TIME PERIODIC SOLUTIONS FOR A CLASS OF NONLINEAR BOUNDARY VALUE PROBLEMS

RODICA LUCA
Department of Mathematics
Gh. Asachi Technical University
11 Bd.Carol I, Iaşi 700506, Romania
E-mail: rluca@math.tuiasi.ro

Abstract. Using some results from the theory of monotone operators and a fixed point theorem due to F.E. Browder and W.V. Petryshyn, we prove the existence of time periodic solutions to a class of nonlinear hyperbolic problems, on positive semi-axis of spatial variable, which have applications in integrated circuits modelling.
Key Words and Phrases: Hyperbolic system, boundary condition, Cauchy problem, monotone operator, periodic solution.
2000 Mathematics Subject Classification: 35L50, 35B10, 47H10.

1. Introduction

We consider the following hyperbolic partial differential system
(S)

$$
\left\{\begin{aligned}
\frac{\partial u}{\partial t}(t, x)+\frac{\partial v}{\partial x}(t, x)+\alpha(x, u) & =f(t, x) \\
\frac{\partial v}{\partial t}(t, x)+\frac{\partial u}{\partial x}(t, x)+\beta(x, v) & =g(t, x) \\
t>0, x & >0
\end{aligned}\right.
$$

with the boundary condition

$$
\begin{equation*}
\binom{u(t, 0)}{S\left(w^{\prime}(t)\right)} \in-G\binom{v(t, 0)}{w(t)}+B(t), t>0 \tag{BC}
\end{equation*}
$$

[^0]The unknown functions u, v and also the functions f, g are the vectorial ones depending on $(t, x) \in \mathbb{R}_{+} \times \mathbb{R}_{+}$with values in \mathbb{R}^{n}, and the unknown function w is a vectorial one depending on $t \in \mathbb{R}_{+}$with values in \mathbb{R}^{m}. The functions α and β are of the form $\alpha(x, u)=\operatorname{col}\left(\alpha_{1}\left(x, u_{1}\right), \ldots, \alpha_{n}\left(x, u_{n}\right)\right)$, $\beta(x, v)=\operatorname{col}\left(\beta_{1}\left(x, v_{1}\right), \ldots, \beta_{n}\left(x, v_{n}\right)\right), S$ is a positive diagonal matrix, G is an operator in the space \mathbb{R}^{n+m}, which satisfy some assumptions and $B(t)=\operatorname{col}\left(b_{1}(t), \ldots, b_{n+m}(t)\right) \in \mathbb{R}^{n+m}$, for all $t>0$.

This problem has applications in the theory of integrated circuits (see [7], [11], [12] and their references). The existence, uniqueness and asymptotic behavior of the strong and weak solutions of the problem $(S)+(B C)$ with the initial data

$$
\left\{\begin{array}{l}
u(0, x)=u_{0}(x), v(0, x)=v_{0}(x), x>0 \tag{IC}\\
w(0)=w_{0}
\end{array}\right.
$$

have been investigated in [10], [11]. The system (S) for $x \in(0,1)$ and $t>0$, with the boundary condition

$$
\left(\begin{array}{c}
u(t, 0) \\
-u(t, 1) \\
S\left(w^{\prime}(t)\right)
\end{array}\right) \in-G\left(\begin{array}{c}
v(t, 0) \\
v(t, 1) \\
w(t)
\end{array}\right)+B(t), t>0
$$

and the initial data

$$
u(0, x)=u_{0}(x), \quad v(0, x)=v_{0}(x), \quad x \in(0,1), \quad w(0)=w_{0}
$$

has been investigated in [7], [11] for the existence, uniqueness and asymptotic behavior of the solutions, in [8], [11] for the existence of periodic solutions, and in [9] for the existence of almost-periodic solutions.

In this paper we shall present some existence results for the time periodic solutions of the problem $(\mathrm{S})+(\mathrm{BC})$, in two different cases $B(t)=$ const. and $B(t) \neq$ const. We shall use several results from the theory of monotone operators and nonlinear evolution equations of monotone type (see the monographs [1], [2], [5], [6]), and also a fixed point theorem due to F.E. Browder and W.V. Petryshyn (see [3]).

We introduce the assumptions that we shall use in the sequel
(A1) a) The functions $x \rightarrow \alpha_{k}(x, p)$ and $x \rightarrow \beta_{k}(x, p)$ are measurable on \mathbb{R}_{+}, for any fixed $p \in \mathbb{R}$. Besides, the functions $p \rightarrow \alpha_{k}(x, p)$ and
$p \rightarrow \beta_{k}(x, p)$ are continuous and nondecreasing from \mathbb{R} into \mathbb{R}, for a.a. $x \in \mathbb{R}_{+}, k=\overline{1, n}$.
b) There exist $a_{k}, b_{k}>0, k=\overline{1, n}$ and the functions $\varphi_{k}, \psi_{k} \in$ $L^{2}\left(\mathbb{R}_{+} ; \mathbb{R}\right), k=\overline{1, n}$ such that

$$
\left|\alpha_{k}(x, p)\right| \leq a_{k}|p|+\varphi_{k}(x), \quad\left|\beta_{k}(x, p)\right| \leq b_{k}|p|+\psi_{k}(x)
$$

for a.a. $x \in \mathbb{R}_{+}$, for all $p \in \mathbb{R}, k=\overline{1, n}$.
c) There exist $c_{k}, d_{k}>0, k=\overline{1, n}$ and the functions $\xi_{k}, \eta_{k} \in$ $L^{2}\left(\mathbb{R}_{+} ; \mathbb{R}_{+}\right), k=\overline{1, n}$ such that

$$
\left|\alpha_{k}(x, p)\right| \geq c_{k}|p|-\xi_{k}(x), \quad\left|\beta_{k}(x, p)\right| \geq d_{k}|p|-\eta_{k}(x)
$$

for a.a. $x \in \mathbb{R}_{+}$, for all $p \in \mathbb{R}, k=\overline{1, n}$.
(A2) a) $G: D(G) \subset \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{n+m}$ is a maximal monotone operator (possibly multivalued). Moreover, G can be split in

$$
G=\left(\begin{array}{ll}
G_{11} & G_{12} \\
G_{21} & G_{22}
\end{array}\right)
$$

where $G_{11}: D\left(G_{11}\right) \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, G_{12}: D\left(G_{12}\right) \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, $G_{21}: D\left(G_{21}\right) \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, G_{22}: D\left(G_{22}\right) \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$, and
$G\left(\operatorname{col}\left(x^{a}, x^{b}\right)\right)=\operatorname{col}\left(G_{11}\left(x^{a}\right)+G_{12}\left(x^{b}\right), G_{21}\left(x^{a}\right)+G_{22}\left(x^{b}\right)\right)$, for all $x \in D(G), x=\operatorname{col}\left(x^{a}, x^{b}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$.
b) There exists $\zeta_{1}>0$ such that for all $x, y \in D(G), x=$ $\operatorname{col}\left(x^{a}, x^{b}\right), y=\operatorname{col}\left(y^{a}, y^{b}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$ and for all $w_{1} \in G(x), w_{2} \in$ $G(y)$ we have

$$
\left\langle w_{1}-w_{2}, x-y\right\rangle_{\mathbb{R}^{n+m}} \geq \zeta_{1}\left\|x^{b}-y^{b}\right\|_{\mathbb{R}^{m}}^{2}
$$

c) There exists $\zeta_{2}>0$ such that for all $x, y \in D(G)$ and all $w_{1} \in$ $G(x), w_{2} \in G(y)$ we have

$$
\left\langle w_{1}-w_{2}, x-y\right\rangle_{\mathbb{R}^{n+m}} \geq \zeta_{2}\|x-y\|_{\mathbb{R}^{n+m}}^{2}
$$

$\left(\|\cdot\|_{\mathbb{R}^{n}}\right.$ and $\langle\cdot, \cdot\rangle_{\mathbb{R}^{n}}$ are the euclidian norm and corresponding scalar product in $\left.\mathbb{R}^{n}\right)$.
(A3) $S=\operatorname{diag}\left(s_{1}, \ldots, s_{m}\right)$ with $s_{j}>0, j=\overline{1, m}$.
The above assumption (A2)a is a technical one and it generalizes the matrix case.

