
Fixed Point Theory, Volume 9, No. 1, 2008, 173-187

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

TIME PERIODIC SOLUTIONS FOR A CLASS OF
NONLINEAR BOUNDARY VALUE PROBLEMS

RODICA LUCA

Department of Mathematics

Gh. Asachi Technical University

11 Bd.Carol I, Iaşi 700506, Romania
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1. Introduction

We consider the following hyperbolic partial differential system

(S)


∂u

∂t
(t, x) +

∂v

∂x
(t, x) + α(x, u) = f(t, x)

∂v

∂t
(t, x) +

∂u

∂x
(t, x) + β(x, v) = g(t, x),

t > 0, x > 0,
with the boundary condition

(BC)

(
u(t, 0)
S(w′(t))

)
∈ −G

(
v(t, 0)
w(t)

)
+B(t), t > 0.

This paper was presented at the International Conference on Nonlinear Operators, Dif-

ferential Equations and Applications held in Cluj-Napoca (Romania) from July 4 to July 8,

2007.
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The unknown functions u, v and also the functions f, g are the vectorial
ones depending on (t, x) ∈ IR+ × IR+ with values in IRn, and the unknown
function w is a vectorial one depending on t ∈ IR+ with values in IRm. The
functions α and β are of the form α(x, u) = col(α1(x, u1), . . . , αn(x, un)),
β(x, v) = col(β1(x, v1), . . . , βn(x, vn)), S is a positive diagonal matrix, G
is an operator in the space IRn+m, which satisfy some assumptions and
B(t) = col(b1(t), . . . , bn+m(t)) ∈ IRn+m, for all t > 0.

This problem has applications in the theory of integrated circuits (see [7],
[11], [12] and their references). The existence, uniqueness and asymptotic
behavior of the strong and weak solutions of the problem (S)+(BC) with the
initial data

(IC)

{
u(0, x) = u0(x), v(0, x) = v0(x), x > 0,
w(0) = w0,

have been investigated in [10], [11]. The system (S) for x ∈ (0, 1) and t > 0,
with the boundary condition u(t, 0)

−u(t, 1)
S(w′(t))

 ∈ −G

 v(t, 0)
v(t, 1)
w(t)

+B(t), t > 0,

and the initial data

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ (0, 1), w(0) = w0,

has been investigated in [7], [11] for the existence, uniqueness and asymptotic
behavior of the solutions, in [8], [11] for the existence of periodic solutions,
and in [9] for the existence of almost-periodic solutions.

In this paper we shall present some existence results for the time periodic
solutions of the problem (S)+(BC), in two different cases B(t) = const. and
B(t) 6= const. We shall use several results from the theory of monotone opera-
tors and nonlinear evolution equations of monotone type (see the monographs
[1], [2], [5], [6]), and also a fixed point theorem due to F.E. Browder and W.V.
Petryshyn (see [3]).

We introduce the assumptions that we shall use in the sequel

(A1) a) The functions x → αk(x, p) and x → βk(x, p) are measurable on
IR+, for any fixed p ∈ IR. Besides, the functions p → αk(x, p) and
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p → βk(x, p) are continuous and nondecreasing from IR into IR, for
a.a. x ∈ IR+, k = 1, n.

b) There exist ak, bk > 0, k = 1, n and the functions ϕk, ψk ∈
L2(IR+; IR), k = 1, n such that

|αk(x, p)| ≤ ak|p|+ ϕk(x), |βk(x, p)| ≤ bk|p|+ ψk(x),

for a.a. x ∈ IR+, for all p ∈ IR, k = 1, n.
c) There exist ck, dk > 0, k = 1, n and the functions ξk, ηk ∈

L2(IR+; IR+), k = 1, n such that

|αk(x, p)| ≥ ck|p| − ξk(x), |βk(x, p)| ≥ dk|p| − ηk(x),

for a.a. x ∈ IR+, for all p ∈ IR, k = 1, n.
(A2) a) G : D(G) ⊂ IRn+m → IRn+m is a maximal monotone operator

(possibly multivalued). Moreover, G can be split in

G =

(
G11 G12

G21 G22

)
,

where G11 : D(G11) ⊂ IRn → IRn, G12 : D(G12) ⊂ IRm → IRn,
G21 : D(G21) ⊂ IRn → IRm, G22 : D(G22) ⊂ IRm → IRm, and
G(col(xa, xb)) = col(G11(xa) + G12(xb), G21(xa) + G22(xb)), for all

x ∈ D(G), x = col(xa, xb) ∈ IRn × IRm.

b) There exists ζ1 > 0 such that for all x, y ∈ D(G), x =
col(xa, xb), y = col(ya, yb) ∈ IRn × IRm and for all w1 ∈ G(x), w2 ∈
G(y) we have

〈w1 − w2, x− y〉IRn+m ≥ ζ1 ‖ xb − yb ‖2
IRm .

c) There exists ζ2 > 0 such that for all x, y ∈ D(G) and all w1 ∈
G(x), w2 ∈ G(y) we have

〈w1 − w2, x− y〉IRn+m ≥ ζ2 ‖ x− y ‖2
IRn+m .

