\right),\left(c_{2}\right),\left(c_{3}\right)$. We suppose that
(i) $g_{2}(t, \cdot, \cdot, \cdot)$ and $K_{2}(t, s, \cdot, \cdot)$ are increasing;
(ii) $g_{1} \leq g_{2} \leq g_{3}$ and $K_{1} \leq K_{2} \leq K_{3}$.
(iii) Let $S_{g_{i}}$ be the solution set of the equation

$$
g_{i}(0, \alpha, \alpha, \alpha)=\alpha, \quad i=1,2,3
$$

and we suppose that $S_{g_{1}}=S_{g_{2}}=S_{g_{3}}$.
If x_{i} is a solution of the corresponding equation (1.1), for $g_{i}, K_{i}, i=$ $1,2,3$, then

$$
x_{1}(0) \leq x_{2}(0) \leq x_{3}(0) \text { implies } x_{1} \leq x_{2} \leq x_{3}
$$

Proof. Let $A_{i}, i=1,2,3$ be the corresponding operator for $g_{i}, K_{i}, i=1,2,3$. We remark that

$$
x_{i}=A_{i}^{\infty}\left(\tilde{x}_{i}(0)\right), i=1,2,3
$$

The proof follows from the Theorem 2.4.
Theorem 3.4. Let $g_{i}, K_{i}, i=1,2$ be with the corresponding conditions $\left(c_{1}\right),\left(c_{2}\right),\left(c_{3}\right)$.We suppose that
(i) there exist $\eta_{i}>0, i=1,2$ such that

$$
\left|g_{1}\left(t, u_{1}, u_{2}, u_{3}\right)-g_{2}\left(t, u_{1}, u_{2}, u_{3}\right)\right| \leq \eta_{1},
$$

for all $t \in[0, b]$ and all $u_{i} \in X, i=1,2,3$, and

$$
\left|K_{1}\left(t, s, v_{1}, v_{2}\right)-K_{2}\left(t, s, v_{1}, v_{2}\right)\right| \leq \eta_{2}
$$

for all $t, s \in[0, b]$ and all $v_{i} \in X, i=1,2$;
(ii) $S_{g_{1}}=S_{g_{2}}$.

Then

$$
H_{B}\left(F_{A_{1}}, F_{A_{2}}\right) \leq \frac{\eta_{1}+\eta_{2} b}{1-2 L_{g}-\frac{L_{K}}{\tau}\left(1+\frac{1}{\lambda}\right)},
$$

where $L_{g}=\max \left(L_{g_{1}}, L_{g_{2}}\right), L_{K}=\max \left(L_{K_{1}}, L_{K_{2}}\right), H_{B}$ is the PompeiuHausdorff functional corresponding to $\|\cdot\|_{B}$ and τ is suitable chosen.

Proof. We have

$$
\begin{aligned}
& \left\|A_{1}(x)(t)-A_{2}(x)(t)\right\| \leq\left\|g_{1}(t, x(t), x(\lambda t), x(0))-g_{2}(t, x(t), x(\lambda t), x(0))\right\| \\
& +\int_{0}^{b}\left\|K_{1}(t, s, x(s), x(\lambda s))-K_{2}(t, s, x(s), x(\lambda s))\right\| d s \leq \eta_{1}+\eta_{2} b .
\end{aligned}
$$

It follows that $\left\|A_{1}(x)-A_{2}(x)\right\|_{B} \leq \eta_{1}+\eta_{2} b$.
The operator $A_{i}, i=1,2$ is c-weakly Picard operator with the constant

$$
c=\frac{1}{1-2 L_{g}-\frac{L_{k}}{\tau}\left(1+\frac{1}{\lambda}\right)},
$$

where $L_{g}=\max \left(L_{g_{1}}, L_{g_{2}}\right), L_{K}=\max \left(L_{K_{1}}, L_{K_{2}}\right)$ and τ is suitable chosen such that $2 L_{g}+\frac{L_{K}}{\tau}\left(1+\frac{1}{\lambda}\right)<1$. So, the proof follows from the Theorem 2.2.

Example 3.1. Consider the following equation:

$$
\begin{align*}
& x(t)=t+a_{1} x(t)+a_{2} x\left(\frac{t}{2}\right)+x(0)-a_{3}+ \\
& \int_{0}^{t}\left(t+s+\sin (x(s))+\cos \left(x\left(\frac{s}{2}\right)\right)\right) d s, t \in[0,3], \tag{3.2}
\end{align*}
$$

where $a_{i} \in \mathbb{R}, i=\overline{1,3}$.
We have
Theorem 3.5. We suppose that $a_{1}+a_{2} \neq 0,\left|a_{1}\right|<\frac{1}{4}$ and $\left|a_{2}\right|<\frac{1}{4}$. Then the equation (3.2) has a unique solution.