2. Preliminary Results

We shall write our problem $(\mathrm{S})+(\mathrm{BC})$ as an evolution equation in a certain Hilbert space. For this aim, let us consider the Hilbert spaces $X=$ $\left(L^{2}\left(\mathbb{R}_{+} ; \mathbb{R}^{n}\right)\right)^{2}, \mathbb{R}^{m}$ and $Y=X \times \mathbb{R}^{m}$ with the corresponding scalar products

$$
\begin{aligned}
& \langle f, g\rangle_{X}=\left\langle f_{1}, g_{1}\right\rangle_{L^{2}\left(\mathbb{R}_{+} ; \mathbb{R}^{n}\right)+\left\langle f_{2}, g_{2}\right\rangle_{L^{2}\left(\mathbb{R}_{+} ; \mathbb{R}^{n}\right)},}^{f=\operatorname{col}\left(f_{1}, f_{2}\right), g=\operatorname{col}\left(g_{1}, g_{2}\right),} \\
& \langle x, y\rangle_{s}=\sum_{i=1}^{m} s_{i} x_{i} y_{i}, \quad x, y \in \mathbb{R}^{m}, \\
& \left\langle\binom{ f}{x},\binom{g}{y}\right\rangle_{Y}=\langle f, g\rangle_{X}+\langle x, y\rangle_{s},\binom{f}{x},\binom{g}{y} \in Y .
\end{aligned}
$$

We define the operator $\mathcal{A}: D(\mathcal{A}) \subset Y \rightarrow Y$,

$$
\begin{gathered}
D(\mathcal{A})=\left\{y=\operatorname{col}(u, v, w) \in Y ; u, v \in H^{1}\left(\mathbb{R}_{+} ; \mathbb{R}^{n}\right), \quad \operatorname{col}(v(0), w) \in D(G)\right. \\
\left.u(0) \in-G_{11}(v(0))-G_{12}(w)\right\}
\end{gathered}
$$

$$
\mathcal{A}\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)=\left(\begin{array}{c}
v^{\prime} \\
u^{\prime} \\
S^{-1} G_{21}(v(0))+S^{-1} G_{22}(w)
\end{array}\right),\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right) \in D(\mathcal{A})
$$

and the operator $\mathcal{B}: D(\mathcal{B}) \subset Y \rightarrow Y, D(\mathcal{B})=\{y=\operatorname{col}(u, v, w) \in Y, \mathcal{B}(y) \in$ $Y\}$,

$$
\mathcal{B}\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)=\left(\begin{array}{c}
\alpha(\cdot, u) \\
\beta(\cdot, v) \\
0
\end{array}\right) .
$$

Under the assumptions (A2)a and (A3) we have $D(\mathcal{A}) \neq \emptyset$ and $\overline{D(\mathcal{A})}=$ $X \times \overline{D\left(G_{12}\right) \cap D\left(G_{22}\right)}$, and under assumptions (A1)ab we have $D(\mathcal{B})=Y$.
Lemma 1. If the assumptions (A2)a and (A3) hold, then the operator \mathcal{A} is maximal monotone in the space Y.
Lemma 2. If the assumptions (A1)ab hold, then the operator \mathcal{B} is maximal monotone in Y.
In the first case, i.e., $B(t)=$ const., we can replace G by \tilde{G} defined by $\tilde{G} w=G w-b_{0}$, which is also, in the assumption (A2)a, a maximal monotone operator. So, we can suppose without loss of generality that $B(t)=0$.

We present some existence and uniqueness results for the solutions of the problem $(\mathrm{S})+(\mathrm{BC})+(\mathrm{IC})$, which are obtained in the paper [10].

Using the operators \mathcal{A} and \mathcal{B} the problem $(\mathrm{S})+(\mathrm{BC})+(\mathrm{IC})$ can be equivalently expressed as the following Cauchy problem in the space Y

$$
\left\{\begin{array}{l}
\frac{d y}{d t}(t)+(\mathcal{A}+\mathcal{B})(y(t)) \ni F(t, \cdot), \quad t>0 \tag{P}\\
y(0)=y_{0}
\end{array}\right.
$$

where

$$
\begin{gathered}
y(t)=\operatorname{col}(u(t), v(t), w(t)) \\
F(t, \cdot)=\operatorname{col}(f(t, \cdot), g(t, \cdot), 0) \\
y_{0}=\operatorname{col}\left(u_{0}, v_{0}, w_{0}\right)
\end{gathered}
$$

We shall say that $y=\operatorname{col}(u, v, w)$ is a strong (weak) solution of the problem $(\mathrm{S})+(\mathrm{BC})+(\mathrm{IC})$ if y is a strong (respectively weak) solution of the problem (P), (see \{[1], Chapter III, $\S 2\})$.

Theorem 1. Assume the assumptions (A1)ab, (A2)a and (A3) hold. If $f, g \in W^{1,1}\left(0, T ; L^{2}\left(\mathbb{R}_{+} ; \mathbb{R}^{n}\right)\right)($ with $T>0$ fixed $), u_{0}, v_{0} \in H^{1}\left(\mathbb{R}_{+} ; \mathbb{R}^{n}\right)$, $\operatorname{col}\left(v_{0}(0), w_{0}\right) \in D(G), u_{0}(0) \in-G_{11}\left(v_{0}(0)\right)-G_{12}\left(w_{0}\right)$, then the problem $(\mathrm{P}) \Leftrightarrow$ $(\mathrm{S})+(\mathrm{BC})+(\mathrm{IC})$ has a unique strong solution $y=\operatorname{col}(u, v, w) \in W^{1, \infty}(0, T ; Y)$. Moreover $u, v \in L^{\infty}\left(0, T ; H^{1}\left(\mathbb{R}_{+} ; \mathbb{R}^{n}\right)\right)$.
Theorem 2. Assume the assumptions (A1)ab, (A2)a and (A3) hold. If $f, g \in L^{1}\left(0, T ; L^{2}\left(\mathbb{R}_{+} ; \mathbb{R}^{n}\right)\right)($ with $T>0$ fixed $), u_{0}, v_{0} \in L^{2}\left(\mathbb{R}_{+} ; \mathbb{R}^{n}\right)$, $w_{0} \in \overline{D\left(G_{12}\right) \cap D\left(G_{22}\right)}$, then the problem $(\mathrm{S})+(\mathrm{BC})+(\mathrm{IC})$ has a unique weak solution $y=\operatorname{col}(u, v, w) \in C([0, T] ; Y)$.