(‖ · ‖IRn and 〈·, ·〉IRn are the euclidian norm and corresponding scalar
product in IRn).

(A3) S = diag(s1, . . . , sm) with sj > 0, j = 1,m.

The above assumption (A2)a is a technical one and it generalizes the matrix
case.
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2. Preliminary results

We shall write our problem (S)+(BC) as an evolution equation in a cer-
tain Hilbert space. For this aim, let us consider the Hilbert spaces X =
(L2(IR+; IRn))2, IRm and Y = X × IRm with the corresponding scalar prod-
ucts

〈f, g〉X = 〈f1, g1〉L2(IR+;IRn) + 〈f2, g2〉L2(IR+;IRn),

f = col(f1, f2), g = col(g1, g2),

〈x, y〉s =
m∑

i=1

sixiyi, x, y ∈ IRm,

〈

(
f

x

)
,

(
g

y

)
〉Y = 〈f, g〉X + 〈x, y〉s,

(
f

x

)
,

(
g

y

)
∈ Y.

We define the operator A : D(A) ⊂ Y → Y,

D(A) = {y = col(u, v, w) ∈ Y ; u, v ∈ H1(IR+; IRn), col(v(0), w) ∈ D(G),
u(0) ∈ −G11(v(0))−G12(w)},

A

 u

v

w

 =

 v′

u′

S−1G21(v(0)) + S−1G22(w)

 ,

 u

v

w

 ∈ D(A),

and the operator B : D(B) ⊂ Y → Y , D(B) = {y = col(u, v, w) ∈ Y, B(y) ∈
Y },

B

 u

v

w

 =

 α(·, u)
β(·, v)

0

 .

Under the assumptions (A2)a and (A3) we have D(A) 6= ∅ and D(A) =
X ×D(G12) ∩D(G22), and under assumptions (A1)ab we have D(B) = Y .
Lemma 1. If the assumptions (A2)a and (A3) hold, then the operator A is
maximal monotone in the space Y .
Lemma 2. If the assumptions (A1)ab hold, then the operator B is maximal
monotone in Y .

In the first case, i.e., B(t) = const., we can replace G by G̃ defined by
G̃w = Gw − b0, which is also, in the assumption (A2)a, a maximal monotone
operator. So, we can suppose without loss of generality that B(t) = 0.

We present some existence and uniqueness results for the solutions of the
problem (S)+(BC)+(IC), which are obtained in the paper [10].
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Using the operators A and B the problem (S)+(BC)+(IC) can be equiva-
lently expressed as the following Cauchy problem in the space Y

(P)


dy

dt
(t) + (A+ B)(y(t)) 3 F (t, ·), t > 0,

y(0) = y0,

where
y(t) = col(u(t), v(t), w(t)),

F (t, ·) = col(f(t, ·), g(t, ·), 0),

y0 = col(u0, v0, w0).

We shall say that y = col(u, v, w) is a strong (weak) solution of the problem
(S)+(BC)+(IC) if y is a strong (respectively weak) solution of the problem
(P), (see {[1], Chapter III, §2}).
Theorem 1. Assume the assumptions (A1)ab, (A2)a and (A3) hold. If
f, g ∈ W 1,1(0, T ;L2(IR+; IRn)) (with T > 0 fixed), u0, v0 ∈ H1(IR+; IRn),
col(v0(0), w0) ∈ D(G), u0(0) ∈ −G11(v0(0))−G12(w0), then the problem (P)⇔
(S)+(BC)+(IC) has a unique strong solution y = col(u, v, w) ∈W 1,∞(0, T ;Y ).
Moreover u, v ∈ L∞(0, T ;H1(IR+; IRn)).
Theorem 2. Assume the assumptions (A1)ab, (A2)a and (A3) hold. If
f, g ∈ L1(0, T ;L2(IR+; IRn)) (with T > 0 fixed), u0, v0 ∈ L2(IR+; IRn),
w0 ∈ D(G12) ∩D(G22), then the problem (S)+(BC)+(IC) has a unique weak
solution y = col(u, v, w) ∈ C([0, T ];Y ).