Proof. Here $g(t, u, v, w)=t+a_{1} u+a_{2} v+w-a_{3}$ and the condition $\left(c_{3}\right)$ is satisfied with $L_{g}=\max \left(\left|a_{1}\right|,\left|a_{2}\right|\right)$. The equation $g(0, \alpha, \alpha, \alpha)=\alpha$ has a unique solution

$$
\alpha=\frac{a_{3}}{a_{1}+a_{2}} .
$$

So, the proof follows from the Theorem 3.1.

References

[1] N.V. Azbelev, V.P. Maksimov, L.F. Rahmatulina, Introduction to FunctionalDifferential Equations Theory, MIR, Moscow, 1991 (in Russian).
[2] R.E. Bellman, K.L. Cooke, Differential-Difference Equations, Academic Press, New York, 1963.
[3] S.R. Bernfeld, V. Lakshmikantham, An Introduction to Nonlinear Boundary Value Problems, Academic Press, New York, 1974.
[4] C. Corduneanu, Integral Equations and Applications, Cambridge University Press, 1991.
[5] L.F. Elsgoltz, S.B. Norkin, Introduction to the Theory of Differential Equations with Deviating Arguments, MIR, Moscow, 1971 (in Russian).
[6] D. Guo, V. Lakshmikantham, X. Liu, Nonlinear Integral Equations in Abstracts Spaces, Kluwer, Dordrecht, 1996.
[7] A. Halanay, Differential Equations: Stability, Oscillations, Time Lags, Academic Press, New York, 1965.
[8] J.K. Hale, Theory of Functional-Differential Equations, Springer Verlag, 1977.
[9] J.K. Hale, M. Sjoerd, Lunel Verduyn, Introduction to Functional-Differential Equations, Springer Verlag, New York, 1993.
[10] M.W. Hirsch, C.C. Pugh, Stable maniforlds and hyperbolic sets, Proc. Symp. in Pure Math., 14(1970), 133-163.
[11] A. Iserles, On the generalized pantograph functional-differential equation, European J. Appl. Math., 1992, 1-38.
[12] T. Kato, J.B. McLeod, The functional-differential equation $y^{\prime}(x)=a y(\lambda x)+b y(x)$, Bull. Amer. Math. Soc., 77(1971), 891-937.
[13] V. Lakshmikanthan (ed.), Trends in the Theory and Practice of Nonlinear Differential Equations, Marcel Dekker, New York, 1984.
[14] V. Muresan, Differential Equations with Affine Modification of the Argument, Transilvania Press, Cluj-Napoca, 1997 (in Romanian).
[15] V. Muresan, Functional-Integral Equations, Ed. Mediamira, Cluj-Napoca, 2003.
[16] J.R. Ockendon, Differential equations and industry, The Math. Scientist., 5(1980), 1-12.
[17] R. Precup, Integral Equations, Babes-Bolyai University, Cluj-Napoca, 1993 (in Romanian).
[18] I.A. Rus, Metrical Fixed Point Theorems, Univ. of Cluj-Napoca, 1979.
[19] I.A. Rus, Weakly Picard mappings, Comment. Math. Univ. Carolinae, 34(1993), 769773.
[20] I.A. Rus, Picard operators and applications, Babes-Bolyai Univ. of Cluj-Napoca, Preprint 3(1996).
[21] I.A. Rus, Differential Equations, Integral Equations and Dynamical Systems, Transilvania Press, Cluj-Napoca, 1996 (in Romanian).
[22] I.A. Rus, A fiber generalized contraction theorem and applications, Mathematica, 41(64)(1999), 85-90.
[23] I.A. Rus, Weakly Picard operators and applications, Seminar on Fixed Point Theory Cluj-Napoca, 2(2001), 41-58.
[24] I.A. Rus, Generalized Contractions and Applications, Cluj Univ. Press, Cluj-Napoca, 2001.
[25] I.A. Rus, A class of nonlinear functional-integral equations, via weakly Picard operators, Anal. Univ. Craiova, ser. Mat-Inf., 28(2001), 10-15.
[26] I.A. Rus, Picard operators and applications, Scientia Mathematicae Japonicae, 58(2003), 191-219.
[27] I.A. Rus, S. Muresan, Data dependence of the fixed points set of weakly Picard operators, Studia Univ. Babes-Bolyai Mathematica, 43(1998), 79-83.
[28] A. Sincelean, On a class of functional-integral equations, Seminar on Fixed Point Theory Cluj-Napoca, $\mathbf{1}$ (2000), 87-92.
[29] Z.B. Tsalynk, Volterra functional inequalities, Yzv. Ucheb. Zaved, 3(1969), 86-95 (in Russian).

Received: November 15, 2007; Accepted: January 18, 2007.

[^0]: This paper was presented at the International Conference on Nonlinear Operators, Differential Equations and Applications held in Cluj-Napoca (Romania) from July 4 to July 8, 2007.