For the proofs of Lemma 1, Lemma 2, Theorem 1 and Theorem 2 see [10].
Lemma 3. Assume that (A1)abc, (A2)ab and (A3) hold. Then the operator $\mathcal{A}+\mathcal{B}$ is coercive with respect to any $y^{0}=\operatorname{col}\left(u^{0}, v^{0}, w^{0}\right) \in D(\mathcal{A})$, that is

$$
\begin{equation*}
\lim _{\substack{\|y\|_{Y} \rightarrow \infty \\ y \in D(\mathcal{A})}} \frac{\left\langle(\mathcal{A}+\mathcal{B})(y), y-y^{0}\right\rangle_{Y}}{\|y\|_{Y}}=\infty \tag{1}
\end{equation*}
$$

Proof. We suppose without loss of generality that the operator G is singlevalued. Let $y^{0}=\operatorname{col}\left(u^{0}, v^{0}, w^{0}\right)$ be arbitrary, but fixed for the moment in $D(\mathcal{A})$. By (A2)b, for every $y=\operatorname{col}(u, v, w) \in D(\mathcal{A}), u=\operatorname{col}\left(u_{1}, \ldots, u_{n}\right)$, $v=\operatorname{col}\left(v_{1}, \ldots, v_{n}\right), w=\operatorname{col}\left(w_{1}, \ldots, w_{m}\right)$, we have

$$
\begin{gathered}
E=\left\langle(\mathcal{A}+\mathcal{B})(y), y-y^{0}\right\rangle_{Y}=\left\langle\mathcal{A}(y)-\mathcal{A}\left(y^{0}\right), y-y^{0}\right\rangle_{Y}+\left\langle\mathcal{B}(y), y-y^{0}\right\rangle_{Y} \\
+\underbrace{\left\langle\mathcal{A}\left(y^{0}\right), y-y^{0}\right\rangle_{Y}}_{E_{0}}=\left\langle G\binom{v(0)}{w}-G\binom{v^{0}(0)}{w^{0}},\binom{v(0)}{w}-\binom{v^{0}(0)}{w^{0}}\right\rangle_{R^{n+m}}
\end{gathered}
$$

$$
\begin{aligned}
& +\sum_{k=1}^{n} \int_{0}^{\infty} \alpha_{k}\left(x, u_{k}(x)\right)\left(u_{k}(x)-u_{k}^{0}(x)\right) d x+\sum_{k=1}^{n} \int_{0}^{\infty} \beta_{k}\left(x, v_{k}(x)\right)\left(v_{k}(x)-v_{k}^{0}(x)\right) d x \\
& +E_{0} \geq \zeta_{1}\left\|w-w^{0}\right\|_{\mathbb{R}^{m}}^{2}+\sum_{k=1}^{n} \int_{0}^{\infty} \alpha_{k}\left(x, u_{k}(x)\right)\left(u_{k}(x)-u_{k}^{0}(x)\right) d x \\
& +\sum_{k=1}^{n} \int_{0}^{\infty} \beta_{k}\left(x, v_{k}(x)\right)\left(v_{k}(x)-v_{k}^{0}(x)\right) d x+E_{0}, \\
& \left(u^{0}=\operatorname{col}\left(u_{1}^{0}, \ldots, u_{n}^{0}\right), v^{0}=\operatorname{col}\left(v_{1}^{0}, \ldots, v_{n}^{0}\right)\right) .
\end{aligned}
$$

For $y \neq 0$, we obtain

$\min \left\{\frac{\int_{0}^{\infty} \alpha_{k}\left(x, u_{k}(x)\right)\left(u_{k}(x)-u_{k}^{0}(x)\right) d x}{\left\|u_{k}\right\|_{L^{2}\left(\mathbb{R}_{+}\right)}}, \frac{\int_{0}^{\infty} \beta_{k}\left(x, v_{k}(x)\right)\left(v_{k}(x)-v_{k}^{0}(x)\right) d x}{\left\|v_{k}\right\|_{L^{2}\left(\mathbb{R}_{+}\right)}}\right.$,
$\left.\frac{\zeta_{1}\left\|w-w^{0}\right\|_{\mathbb{R}^{m}}^{2}}{\|w\|_{s}}, k=\overline{1, n}\right\}+\frac{E_{0}}{\|y\|_{Y}}$.
To prove (1) it is sufficient to show that

$$
\begin{array}{r}
\lim _{\left\|u_{k}\right\|_{L^{2}\left(\mathbb{R}_{+}\right)} \rightarrow \infty} \frac{\int_{0}^{\infty} \alpha_{k}\left(x, u_{k}(x)\right)\left(u_{k}(x)-u_{k}^{0}(x)\right) d x}{\left\|u_{k}\right\|_{L^{2}\left(\mathbb{R}_{+}\right)}}=\infty, k=\overline{1, n}, \\
\lim _{\left\|v_{k}\right\|_{L^{2}\left(\mathbb{R}_{+}\right)} \rightarrow \infty} \frac{\int_{0}^{\infty} \beta_{k}\left(x, v_{k}(x)\right)\left(v_{k}(x)-v_{k}^{0}(x)\right) d x}{\left\|v_{k}\right\|_{L^{2}\left(\mathbb{R}_{+}\right)}}=\infty, \quad k=\overline{1, n}, \tag{3}
\end{array}
$$

and

$$
\begin{equation*}
\lim _{\|w\|_{s} \rightarrow \infty} \frac{\zeta_{1}\left\|w-w^{0}\right\|_{\mathbb{R}^{m}}^{2}}{\|w\|_{s}}=\infty \tag{4}
\end{equation*}
$$

For the relations (2), using the assumptions (A1)abc we have

$$
\begin{aligned}
& \quad \alpha_{k}\left(x, u_{k}(x)\right)\left(u_{k}(x)-u_{k}^{0}(x)\right) \geq\left|\alpha_{k}\left(x, u_{k}(x)\right)\right| \cdot\left|u_{k}(x)-u_{k}^{0}(x)\right| \\
&- 2\left|\alpha_{k}\left(x, u_{k}^{0}(x)\right)\right| \cdot\left|u_{k}(x)-u_{k}^{0}(x)\right| \geq\left(c_{k}\left|u_{k}(x)\right|-\xi_{k}(x)\right) \cdot\left|u_{k}(x)-u_{k}^{0}(x)\right| \\
&-2\left(a_{k}\left|u_{k}^{0}(x)\right|+\varphi_{k}(x)\right) \cdot\left|u_{k}(x)-u_{k}^{0}(x)\right| \geq c_{k}\left|u_{k}(x)\right|\left(\left|u_{k}(x)\right|-\left|u_{k}^{0}(x)\right|\right)
\end{aligned}
$$

$-\xi_{k}(x)\left(\left|u_{k}(x)\right|+\left|u_{k}^{0}(x)\right|\right)-2\left(a_{k}\left|u_{k}^{0}(x)\right|+\left|\varphi_{k}(x)\right|\right) \cdot\left(\left|u_{k}(x)\right|+\left|u_{k}^{0}(x)\right|\right)$
$=c_{k}\left|u_{k}(x)\right|^{2}-\left|u_{k}(x)\right| \cdot\left(c_{k}\left|u_{k}^{0}(x)\right|+\xi_{k}(x)+2 a_{k}\left|u_{k}^{0}(x)\right|+2\left|\varphi_{k}(x)\right|\right)$
$-\left(\left|u_{k}^{0}(x)\right| \xi_{k}(x)+2 a_{k}\left|u_{k}^{0}(x)\right|^{2}+2\left|\varphi_{k}(x)\right| \cdot\left|u_{k}^{0}(x)\right|\right) \geq c_{k}\left|u_{k}(x)\right|^{2}-C_{1}\left|u_{k}(x)\right|^{2}$
$-C_{2}\left(\widetilde{a}_{k}\left|u_{k}^{0}(x)\right|+\xi_{k}(x)+2\left|\varphi_{k}(x)\right|\right)^{2}-\frac{1}{2}\left|u_{k}^{0}(x)\right|^{2}-\frac{1}{2} \xi_{k}^{2}(x)-2 a_{k}\left|u_{k}^{0}(x)\right|^{2}$
$-\varphi_{k}^{2}(x)-\left|u_{k}^{0}(x)\right|^{2}=\widetilde{c}_{k}\left|u_{k}(x)\right|^{2}-C_{3}\left(\left|u_{k}^{0}(x)\right|^{2}+\xi_{k}^{2}(x)+\varphi_{k}^{2}(x)\right), \quad x>0$.
We choose $C_{1}, C_{2}>0$ such that $C_{1}<c_{k}, \widetilde{c}_{k}=c_{k}-C_{1}>0, C_{3}>0$, $\widetilde{a}_{k}=c_{k}+2 a_{k}>0$.