For the proofs of Lemma 1, Lemma 2, Theorem 1 and Theorem 2 see [10].
Lemma 3. Assume that (A1)abc, (A2)ab and (A3) hold. Then the operator
A+ B is coercive with respect to any y0 = col(u0, v0, w0) ∈ D(A), that is

lim
‖y‖Y →∞
y∈D(A)

〈(A+ B)(y), y − y0〉Y
‖y‖Y

= ∞. (1)

Proof. We suppose without loss of generality that the operator G is single-
valued. Let y0 = col(u0, v0, w0) be arbitrary, but fixed for the moment in
D(A). By (A2)b, for every y = col(u, v, w) ∈ D(A), u = col(u1, . . . , un),
v = col(v1, . . . , vn), w = col(w1, . . . , wm), we have
E = 〈(A+ B)(y), y − y0〉Y = 〈A(y)−A(y0), y − y0〉Y + 〈B(y), y − y0〉Y

+ 〈A(y0), y − y0〉Y︸ ︷︷ ︸
E0

= 〈G

(
v(0)
w

)
−G

(
v0(0)
w0

)
,

(
v(0)
w

)
−

(
v0(0)
w0

)
〉IRn+m
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+
n∑

k=1

∫ ∞

0
αk(x, uk(x))(uk(x)−u0

k(x))dx+
n∑

k=1

∫ ∞

0
βk(x, vk(x))(vk(x)−v0

k(x))dx

+E0 ≥ ζ1‖w − w0‖2
IRm +

n∑
k=1

∫ ∞

0
αk(x, uk(x))(uk(x)− u0

k(x))dx

+
n∑

k=1

∫ ∞

0
βk(x, vk(x))(vk(x)− v0

k(x))dx+ E0,

(u0 = col(u0
1, . . . , u

0
n), v0 = col(v0

1, . . . , v
0
n)).

For y 6= 0, we obtain

E

‖y‖Y
≥
ζ1‖w − w0‖2

IRm

‖y‖Y
+

E0

‖y‖Y
+

n∑
k=1

∫ ∞

0
αk(x, uk(x))(uk(x)− u0

k(x))dx

‖y‖Y

+

n∑
k=1

∫ ∞

0
βk(x, vk(x))(vk(x)− v0

k(x))dx

‖y‖Y
≥

min

{∫ ∞

0
αk(x, uk(x))(uk(x)− u0

k(x))dx

‖uk‖L2(IR+)
,

∫ ∞

0
βk(x, vk(x))(vk(x)− v0

k(x))dx

‖vk‖L2(IR+)
,

ζ1‖w − w0‖2
IRm

‖w‖s
, k = 1, n

}
+

E0

‖y‖Y
.

To prove (1) it is sufficient to show that

lim
‖uk‖L2(IR+)→∞

∫ ∞

0
αk(x, uk(x))(uk(x)− u0

k(x))dx

‖uk‖L2(IR+)
= ∞, k = 1, n, (2)

lim
‖vk‖L2(IR+)→∞

∫ ∞

0
βk(x, vk(x))(vk(x)− v0

k(x))dx

‖vk‖L2(IR+)
= ∞, k = 1, n, (3)

and

lim
‖w‖s→∞

ζ1‖w − w0‖2
IRm

‖w‖s
= ∞. (4)

For the relations (2), using the assumptions (A1)abc we have
αk(x, uk(x))(uk(x)− u0

k(x)) ≥ |αk(x, uk(x))| · |uk(x)− u0
k(x)|

−2|αk(x, u0
k(x))| · |uk(x)− u0

k(x)| ≥ (ck|uk(x)| − ξk(x)) · |uk(x)− u0
k(x)|

−2(ak|u0
k(x)|+ ϕk(x)) · |uk(x)− u0

k(x)| ≥ ck|uk(x)|(|uk(x)| − |u0
k(x)|)
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−ξk(x)(|uk(x)|+ |u0
k(x)|)− 2(ak|u0

k(x)|+ |ϕk(x)|) · (|uk(x)|+ |u0
k(x)|)

= ck|uk(x)|2 − |uk(x)| · (ck|u0
k(x)|+ ξk(x) + 2ak|u0

k(x)|+ 2|ϕk(x)|)
−(|u0

k(x)|ξk(x) + 2ak|u0
k(x)|2 + 2|ϕk(x)| · |u0

k(x)|) ≥ ck|uk(x)|2 − C1|uk(x)|2

−C2(ãk|u0
k(x)|+ ξk(x) + 2|ϕk(x)|)2 − 1

2 |u
0
k(x)|2 −

1
2ξ

2
k(x)− 2ak|u0

k(x)|2

−ϕ2
k(x)− |u0

k(x)|2 = c̃k|uk(x)|2 − C3(|u0
k(x)|2 + ξ2k(x) + ϕ2

k(x)), x > 0.
We choose C1, C2 > 0 such that C1 < ck, c̃k = ck − C1 > 0, C3 > 0,
ãk = ck + 2ak > 0.

Integrating over [0,∞) we obtain∫ ∞

0
αk(x, uk(x)) · (uk(x)− u0

k(x))dx ≥ c̃k

∫ ∞

0
|uk(x)|2dx−C3

∫ ∞

0
(|u0

k(x)|2

+ξ2k(x) + ϕ2
k(x))dx = c̃k‖uk‖2

L2(IR+) − C4, C4 > 0, k = 1, n,
(because u0

k, ξk, ϕk ∈ L2(IR+)).
The above inequality implies the relations (2). In the same manner we

deduce the relations (3). The last relation (4) is a simple consequence of the
equivalence between the norms ‖ · ‖IRm and ‖ · ‖s. Q.E.D.

In the second case, i.e, B(t) 6= const., the existence, uniqueness and some
properties (regularity, asymptotic behavior) of the solutions of the problem
(S)+(BC)+(IC) were studied in [10], where we used the change of functions

uk = ũk + ˜̃uk, with ˜̃uk(t, x) =
1

1 + x
bk(t), k = 1, n. Then our problem was

written as

(S̃)


∂ũ

∂t
(t, x) +

∂v

∂x
(t, x) + α(x, ũ+ ˜̃u(t, x)) = f̃(t, x)

∂v

∂t
(t, x) +

∂ũ

∂x
(t, x) + β(x, v) = g̃(t, x),

t > 0, x > 0,
with the boundary condition

(B̃C)

(
ũ(t, 0)
S(w′(t))

)
∈ −G

(
v(t, 0)
w(t)

)
+

(
0

B2(t)

)
, t > 0

and the initial data

(ĨC)

{
ũ(0, x) = ũ0(x), v(0, x) = v0(x), x > 0,
w(0) = w0,

where f̃ = col(f̃1, . . . , f̃n), g̃ = col(g̃1, . . . , g̃n), f̃k(t, x) = fk(t, x)−
1

1 + x
b′k(t),

g̃k(t, x) = gk(t, x) +
1

(1 + x)2
bk(t), x > 0, t > 0, k = 1, n, ũ0 =
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col(ũ10, . . . , ũn0), ũk0(x) = uk0(x) −
1

1 + x
bk(0), x > 0, k = 1, n, B2(t) =

col(bn+1(t), . . . , bn+m(t)), (f = col(f1, . . . , fn), g = col(g1, . . . , gn), u0 =
col(u10, . . . , un0)).

Using once again the operators A and B, the problem(S̃)+(B̃C)+(ĨC) can
be equivalently formulated as a time dependent Cauchy problem in the space
Y

(P̃)



d

dt

 ũ

v

w

+A

 ũ

v

w

+ B

 ũ+ ˜̃u(t)
v

w

 3

 f̃(t, ·)
g̃(t, ·)

S−1B2(t)


 ũ(0)

v(0)
w(0)

 =

 ũ0

v0

w0

 .

Theorem 3. Assume the assumptions (A1)ab, (A2)ac, (A3) hold, f, g ∈
W 1,1(0, T ; L2(IR+; IRn)) (T > 0 fixed), bk ∈ W 1,2(0, T ), k = 1, n+m,
u0, v0 ∈ H1(IR+; IRn), w0 ∈ IRm, col(v0(0), w0) ∈ D(G) and B1(0) ∈
u0(0) + G11(v0(0)) + G12(w0). Then the problem (P̃) ⇔ (S̃)+(B̃C)+(ĨC)
has a unique strong solution y = col(u, v, w) ∈ W 1,∞(0, T ;Y ). Moreover
u, v ∈ L∞(0, T ;H1(IR+; IRn)), (B1(t) = col(b1(t), . . . , bn(t))).
Theorem 4. Assume the assumptions (A1)ab, (A2)ac and (A3) hold. If
f, g ∈ L1(0, T ;L2(IR+; IRn)) (T > 0 fixed), bk ∈ L2(0, T ), k = 1, n+m,
u0, v0 ∈ L2(IR+), w0 ∈ D(G12) ∩D(G22), then the problem (S)+(BC)+(IC)
has a unique weak solution y = col(u, v, w) ∈ C([0, T ];Y ).