Integrating over $[0, \infty)$ we obtain
$\int_{0}^{\infty} \alpha_{k}\left(x, u_{k}(x)\right) \cdot\left(u_{k}(x)-u_{k}^{0}(x)\right) d x \geq \widetilde{c}_{k} \int_{0}^{\infty}\left|u_{k}(x)\right|^{2} d x-C_{3} \int_{0}^{\infty}\left(\left|u_{k}^{0}(x)\right|^{2}\right.$ $\left.+\xi_{k}^{2}(x)+\varphi_{k}^{2}(x)\right) d x=\widetilde{c}_{k}\left\|u_{k}\right\|_{L^{2}\left(\mathbb{R}_{+}\right)}^{2}-C_{4}, \quad C_{4}>0, \quad k=\overline{1, n}$,
(because $u_{k}^{0}, \xi_{k}, \varphi_{k} \in L^{2}\left(\mathbb{R}_{+}\right)$).
The above inequality implies the relations (2). In the same manner we deduce the relations (3). The last relation (4) is a simple consequence of the equivalence between the norms $\|\cdot\|_{\mathbb{R}^{m}}$ and $\|\cdot\|_{s}$. Q.E.D.

In the second case, i.e, $B(t) \neq$ const., the existence, uniqueness and some properties (regularity, asymptotic behavior) of the solutions of the problem $(\mathrm{S})+(\mathrm{BC})+(\mathrm{IC})$ were studied in [10], where we used the change of functions $u_{k}=\widetilde{u}_{k}+\widetilde{\widetilde{u}}_{k}$, with $\widetilde{\widetilde{u}}_{k}(t, x)=\frac{1}{1+x} b_{k}(t), k=\overline{1, n}$. Then our problem was written as

$$
\left\{\begin{array}{r}
\frac{\partial \widetilde{u}}{\partial t}(t, x)+\frac{\partial v}{\partial x}(t, x)+\alpha(x, \widetilde{u}+\widetilde{\widetilde{u}}(t, x))=\widetilde{f}(t, x) \tag{S}\\
\frac{\partial v}{\partial t}(t, x)+\frac{\partial \widetilde{u}}{\partial x}(t, x)+\beta(x, v)=\widetilde{g}(t, x) \\
t>0, \quad x>0
\end{array}\right.
$$

with the boundary condition
$(\widetilde{\mathrm{BC}}) \quad\binom{\widetilde{u}(t, 0)}{S\left(w^{\prime}(t)\right)} \in-G\binom{v(t, 0)}{w(t)}+\binom{0}{B_{2}(t)}, t>0$
and the initial data

$$
\left\{\begin{array}{l}
\widetilde{u}(0, x)=\widetilde{u}_{0}(x), \quad v(0, x)=v_{0}(x), x>0 \tag{IC}\\
w(0)=w_{0}
\end{array}\right.
$$

where $\widetilde{f}=\operatorname{col}\left(\widetilde{f}_{1}, \ldots, \widetilde{f}_{n}\right), \widetilde{g}=\operatorname{col}\left(\widetilde{g}_{1}, \ldots, \widetilde{g}_{n}\right), \widetilde{f}_{k}(t, x)=f_{k}(t, x)-\frac{1}{1+x} b_{k}^{\prime}(t)$, $\widetilde{g}_{k}(t, x)=g_{k}(t, x)+\frac{1}{(1+x)^{2}} b_{k}(t), x>0, t>0, k=\overline{1, n}, \widetilde{u}_{0}=$
$\operatorname{col}\left(\widetilde{u}_{10}, \ldots, \widetilde{u}_{n 0}\right), \widetilde{u}_{k 0}(x)=u_{k 0}(x)-\frac{1}{1+x} b_{k}(0), x>0, k=\overline{1, n}, B_{2}(t)=$ $\operatorname{col}\left(b_{n+1}(t), \ldots, b_{n+m}(t)\right), \quad\left(f=\operatorname{col}\left(f_{1}, \ldots, f_{n}\right), g=\operatorname{col}\left(g_{1}, \ldots, g_{n}\right), u_{0}=\right.$ $\left.\operatorname{col}\left(u_{10}, \ldots, u_{n 0}\right)\right)$.

Using once again the operators \mathcal{A} and \mathcal{B}, the problem $(\widetilde{\mathrm{S}})+(\widetilde{\mathrm{BC}})+(\widetilde{\mathrm{IC}})$ can be equivalently formulated as a time dependent Cauchy problem in the space Y
$(\widetilde{\mathrm{P}}) \quad\left\{\begin{aligned} \frac{d}{d t}\left(\begin{array}{c}\widetilde{u} \\ v \\ w\end{array}\right) & +\mathcal{A}\left(\begin{array}{c}\widetilde{u} \\ v \\ w\end{array}\right)+\mathcal{B}\left(\begin{array}{c}\widetilde{u}+\widetilde{\widetilde{u}}(t) \\ v \\ w\end{array}\right) \ni\left(\begin{array}{c}\widetilde{f}(t, \cdot) \\ \widetilde{g}(t, \cdot) \\ S^{-1} B_{2}(t)\end{array}\right) \\ \left(\begin{array}{c}\widetilde{u}(0) \\ v(0) \\ w(0)\end{array}\right) & =\left(\begin{array}{c}\widetilde{u}_{0} \\ v_{0} \\ w_{0}\end{array}\right) .\end{aligned}\right.$
Theorem 3. Assume the assumptions (A1)ab, (A2)ac, (A3) hold, $f, g \in$ $W^{1,1}\left(0, T ; L^{2}\left(\mathbb{R}_{+} ; \mathbb{R}^{n}\right)\right)(T>0$ fixed $), b_{k} \in W^{1,2}(0, T), k=\overline{1, n+m}$, $u_{0}, v_{0} \in H^{1}\left(\mathbb{R}_{+} ; \mathbb{R}^{n}\right), w_{0} \in \mathbb{R}^{m}, \operatorname{col}\left(v_{0}(0), w_{0}\right) \in D(G)$ and $B_{1}(0) \in$ $u_{0}(0)+G_{11}\left(v_{0}(0)\right)+G_{12}\left(w_{0}\right)$. Then the problem $(\widetilde{\mathrm{P}}) \Leftrightarrow(\widetilde{\mathrm{S}})+(\widetilde{\mathrm{BC}})+(\widetilde{\mathrm{IC}})$ has a unique strong solution $y=\operatorname{col}(u, v, w) \in W^{1, \infty}(0, T ; Y)$. Moreover $u, v \in L^{\infty}\left(0, T ; H^{1}\left(\mathbb{R}_{+} ; \mathbb{R}^{n}\right)\right),\left(B_{1}(t)=\operatorname{col}\left(b_{1}(t), \ldots, b_{n}(t)\right)\right)$.
Theorem 4. Assume the assumptions (A1) ab, (A2)ac and (A3) hold. If $f, g \in L^{1}\left(0, T ; L^{2}\left(\mathbb{R}_{+} ; \mathbb{R}^{n}\right)\right)(T>0$ fixed $), b_{k} \in L^{2}(0, T), k=\overline{1, n+m}$, $u_{0}, v_{0} \in L^{2}\left(\mathbb{R}_{+}\right), w_{0} \in \overline{D\left(G_{12}\right) \cap D\left(G_{22}\right)}$, then the problem $(\mathrm{S})+(\mathrm{BC})+(\mathrm{IC})$ has a unique weak solution $y=\operatorname{col}(u, v, w) \in C([0, T] ; Y)$.

For the proofs of Theorem 3 and Theorem 4 see [10].