For the proofs of Theorem 3 and Theorem 4 see [10].

3. The existence of time periodic solutions

In the first case, i.e., B(t) = const., in fact under our assumption, B(t) = 0,
we have the following result.
Theorem 5. Assume that (A1)abc, (A2)ab, (A3) hold and

f, g ∈ L1
loc(IR+;L2(IR+; IRn))

are T0-periodic in time, that is f(t + T0, x) = f(t, x), g(t + T0, x) = g(t, x),
for a.a. (t, x) ∈ IR+ × IR+. Then the problem (S)+(BC) has at least one
T0-periodic weak solution.
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Proof. Let y0 = col(u0, v0, w0) ∈ D(A) be fixed. We define the operator C by

D(C) = {y = col(u, v, w) ∈ Y ; y + y0 ∈ D(A)}, C(y) = (A+ B)(y + y0).

Because the operators A, B are maximal monotone (Lemma 1, Lemma 2),
the operator B is single-valued and everywhere defined, by {[1], Theorem 1.7,
Chapter II}, we deduce that the operator A + B, and also C are maximal
monotone. Using now Lemma 3, we obtain that the operator C is coercive
with respect to 0. With the change of functions δk(t, x) = uk(t, x) − u0

k(x),
θk(t, x) = vk(t, x)− v0

k(x), k = 1, n, τj(t) = wj(t)− w0
j , j = 1,m, the problem

(S)+(BC) becomes

(Ẽ)
dω

dt
+ C(ω) 3 F,

where ω = col(δ, θ, τ), δ = col(δ1, . . . , δn), θ = col(θ1, . . . , θn), τ =
col(τ1, . . . , τm).

Using now the periodicity of functions f, g, and {[4], Proposition 1, p.285},
we deduce that the solutions of the equation (Ẽ) are bounded on the positive
half-axis. Therefore all the solutions of the equation (P)1 are also bounded,
that is sup

t≥0
‖y(t, ·)‖Y <∞. We define the operator L : D(A) → D(A), L(y0) =

y(T0; y0), where y(t, y0), t ≥ 0 is the weak solution of the problem (S)+(BC)
with the initial date y0. This operator is nonexpansive and if y0 ∈ D(A), the
sequence {Ln(y0)}n≥1 is bounded in Y , because Ln(y0) = y(nT0; y0). Using
a theorem due to F.E. Browder and W.V. Petryshyn (see [3]) we deduce that
the operator L has at least one fixed point. This means that the problem
(S)+(BC) has at least one time periodic weak solution with the period T0.
Q.E.D.
Remark. If αk(x, ·) and βk(x, ·) are strongly monotone, a.a. x ∈ IR+ and
f, g ∈W 1,1

loc (IR;L2(IR+; IRn)) are T0-periodic functions in the variable t, then
the problem (S)+(BC) has a T0-periodic strong solution.

In the second case, i.e., B(t) 6= const., we shall firstly present some condi-
tions for the boundedness of the solutions to problem (S)+(BC).
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Theorem 6. Assume that (A1)abc, (A2)ac, (A3) hold, and f, g ∈
L2

loc(IR+;L2(IR+; IRn)), bk ∈ L2
loc(IR+), k = 1, n+m, verify the conditions

sup
t≥0

∫ t+1

t
‖f(θ, ·)‖2

L2(IR+;IRn)dθ ≤ C0, sup
t≥0

∫ t+1

t
‖g(θ, ·)‖2

L2(IR+;IRn)dθ ≤ C0,

sup
t≥0

∫ t+1

t
|bk(θ)|2dθ ≤ C0, (C0 > 0).

(5)
Then, every weak solution of the problem (S)+(BC) is bounded on IR+.
Proof. Because the operator A + B is maximal monotone and coercive, it
follows that R(A + B) = Y and, hence F = (A + B)−1(0) 6= ∅. We suppose
again that G is single-valued.