3. The existence of time periodic solutions

In the first case, i.e., $B(t)=$ const., in fact under our assumption, $B(t)=0$, we have the following result.
Theorem 5. Assume that (A1)abc, (A2)ab, (A3) hold and

$$
f, g \in L_{l o c}^{1}\left(\mathbb{R}_{+} ; L^{2}\left(\mathbb{R}_{+} ; \mathbb{R}^{n}\right)\right)
$$

are T_{0}-periodic in time, that is $f\left(t+T_{0}, x\right)=f(t, x), g\left(t+T_{0}, x\right)=g(t, x)$, for a.a. $(t, x) \in \mathbb{R}_{+} \times \mathbb{R}_{+}$. Then the problem $(\mathrm{S})+(\mathrm{BC})$ has at least one T_{0}-periodic weak solution.

Proof. Let $y^{0}=\operatorname{col}\left(u^{0}, v^{0}, w^{0}\right) \in D(\mathcal{A})$ be fixed. We define the operator \mathcal{C} by

$$
D(\mathcal{C})=\left\{y=\operatorname{col}(u, v, w) \in Y ; y+y^{0} \in D(\mathcal{A})\right\}, \mathcal{C}(y)=(\mathcal{A}+\mathcal{B})\left(y+y^{0}\right)
$$

Because the operators \mathcal{A}, \mathcal{B} are maximal monotone (Lemma 1, Lemma 2), the operator \mathcal{B} is single-valued and everywhere defined, by $\{[1]$, Theorem 1.7, Chapter II $\}$, we deduce that the operator $\mathcal{A}+\mathcal{B}$, and also \mathcal{C} are maximal monotone. Using now Lemma 3, we obtain that the operator \mathcal{C} is coercive with respect to 0 . With the change of functions $\delta_{k}(t, x)=u_{k}(t, x)-u_{k}^{0}(x)$, $\theta_{k}(t, x)=v_{k}(t, x)-v_{k}^{0}(x), k=\overline{1, n}, \tau_{j}(t)=w_{j}(t)-w_{j}^{0}, j=\overline{1, m}$, the problem $(\mathrm{S})+(\mathrm{BC})$ becomes

$$
\begin{equation*}
\frac{d \omega}{d t}+\mathcal{C}(\omega) \ni F \tag{E}
\end{equation*}
$$

where $\omega=\operatorname{col}(\delta, \theta, \tau), \delta=\operatorname{col}\left(\delta_{1}, \ldots, \delta_{n}\right), \quad \theta=\operatorname{col}\left(\theta_{1}, \ldots, \theta_{n}\right), \tau=$ $\operatorname{col}\left(\tau_{1}, \ldots, \tau_{m}\right)$.

Using now the periodicity of functions f, g, and $\{[4]$, Proposition 1, p.285\}, we deduce that the solutions of the equation $(\widetilde{\mathrm{E}})$ are bounded on the positive half-axis. Therefore all the solutions of the equation $(\mathrm{P})_{1}$ are also bounded, that is $\sup _{t \geq 0}\|y(t, \cdot)\|_{Y}<\infty$. We define the operator $\mathcal{L}: \overline{D(\mathcal{A})} \rightarrow \overline{D(\mathcal{A})}, \mathcal{L}\left(y^{0}\right)=$ $y\left(T_{0} ; y^{0}\right)$, where $y\left(t, y^{0}\right), t \geq 0$ is the weak solution of the problem $(\mathrm{S})+(\mathrm{BC})$ with the initial date y^{0}. This operator is nonexpansive and if $y^{0} \in \overline{D(\mathcal{A})}$, the sequence $\left\{\mathcal{L}^{n}\left(y^{0}\right)\right\}_{n \geq 1}$ is bounded in Y, because $\mathcal{L}^{n}\left(y^{0}\right)=y\left(n T_{0} ; y^{0}\right)$. Using a theorem due to F.E. Browder and W.V. Petryshyn (see [3]) we deduce that the operator \mathcal{L} has at least one fixed point. This means that the problem $(\mathrm{S})+(\mathrm{BC})$ has at least one time periodic weak solution with the period T_{0}. Q.E.D.

Remark. If $\alpha_{k}(x, \cdot)$ and $\beta_{k}(x, \cdot)$ are strongly monotone, a.a. $x \in \mathbb{R}_{+}$and $f, g \in W_{l o c}^{1,1}\left(\mathbb{R} ; L^{2}\left(\mathbb{R}_{+} ; \mathbb{R}^{n}\right)\right)$ are T_{0}-periodic functions in the variable t, then the problem $(\mathrm{S})+(\mathrm{BC})$ has a T_{0}-periodic strong solution.

In the second case, i.e., $B(t) \neq$ const., we shall firstly present some conditions for the boundedness of the solutions to problem $(\mathrm{S})+(\mathrm{BC})$.

Theorem 6. Assume that (A1)abc, (A2)ac, (A3) hold, and $f, g \in$ $L_{l o c}^{2}\left(\mathbb{R}_{+} ; L^{2}\left(\mathbb{R}_{+} ; \mathbb{R}^{n}\right)\right), b_{k} \in L_{l o c}^{2}\left(\mathbb{R}_{+}\right), k=\overline{1, n+m}$, verify the conditions

$$
\begin{gather*}
\sup _{t \geq 0} \int_{t}^{t+1}\|f(\theta, \cdot)\|_{L^{2}\left(\mathbb{R}_{+} ; \mathbb{R}^{n}\right)}^{2} d \theta \leq C_{0}, \sup _{t \geq 0} \int_{t}^{t+1}\|g(\theta, \cdot)\|_{L^{2}\left(\mathbb{R}_{+} ; \mathbb{R}^{n}\right)}^{2} d \theta \leq C_{0} \\
\sup _{t \geq 0} \int_{t}^{t+1}\left|b_{k}(\theta)\right|^{2} d \theta \leq C_{0}, \quad\left(C_{0}>0\right) \tag{5}
\end{gather*}
$$

Then, every weak solution of the problem $(\mathrm{S})+(\mathrm{BC})$ is bounded on \mathbb{R}_{+}.
Proof. Because the operator $\mathcal{A}+\mathcal{B}$ is maximal monotone and coercive, it follows that $R(\mathcal{A}+\mathcal{B})=Y$ and, hence $F=(\mathcal{A}+\mathcal{B})^{-1}(0) \neq \emptyset$. We suppose again that G is single-valued.

First, we show that if $f, g \in W_{l o c}^{1,1}\left(\mathbb{R}_{+} ; L^{2}\left(\mathbb{R}_{+} ; \mathbb{R}^{n}\right)\right)$ and $b_{k} \in W_{l o c}^{1,2}\left(\mathbb{R}_{+}\right)$, $k=\overline{1, n+m}$, verify the conditions (5), then every strong solution of the problem $(\mathrm{S})+(\mathrm{BC})$ is bounded on \mathbb{R}_{+}. Let $T>0$ be arbitrary, but fixed for the moment, $f, g \in W^{1,1}\left(0, T ; L^{2}\left(\mathbb{R}_{+} ; \mathbb{R}^{n}\right)\right), b_{k} \in W^{1,2}(0, T) k=\overline{1, n+m}$, verify the conditions $(5), u_{0}, v_{0} \in H^{1}\left(\mathbb{R}_{+} ; \mathbb{R}^{n}\right), w_{0} \in \mathbb{R}^{m}, \operatorname{col}\left(v_{0}(0), w_{0}\right) \in$ $D(G)$ and $B_{1}(0) \in u_{0}(0)+G_{11}\left(v_{0}(0)\right)+G_{12}\left(w_{0}\right)$. Then the strong solution $y(t)=\operatorname{col}(u(t), v(t), w(t))$ of the problem $(\mathrm{S})+(\mathrm{BC})+(\mathrm{IC})$ corresponding to above data satisfies

$$
\left\{\begin{array}{l}
\frac{d y}{d t}(t)+\mathcal{A}(y(t))+\mathcal{B}(y(t))=F_{1}(t, \cdot), \quad 0 \leq t<T \tag{6}\\
u(t, 0)=-G_{11}(v(t, 0))-G_{12}(w(t))+B_{1}(t), \quad 0 \leq t<T \\
y(0)=y_{0}
\end{array}\right.
$$

where $F_{1}(t, \cdot)=\operatorname{col}\left(f(t, \cdot), g(t, \cdot), S^{-1} B_{2}(t)\right)$.
Let $\gamma=\operatorname{col}(p, q, r) \in F$, that is

$$
\begin{equation*}
(\mathcal{A}+\mathcal{B})(\gamma)=0 \tag{7}
\end{equation*}
$$