First, we show that if f, g ∈ W 1,1
loc (IR+;L2(IR+; IRn)) and bk ∈ W 1,2

loc (IR+),
k = 1, n+m, verify the conditions (5), then every strong solution of the
problem (S)+(BC) is bounded on IR+. Let T > 0 be arbitrary, but fixed for
the moment, f, g ∈ W 1,1(0, T ;L2(IR+; IRn)), bk ∈ W 1,2(0, T ) k = 1, n+m,

verify the conditions (5), u0, v0 ∈ H1(IR+; IRn), w0 ∈ IRm, col(v0(0), w0) ∈
D(G) and B1(0) ∈ u0(0) + G11(v0(0)) + G12(w0). Then the strong solution
y(t) = col(u(t), v(t), w(t)) of the problem (S)+(BC)+(IC) corresponding to
above data satisfies

dy

dt
(t) +A(y(t)) + B(y(t)) = F1(t, ·), 0 ≤ t < T

u(t, 0) = −G11(v(t, 0))−G12(w(t)) +B1(t), 0 ≤ t < T

y(0) = y0,

(6)

where F1(t, ·) = col(f(t, ·), g(t, ·), S−1B2(t)).
Let γ = col(p, q, r) ∈ F , that is

(A+ B)(γ) = 0. (7)

We subtract from equation (6)1 the relation (7) and we multiply the obtained
relation by y(t)− γ in the space Y . We obtain

1
2
d

dt
‖y(t)− γ‖2

Y + 〈G

(
v(t, 0)
w(t)

)
−G

(
q(0)
r

)
,

(
v(t, 0)− q

w(t)− r

)
〉IRn+m

+
n∑

k=1

∫ ∞

0
(αk(x, uk(t, x))− αk(x, pk(x))) · (uk(t, x)− pk(x))dx

+
n∑

k=1

∫ ∞

0
(βk(x, vk(t, x))− βk(x, qk(x))) · (vk(t, x)− qk(x))dx
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= 〈B1(t), v(t, 0)− q(0)〉IRn + 〈B2(t), w(t)− r〉IRm

+〈f(t, ·), u(t, ·)− p〉L2(IR+;IRn) + 〈g(t, ·), v(t, ·)− q〉L2(IR+;IRn), 0 ≤ t < T.

Therefore using the assumption (A2)c we get
1
2
d

dt
‖y(t)− γ‖2

Y + ζ2‖v(t, 0)− q(0)‖2
IRn + ζ2‖w(t)− r‖2

IRm

+
n∑

k=1

∫ ∞

0
(αk(x, uk(t, x))− αk(x, pk(x))) · (uk(t, x)− pk(x))dx

+
n∑

k=1

∫ ∞

0
(βk(x, vk(t, x))− βk(x, qk(x))) · (vk(t, x)− qk(x))dx

≤ 1
ζ0
‖B1(t)‖2

IRn + ζ0‖v(t, 0)− q(0)‖2
IRn + 1

ζ0
‖B2(t)‖2

IRm + ζ0‖w(t)− r‖2
IRm

+‖F0(t, ·)‖X‖y(t)− γ‖Y , 0 ≤ t < T,

where F0(t, ·) = col(f(t, ·), g(t, ·)).
We choose 0 < ζ0 < ζ2; then the above inequality gives us

1
2
d

dt
‖y(t)− γ‖2

Y +
n∑

k=1

∫ ∞

0
(αk(x, uk(t, x))−αk(x, pk(x)))(uk(t, x)−pk(x))dx

+
n∑

k=1

∫ ∞

0
(βk(x, vk(t, x))− βk(x, qk(x))) · (vk(t, x))− qk(x))dx

+C5‖w(t)− r‖2
IRm ≤ C6‖B(t)‖2

IRn+m + ‖F0(t, ·)‖X‖y(t)− γ‖Y , 0 ≤ t < T,

(8)
where the positive constant C5, C6 are independent of T .

Now, by assumptions (A1)abc we have
(αk(x, uk(t, x))− αk(x, pk(x))) · (uk(t, x)− pk(x)) ≥ (ck|uk(t, x)|

−ξk(x)) · |uk(t, x)− pk(x)| − (ak|pk(x)|+ ϕk(x))|uk(t, x)− pk(x)|
≥ ck(|uk(t, x)− pk(x)| − |pk(x)|) · |uk(t, x)− pk(x)| − (ξk(x) + ak|pk(x)|
+|ϕk(x)|) · |uk(t, x)− pk(x)| = ck|uk(t, x)− pk(x)|2 − (ck|pk(x)|+ ξk(x)
+ak|pk(x)|+ |ϕk(x)|) · |uk(t, x)− pk(x)| ≥ ck|uk(t, x)− pk(x)|2 − C7|uk(t, x)
−pk(x)|2 − C8((ck + ak)2p2

k(x) + ξ2k(x) + ϕ2
k(x)) = ˜̃ck|uk(t, x)− pk(x)|2

−C9(p2
k(x) + ξ2k(x) + ϕ2

k(x)), x > 0, 0 ≤ t ≤ T, k = 1, n,
(we choose C7 > 0 such that C7 < ck; ˜̃ck = ck − C7, k = 1, n, and C8, C9 > 0
are independent of T ).