We subtract from equation $(6)_{1}$ the relation (7) and we multiply the obtained relation by $y(t)-\gamma$ in the space Y. We obtain

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\|y(t)-\gamma\|_{Y}^{2}+\left\langle G\binom{v(t, 0)}{w(t)}-G\binom{q(0)}{r},\binom{v(t, 0)-q}{w(t)-r}\right\rangle_{\mathbb{R}^{n+m}} \\
+ & \sum_{k=1}^{n} \int_{0}^{\infty}\left(\alpha_{k}\left(x, u_{k}(t, x)\right)-\alpha_{k}\left(x, p_{k}(x)\right)\right) \cdot\left(u_{k}(t, x)-p_{k}(x)\right) d x \\
+ & \sum_{k=1}^{n} \int_{0}^{\infty}\left(\beta_{k}\left(x, v_{k}(t, x)\right)-\beta_{k}\left(x, q_{k}(x)\right)\right) \cdot\left(v_{k}(t, x)-q_{k}(x)\right) d x
\end{aligned}
$$

$=\left\langle B_{1}(t), v(t, 0)-q(0)\right\rangle_{\mathbb{R}^{n}}+\left\langle B_{2}(t), w(t)-r\right\rangle_{\mathbb{R}^{m}}$
$+\langle f(t, \cdot), u(t, \cdot)-p\rangle_{L^{2}\left(\mathbb{R}_{+} ; \mathbb{R}^{n}\right)}+\langle g(t, \cdot), v(t, \cdot)-q\rangle_{L^{2}\left(\mathbb{R}_{+} ; \mathbb{R}^{n}\right)}, \quad 0 \leq t<T$.
Therefore using the assumption (A2)c we get $\frac{1}{2} \frac{d}{d t}\|y(t)-\gamma\|_{Y}^{2}+\zeta_{2}\|v(t, 0)-q(0)\|_{\mathbb{R}^{n}}^{2}+\zeta_{2}\|w(t)-r\|_{\mathbb{R}^{m}}^{2}$
$+\sum_{k=1}^{n} \int_{0}^{\infty}\left(\alpha_{k}\left(x, u_{k}(t, x)\right)-\alpha_{k}\left(x, p_{k}(x)\right)\right) \cdot\left(u_{k}(t, x)-p_{k}(x)\right) d x$
$+\sum_{k=1}^{n} \int_{0}^{\infty}\left(\beta_{k}\left(x, v_{k}(t, x)\right)-\beta_{k}\left(x, q_{k}(x)\right)\right) \cdot\left(v_{k}(t, x)-q_{k}(x)\right) d x$
$\leq \frac{1}{\zeta_{0}}\left\|B_{1}(t)\right\|_{\mathbb{R}^{n}}^{2}+\zeta_{0}\|v(t, 0)-q(0)\|_{\mathbb{R}^{n}}^{2}+\frac{1}{\zeta_{0}}\left\|B_{2}(t)\right\|_{\mathbb{R}^{m}}^{2}+\zeta_{0}\|w(t)-r\|_{\mathbb{R}^{m}}^{2}$
$+\left\|F_{0}(t, \cdot)\right\|_{X}\|y(t)-\gamma\|_{Y}, \quad 0 \leq t<T$,
where $F_{0}(t, \cdot)=\operatorname{col}(f(t, \cdot), g(t, \cdot))$.
We choose $0<\zeta_{0}<\zeta_{2}$; then the above inequality gives us

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\|y(t)-\gamma\|_{Y}^{2}+\sum_{k=1}^{n} \int_{0}^{\infty}\left(\alpha_{k}\left(x, u_{k}(t, x)\right)-\alpha_{k}\left(x, p_{k}(x)\right)\right)\left(u_{k}(t, x)-p_{k}(x)\right) d x \\
& \left.\quad+\sum_{k=1}^{n} \int_{0}^{\infty}\left(\beta_{k}\left(x, v_{k}(t, x)\right)-\beta_{k}\left(x, q_{k}(x)\right)\right) \cdot\left(v_{k}(t, x)\right)-q_{k}(x)\right) d x \\
& \quad+C_{5}\|w(t)-r\|_{\mathbb{R}^{m}}^{2} \leq C_{6}\|B(t)\|_{\mathbb{R}^{n+m}}^{2}+\left\|F_{0}(t, \cdot)\right\|_{X}\|y(t)-\gamma\|_{Y}, \quad 0 \leq t<T \tag{8}
\end{align*}
$$

where the positive constant C_{5}, C_{6} are independent of T.
Now, by assumptions (A1)abc we have

$$
\left(\alpha_{k}\left(x, u_{k}(t, x)\right)-\alpha_{k}\left(x, p_{k}(x)\right)\right) \cdot\left(u_{k}(t, x)-p_{k}(x)\right) \geq\left(c_{k}\left|u_{k}(t, x)\right|\right.
$$

$\left.-\xi_{k}(x)\right) \cdot\left|u_{k}(t, x)-p_{k}(x)\right|-\left(a_{k}\left|p_{k}(x)\right|+\varphi_{k}(x)\right)\left|u_{k}(t, x)-p_{k}(x)\right|$
$\geq c_{k}\left(\left|u_{k}(t, x)-p_{k}(x)\right|-\left|p_{k}(x)\right|\right) \cdot\left|u_{k}(t, x)-p_{k}(x)\right|-\left(\xi_{k}(x)+a_{k}\left|p_{k}(x)\right|\right.$
$\left.+\left|\varphi_{k}(x)\right|\right) \cdot\left|u_{k}(t, x)-p_{k}(x)\right|=c_{k}\left|u_{k}(t, x)-p_{k}(x)\right|^{2}-\left(c_{k}\left|p_{k}(x)\right|+\xi_{k}(x)\right.$
$\left.+a_{k}\left|p_{k}(x)\right|+\left|\varphi_{k}(x)\right|\right) \cdot\left|u_{k}(t, x)-p_{k}(x)\right| \geq c_{k}\left|u_{k}(t, x)-p_{k}(x)\right|^{2}-C_{7} \mid u_{k}(t, x)$
$-\left.p_{k}(x)\right|^{2}-C_{8}\left(\left(c_{k}+a_{k}\right)^{2} p_{k}^{2}(x)+\xi_{k}^{2}(x)+\varphi_{k}^{2}(x)\right)=\widetilde{\widetilde{c}}_{k}\left|u_{k}(t, x)-p_{k}(x)\right|^{2}$
$-C_{9}\left(p_{k}^{2}(x)+\xi_{k}^{2}(x)+\varphi_{k}^{2}(x)\right), \quad x>0, \quad 0 \leq t \leq T, \quad k=\overline{1, n}$,
(we choose $C_{7}>0$ such that $C_{7}<c_{k} ; \widetilde{\widetilde{c}}_{k}=c_{k}-C_{7}, k=\overline{1, n}$, and $C_{8}, C_{9}>0$ are independent of T).