Integrating over (0,∞) the obtained inequality, we deduce∫ ∞

0
(αk(x, uk(t, x))− αk(x, pk(x))) · (uk(t, x)− pk(x))dx

≥ ˜̃ck‖uk(t)− pk‖2
L2(IR+) − C10, 0 ≤ t ≤ T, k = 1, n.

(9)
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In the same manner we obtain∫ ∞

0
(βk(x, vk(t, x))− βk(x, qk(x))) · (vk(t, x)− qk(x))dx

≥ ˜̃dk‖vk(t)− qk‖2
L2(IR+) − C11, 0 ≤ t ≤ T, k = 1, n,

(10)

where ˜̃dk > 0, k = 1, n, and the constants C10, C11 > 0 are independent of T .
From the inequalities (8)-(10) we deduce
1
2
d

dt
‖y(t)− γ‖2

Y + C5‖w(t)− r‖2
IRm +

n∑
k=1

˜̃ck‖uk(t)− pk‖2
L2(IR+)

+
n∑

k=1

˜̃
dk‖vk(t)− qk‖2

L2(IR+) ≤ nC10 +nC11 +C6‖B(t)‖2
IRn+m + ‖F0(t, ·)‖X‖y(t)

−γ‖Y ,

⇒ 1
2
d

dt
‖y(t)− γ‖2

Y +C12‖y(t)− γ‖2
Y ≤ C13 +C6‖B(t)‖2

IRn+m +C14‖F0(t, ·)‖2
X

+C15‖y(t)− γ‖2
Y , 0 ≤ t < T,

(we choose Ci > 0, i = 12, 15, such that C15 < C12).
Therefore we obtain

1
2
d

dt
‖y(t)− γ‖2

Y + C16‖y(t)− γ‖2
Y ≤ C13 + C6‖B(t)‖2

IRn+m

+C14‖F0(t, ·)‖2
X , 0 ≤ t < T,

(11)

with C16 > 0 independent of T .
Because T is arbitrary, the inequality (11) is verified for a.a. t ∈ [0,∞).

Now we shall use the following lemma from [4] (see {[4], Lemma 4, p.286}).
Lemma 4. Let λ be a nondecreasing nonnegative function on IR+, α > 0,

C > 0, ζ(t) be measurable nonnegative function, with
∫ t+1

t
ζ(θ)dθ ≤ C, for

all t ≥ 0. Let V ∈ C([0,∞), IR+) be absolutely continuous on every compact

interval of IR+, such that
dV

dt
+ λ(V (t)) ≤ ζ(t), for a.a. t ∈ [0,∞). Then, if

α ≥ V (0) and λ(α) ≥ C, we have V (t) ≤ α+ C, for all t ≥ 0.
We consider V (t) = ‖y(t) − γ‖2

Y , λ(u) = 2C16u, ζ(t) = 2C13 +
2C6‖B(t)‖2

IRn+m + 2C14‖F0(t, ·)‖2
X . Using the conditions (5) we have

sup
t≥0

∫ t+1

t
ζ(θ)dθ ≤ 2C13 + 2(n+m)C0C6 + 4C0C14

not= C̃.

Therefore, Lemma 4 gives us that if α ≥ max

{
‖y0 − γ‖2

Y ,
C̃

2C16

}
, then

we obtain ‖y(t) − γ‖2
Y ≤ α + C̃, for all t ≥ 0. We deduce that the solution



TIME PERIODIC SOLUTIONS 185

y(t) is bounded on IR+. The extension to the case of weak solutions is then
immediate, so we obtain the conclusion of the theorem. Q.E.D.
Theorem 7. Assume that (A1)ab, (A2)ac, (A3) hold,

f, g ∈ L1
loc(IR+;L2(IR+; IRn))

are T0-periodic in time and bk ∈ L2
loc(IR+), k = 1, n+m are T0-periodic func-

tions. Then, if the problem (S)+(BC) has at least one bounded solution on
IR+, then the problem has also a weak T0-periodic solution.
Proof. Let y = col(u, v, w) be a bounded solution on IR+ of the problem
(S)+(BC). Then using the following inequality for the solutions y and ȳ

‖y(t)− ȳ(t)‖Y ≤ ‖y(0)− ȳ(0)‖Y , t > 0,

we deduce that all the solutions of the problem (S)+(BC) are bounded on IR+.
Now, using the operator L, defined as in the proof of Theorem 5 (for this case)
and the same fixed point theorem due to F.E. Browder and W.V. Petryshyn,
we conclude that the problem (S)+(BC) has at least one T0-periodic weak
solution. Q.E.D.

Now, combining Theorem 6 and Theorem 7, and by using the fact that a
periodic function from space L2 belongs to the Stepanov space of index 2, we
obtain sufficient conditions for the existence of time periodic weak solutions
for our problem, formulated in the following corollary.
Corollary. Assume that (A1)abc, (A2)ac, (A3), hold,

f, g ∈ L2
loc(IR+;L2(IR+; IRn))

are T0-periodic in time, and bk ∈ L2
loc(IR+), k = 1, n+m are T0-periodic func-

tions. Then the problem (S)+(BC) has at least a time periodic weak solution
with period T0.

4. Some remarks in the case x ∈ IR

If the spatial variable x belongs to IR, then from the boundary condition
(BC) it only remains w′(t) ∈ −S−1G22(w(t)) + S−1B2(t). This equation with
the initial date w(0) = w0 give by integration the function w(t). Therefore,
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for u and v we obtain the problem

(S)


∂u

∂t
(t, x) +

∂v

∂x
(t, x) + α(x, u) = f(t, x)

∂v

∂t
(t, x) +

∂u

∂x
(t, x) + β(x, v) = g(t, x),

t > 0, x ∈ IR,
with the initial data

(IC) u(0, x) = u0(x), v(0, x) = v0(x), x ∈ IR,

under the assumptions (Ã1)abc which are (A1)abc with IR instead of IR+.
We consider the space Z = (L2(IR; IRn))2 with the standard scalar product

and the operators
C : D(C) ⊂ Z → Z, D(C) = (H1(IR; IRn))2, C(col(u, v)) = col(v′, u′),
D : D(D) ⊂ Z → Z, D(col(u, v)) = col(α(·, u), β(·, v)).

If (Ã1)ab hold, then C is maximal monotone in Z, and D is everywhere defined
(D(D) = Z) and maximal monotone. By using the operators C and D the
problem (S)+(IC) can be written as

(P)


dz

dt
(t) + C(z(t)) +D(z(t)) = F (t, ·), t > 0, in Z

z(0) = z0,

where z(t) = col(u(t), v(t)), z0 = col(u0, v0), F (t, ·) = col(f(t, ·), g(t, ·)).
The existence, uniqueness and asymptotic behavior of the strong and weak

solutions of the problem (S) + (IC) have been investigated in [10]. We shall
only recall the existence results.
Theorem 8. a) Assume that (Ã1)ab hold. If f, g ∈ W 1,1(0, T ;L2(IR; IRn))
(T > 0 fixed), u0, v0 ∈ H1(IR; IRn), then the problem (P) ⇔ (S) + (IC) has
a unique strong solution z = col(u, v) ∈ W 1,∞(0, T ;Z). Moreover u, v ∈
L∞(0, T ;H1(IR; IRn)).

b) Assume that (Ã1)ab hold. If f, g ∈ L1(0, T ;L2(IR; IRn)) (T > 0 fixed),
u0, v0 ∈ L2(IR; IRn), then the problem (S)+(IC) has a unique weak solution
z = col(u, v) ∈ C([0, T ]; Z).

Using similar arguments as in the case x ∈ IR+ we obtain for this problem
the following results.
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Lemma 5. Assume that (Ã1)abc hold. Then the operator C + D is coercive
with respect to any z0 = col(u0, v0) ∈ D(C), that is

lim
‖z‖Z→∞
z∈D(C)

〈(C +D)(z), z − z0〉Z
‖z‖Z

= ∞.

Theorem 9. Assume that (Ã1)abc hold and f, g ∈ L1
loc(IR+;L2(IR; IRn)) are

T0-periodic in time, that is f(t + T0, x) = f(t, x), g(t + T0, x) = g(t, x), for
a.a. (t, x) ∈ IR+ × IR. Then the system (S) has at least one T0-periodic weak
solution.
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