Integrating over $(0, \infty)$ the obtained inequality, we deduce

$$
\begin{align*}
& \int_{0}^{\infty}\left(\alpha_{k}\left(x, u_{k}(t, x)\right)-\alpha_{k}\left(x, p_{k}(x)\right)\right) \cdot\left(u_{k}(t, x)-p_{k}(x)\right) d x \tag{9}\\
& \quad \geq \widetilde{\widetilde{c}}_{k}\left\|u_{k}(t)-p_{k}\right\|_{L^{2}\left(\mathbb{R}_{+}\right)}^{2}-C_{10}, \quad 0 \leq t \leq T, \quad k=\overline{1, n}
\end{align*}
$$

In the same manner we obtain

$$
\begin{align*}
& \int_{0}^{\infty}\left(\beta_{k}\left(x, v_{k}(t, x)\right)-\beta_{k}\left(x, q_{k}(x)\right)\right) \cdot\left(v_{k}(t, x)-q_{k}(x)\right) d x \tag{10}\\
& \quad \geq \widetilde{\widetilde{d}}_{k}\left\|v_{k}(t)-q_{k}\right\|_{L^{2}\left(\mathbb{R}_{+}\right)}^{2}-C_{11}, \quad 0 \leq t \leq T, \quad k=\overline{1, n}
\end{align*}
$$

where $\widetilde{\widetilde{d}}_{k}>0, k=\overline{1, n}$, and the constants $C_{10}, C_{11}>0$ are independent of T.
From the inequalities (8)-(10) we deduce

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\|y(t)-\gamma\|_{Y}^{2}+C_{5}\|w(t)-r\|_{\mathbb{R}^{m}}^{2}+\sum_{k=1}^{n} \widetilde{\widetilde{c}}_{k}\left\|u_{k}(t)-p_{k}\right\|_{L^{2}\left(\mathbb{R}_{+}\right)}^{2} \\
&+ \sum_{k=1}^{n} \widetilde{\widetilde{d}}_{k}\left\|v_{k}(t)-q_{k}\right\|_{L^{2}\left(\mathbb{R}_{+}\right)}^{2} \leq n C_{10}+n C_{11}+C_{6}\|B(t)\|_{\mathbb{R}^{n+m}}^{2}+\left\|F_{0}(t, \cdot)\right\|_{X} \| y(t) \\
&-\gamma \|_{Y}, \\
& \Rightarrow \frac{1}{2} \frac{d}{d t}\|y(t)-\gamma\|_{Y}^{2}+C_{12}\|y(t)-\gamma\|_{Y}^{2} \leq C_{13}+C_{6}\|B(t)\|_{\mathbb{R}^{n+m}}^{2}+C_{14}\left\|F_{0}(t, \cdot)\right\|_{X}^{2} \\
&+ C_{15}\|y(t)-\gamma\|_{Y}^{2}, 0 \leq t<T \text {, } \\
&\text { (we choose } \left.C_{i}>0, i=\overline{12,15}, \text { such that } C_{15}<C_{12}\right) \text {. }
\end{aligned}
$$

Therefore we obtain

$$
\begin{align*}
\frac{1}{2} \frac{d}{d t}\|y(t)-\gamma\|_{Y}^{2}+C_{16}\|y(t)-\gamma\|_{Y}^{2} & \leq C_{13}+C_{6}\|B(t)\|_{\mathbb{R}^{n+m}}^{2} \tag{11}\\
+C_{14}\left\|F_{0}(t, \cdot)\right\|_{X}^{2}, \quad 0 & \leq t<T
\end{align*}
$$

with $C_{16}>0$ independent of T.
Because T is arbitrary, the inequality (11) is verified for a.a. $t \in[0, \infty)$. Now we shall use the following lemma from [4] (see \{[4], Lemma 4, p.286\}).
Lemma 4. Let λ be a nondecreasing nonnegative function on $\mathbb{R}_{+}, \alpha>0$, $C>0, \zeta(t)$ be measurable nonnegative function, with $\int_{t}^{t+1} \zeta(\theta) d \theta \leq C$, for all $t \geq 0$. Let $V \in C\left([0, \infty), \mathbb{R}_{+}\right)$be absolutely continuous on every compact interval of \mathbb{R}_{+}, such that $\frac{d V}{d t}+\lambda(V(t)) \leq \zeta(t)$, for a.a. $t \in[0, \infty)$. Then, if $\alpha \geq V(0)$ and $\lambda(\alpha) \geq C$, we have $V(t) \leq \alpha+C$, for all $t \geq 0$.

We consider $V(t)=\|y(t)-\gamma\|_{Y}^{2}, \lambda(u)=2 C_{16} u, \zeta(t)=2 C_{13}+$ $2 C_{6}\|B(t)\|_{\mathbb{R}^{n+m}}^{2}+2 C_{14}\left\|F_{0}(t, \cdot)\right\|_{X}^{2}$. Using the conditions (5) we have

$$
\sup _{t \geq 0} \int_{t}^{t+1} \zeta(\theta) d \theta \leq 2 C_{13}+2(n+m) C_{0} C_{6}+4 C_{0} C_{14} \stackrel{\text { not }}{=} \widetilde{C} .
$$

Therefore, Lemma 4 gives us that if $\alpha \geq \max \left\{\left\|y_{0}-\gamma\right\|_{Y}^{2}, \frac{\widetilde{C}}{2 C_{16}}\right\}$, then we obtain $\|y(t)-\gamma\|_{Y}^{2} \leq \alpha+\widetilde{C}$, for all $t \geq 0$. We deduce that the solution
$y(t)$ is bounded on \mathbb{R}_{+}. The extension to the case of weak solutions is then immediate, so we obtain the conclusion of the theorem. Q.E.D.
Theorem 7. Assume that (A1)ab, (A2)ac, (A3) hold,

$$
f, g \in L_{l o c}^{1}\left(\mathbb{R}_{+} ; L^{2}\left(\mathbb{R}_{+} ; \mathbb{R}^{n}\right)\right)
$$

are T_{0}-periodic in time and $b_{k} \in L_{l o c}^{2}\left(\mathbb{R}_{+}\right), k=\overline{1, n+m}$ are T_{0}-periodic functions. Then, if the problem $(\mathrm{S})+(\mathrm{BC})$ has at least one bounded solution on \mathbb{R}_{+}, then the problem has also a weak T_{0}-periodic solution.
Proof. Let $y=\operatorname{col}(u, v, w)$ be a bounded solution on \mathbb{R}_{+}of the problem $(\mathrm{S})+(\mathrm{BC})$. Then using the following inequality for the solutions y and \bar{y}

$$
\|y(t)-\bar{y}(t)\|_{Y} \leq\|y(0)-\bar{y}(0)\|_{Y}, \quad t>0
$$

we deduce that all the solutions of the problem $(\mathrm{S})+(\mathrm{BC})$ are bounded on \mathbb{R}_{+}. Now, using the operator \mathcal{L}, defined as in the proof of Theorem 5 (for this case) and the same fixed point theorem due to F.E. Browder and W.V. Petryshyn, we conclude that the problem $(\mathrm{S})+(\mathrm{BC})$ has at least one T_{0}-periodic weak solution. Q.E.D.

Now, combining Theorem 6 and Theorem 7, and by using the fact that a periodic function from space L^{2} belongs to the Stepanov space of index 2 , we obtain sufficient conditions for the existence of time periodic weak solutions for our problem, formulated in the following corollary.
Corollary. Assume that (A1)abc, (A2)ac, (A3), hold,

$$
f, g \in L_{l o c}^{2}\left(\mathbb{R}_{+} ; L^{2}\left(\mathbb{R}_{+} ; \mathbb{R}^{n}\right)\right)
$$

are T_{0}-periodic in time, and $b_{k} \in L_{l o c}^{2}\left(\mathbb{R}_{+}\right), k=\overline{1, n+m}$ are T_{0}-periodic functions. Then the problem $(\mathrm{S})+(\mathrm{BC})$ has at least a time periodic weak solution with period T_{0}.

4. Some remarks in the case $x \in \mathbb{R}$

If the spatial variable x belongs to \mathbb{R}, then from the boundary condition (BC) it only remains $w^{\prime}(t) \in-S^{-1} G_{22}(w(t))+S^{-1} B_{2}(t)$. This equation with the initial date $w(0)=w_{0}$ give by integration the function $w(t)$. Therefore,
for u and v we obtain the problem

$$
\left\{\begin{align*}
\frac{\partial u}{\partial t}(t, x)+\frac{\partial v}{\partial x}(t, x)+\alpha(x, u) & =f(t, x) \tag{S}\\
\frac{\partial v}{\partial t}(t, x)+\frac{\partial u}{\partial x}(t, x)+\beta(x, v) & =g(t, x) \\
t>0, x & \in \mathbb{R}
\end{align*}\right.
$$

with the initial data

$$
\begin{equation*}
u(0, x)=u_{0}(x), \quad v(0, x)=v_{0}(x), \quad x \in \mathbb{R} \tag{IC}
\end{equation*}
$$

under the assumptions ($\widetilde{\mathrm{A} 1}$)abc which are (A1) abc with \mathbb{R} instead of \mathbb{R}_{+}.
We consider the space $Z=\left(L^{2}\left(\mathbb{R} ; \mathbb{R}^{n}\right)\right)^{2}$ with the standard scalar product and the operators
$\mathcal{C}: D(\mathcal{C}) \subset Z \rightarrow Z, \quad D(\mathcal{C})=\left(H^{1}\left(\mathbb{R} ; \mathbb{R}^{n}\right)\right)^{2}, \quad \mathcal{C}(\operatorname{col}(u, v))=\operatorname{col}\left(v^{\prime}, u^{\prime}\right)$,
$\mathcal{D}: D(\mathcal{D}) \subset Z \rightarrow Z, \mathcal{D}(\operatorname{col}(u, v))=\operatorname{col}(\alpha(\cdot, u), \beta(\cdot, v))$.
If ($\widetilde{\mathrm{A} 1})$ ab hold, then \mathcal{C} is maximal monotone in Z, and \mathcal{D} is everywhere defined $(D(\mathcal{D})=Z)$ and maximal monotone. By using the operators \mathcal{C} and \mathcal{D} the problem $(\overline{\mathrm{S}})+(\overline{\mathrm{IC}})$ can be written as

$$
\left\{\begin{array}{l}
\frac{d z}{d t}(t)+\mathcal{C}(z(t))+\mathcal{D}(z(t))=\bar{F}(t, \cdot), t>0, \text { in } Z \tag{P}\\
z(0)=z_{0}
\end{array}\right.
$$

where $z(t)=\operatorname{col}(u(t), v(t)), z_{0}=\operatorname{col}\left(u_{0}, v_{0}\right), \bar{F}(t, \cdot)=\operatorname{col}(f(t, \cdot), g(t, \cdot))$.
The existence, uniqueness and asymptotic behavior of the strong and weak solutions of the problem $(\overline{\mathrm{S}})+(\overline{\mathrm{IC}})$ have been investigated in [10]. We shall only recall the existence results.
Theorem 8. a) Assume that ($\widetilde{\mathrm{A} 1})$ ab hold. If $f, g \in W^{1,1}\left(0, T ; L^{2}\left(\mathbb{R} ; \mathbb{R}^{n}\right)\right)$ $(T>0$ fixed $), u_{0}, v_{0} \in H^{1}\left(\mathbb{R} ; \mathbb{R}^{n}\right)$, then the problem $(\overline{\mathrm{P}}) \Leftrightarrow(\overline{\mathrm{S}})+(\overline{\mathrm{IC}})$ has a unique strong solution $z=\operatorname{col}(u, v) \in W^{1, \infty}(0, T ; Z)$. Moreover $u, v \in$ $L^{\infty}\left(0, T ; H^{1}\left(\mathbb{R} ; \mathbb{R}^{n}\right)\right)$.
b) Assume that ($\widetilde{\mathrm{A} 1}) \mathrm{ab}$ hold. If $f, g \in L^{1}\left(0, T ; L^{2}\left(\mathbb{R} ; \mathbb{R}^{n}\right)\right)(T>0$ fixed $)$, $u_{0}, v_{0} \in L^{2}\left(\mathbb{R} ; \mathbb{R}^{n}\right)$, then the problem $(\overline{\mathrm{S}})+(\overline{\mathrm{IC}})$ has a unique weak solution $z=\operatorname{col}(u, v) \in C([0, T] ; Z)$.

Using similar arguments as in the case $x \in \mathbb{R}_{+}$we obtain for this problem the following results.

Lemma 5. Assume that ($\widetilde{\mathrm{A} 1})$ abc hold. Then the operator $\mathcal{C}+\mathcal{D}$ is coercive with respect to any $z^{0}=\operatorname{col}\left(u^{0}, v^{0}\right) \in D(\mathcal{C})$, that is

$$
\lim _{\substack{\|z\|_{Z} \rightarrow \infty \\ z \in D(\mathcal{C})}} \frac{\left\langle(\mathcal{C}+\mathcal{D})(z), z-z^{0}\right\rangle_{Z}}{\|z\|_{Z}}=\infty
$$

Theorem 9. Assume that ($\widetilde{\mathrm{A} 1})$ abc hold and $f, g \in L_{l o c}^{1}\left(\mathbb{R}_{+} ; L^{2}\left(\mathbb{R} ; \mathbb{R}^{n}\right)\right)$ are T_{0}-periodic in time, that is $f\left(t+T_{0}, x\right)=f(t, x), g\left(t+T_{0}, x\right)=g(t, x)$, for a.a. $(t, x) \in \mathbb{R}_{+} \times \mathbb{R}$. Then the system $(\overline{\mathrm{S}})$ has at least one T_{0}-periodic weak solution.

References

[1] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976.
[2] H. Brezis, Operateurs Maximaux Monotones et Semigroupes de Contractions dans les Espaces de Hilbert, North-Holland, Amsterdam, 1973.
[3] F.E. Browder, W. V. Petryshyn, The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Amer. Math. Soc., $\mathbf{7 2}$ (1966), 571-575.
[4] A. Haraux, Nonlinear Evolution Equations - Global Behavior of Solutions, Springer Verlag, Berlin, 1981.
[5] S. Ladde, V. Lakshmikantham, A.S. Vatsalo, Monotone, Iterative Techniques for Nonlinear Differential Equations, Monographs, Advanced Texts and Surveys in Pure and Applied Mathematics, 27 Pitman, 1985.
[6] V. Lakshmikantham, S. Leela, Nonlinear Differential Equations in Abstract Spaces, International Series in Nonlinear Mathematics: Theory, Methods and Applications, Vol. 2, Pergamon Press, 1981.
[7] R. Luca, An existence result for a nonlinear hyperbolic system, Diff. Integral Equations, 8(1995), 887-900.
[8] R. Luca, Time periodic solutions for a nonlinear hyperbolic system, Nonlinear Anal., 45(2001), 801-815.
[9] R. Luca, Time almost-periodic solutions for a class of nonlinear hyperbolic problems, Comm. Appl. Nonlinear Anal., 13(2006), 1-14.
[10] R. Luca, Monotone boundary conditions for a class of nonlinear hyperbolic systems, Int. J. Pure Appl. Math., 32(2006), 83-103.
[11] R. Luca-Tudorache, Boundary Value Problems for Nonlinear Hyperbolic Systems and Applications, Casa de Editura Venus, Iasi, 2003 (in Romanian).
[12] C.A. Marinov, P. Neittaanmaki, Mathematical Models in Electrical Circuits: Theory and Applications, Kluwer Academic Publishers, Dordrecht, 1991.

Received: July 7, 2007; Accepted: November 22, 2007.

[^0]: This paper was presented at the International Conference on Nonlinear Operators, Differential Equations and Applications held in Cluj-Napoca (Romania) from July 4 to July 8, 2007.

