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Abstract. In this work we consider planar polynomial differential systems of the form:

ẋ = P (x, y), ẏ = Q(x, y),

where P (x, y) and Q(x, y) are polynomials with real coefficients whose maximum degree is

d. We only consider systems of this form with the circumference x2 +y2−1 = 0 as a periodic

orbit. These systems take the form:

ẋ = −y c(x, y) + f(x, y) a(x, y), ẏ = x c(x, y) + f(x, y) b(x, y),

where f(x, y) = (x2 + y2 − 1)/2 and a, b and c are real polynomials. Our interest in this

work is to study the multiplicity of the circumference as periodic orbit of the aforementioned

system. This work contains some theorems that characterize when the circumference is a

limit cycle of multiplicity m and when it belongs to a period annulus. Moreover, if we

assume that the system is of a particular form, we will give an upper bound for the possible

multiplicities that the circumference may have as a limit cycle. Finally, we apply our results

to some examples.
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1. Introduction and statement of the main results

In this work we consider planar polynomial differential systems of the form:

dx

dt
= P (x, y),

dy

dt
= Q(x, y), (1.1)

where P (x, y) and Q(x, y) are polynomials with real coefficients whose maxi-
mum degree is d.

We only consider systems of the form (1.1) with the circumference x2 +y2−
1 = 0 as periodic orbit. We denote by Γ the graphic of this periodic orbit. In
the works [3, 7], it is shown that any polynomial differential system with the
circumference as periodic orbit takes the form:

ẋ = −y c(x, y) + f(x, y) a(x, y), ẏ = x c(x, y) + f(x, y) b(x, y), (1.2)

where f(x, y) = (x2 +y2−1)/2 and a, b and c are real polynomials. Moreover,
since f(x, y) = 0 needs to be a periodic orbit, the circumference cannot contain
any critical point of the system. Therefore, we assume that there is no real
point in the intersection of f(x, y) = 0 and c(x, y) = 0. In the case of c ≡ 0,
Γ is filled with critical points and then f = 0 is not a periodic orbit.

Our interest in this work is to study the multiplicity of the circumference
as periodic orbit of system (1.2). The following section contains the definition
of multiplicity of a periodic orbit.

In order to state our results we prefer to write system (1.2) in the equivalent
Pfaffian form: ω = 0 with

ω = c df + f ω0,

where c(x, y) is the aforementioned polynomial and ω0 is the polynomial 1-
form given by ω0 = b dx − a dy. We recall that df = xdx+ ydy.

We present a generalization of Melnikov functions to study the multiplicity
of the circumference as a periodic orbit of system (1.2). Melnikov functions are
classically used for the study of the bifurcations of limit cycles from a period
annulus. We give a description of these functions and its use in the following
section.
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The most important results we present are the following ones.

Theorem 1.1. Γ is a limit cycle of multiplicity 1 of system (1.2) if, and only

if,
∮

f=0

ω0

c
6= 0.

We are going to use the following result due to Françoise [11] which char-
acterizes the decomposition of any polynomial 1-form ω in relation with the
algebraic curve f = 0.

Proposition 1.2. [11] Given any polynomial 1-form ω, there exist g, S
polynomials in R[x, y] and ψ a polynomial in R[x], such that

ω = g df + dS + ψ(f) (y dx− x dy),

where f = (x2 + y2 − 1)/2.

In particular, we have that
∮
f=0 ω0 = 0 if, and only if, there exist g0, S0

polynomials and a polynomial 1-form ω1, such that ω0 = g0 df + dS0 + f ω1,
where ω1 is the following 1-form ω1 = ψ(f) (y dx− x dy).

We consider the particular case in which c is a constant different from zero
and by scaling we take c ≡ 1. Using the aforementioned result, we can prove
the following one.

Theorem 1.3. Consider the particular case c(x, y) ≡ 1. Then, Γ is a limit
cycle of multiplicity 2 of system (1.2) if, and only if, ω0 = g0df + dS0 + fω1

and
∮

f=0
e−S0(ω1 − g0dS0) 6= 0.

The previous theorem shows that to characterize when the circumference is
a limit cycle of multiplicity two, one needs to compute an integral involving
elementary functions. Since we are mainly interested in the algebraic prop-
erties of the multiplicity, we are going to restrict ourselves to the particular
case in which c ≡ 1 and S0 is a constant, that is, we are going to determine
when the circumference is a limit cycle of multiplicity m, with m ≥ 2, of the
following 1-form:

ω = df + f g0 df + f2 ω1, (1.3)

where, f = (x2 +y2−1)/2, g0 is a polynomial in R[x, y] and ω1 is the following
1-form ω1 = ψ(f) (y dx− x dy), with ψ a polynomial in R[x].
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Theorem 1.4. Consider the 1-form (1.3). Then, Γ is a limit cycle of multi-
plicity m if, and only if, ω = df + f g0 df + fm φ(f) (ydx − xdy), with φ a
polynomial in R[x] such that φ(0) 6= 0.

The following corollary specifies when the circumference Γ belongs to a
period annulus for the 1-form described in (1.3).

Corollary 1.5. Consider the 1-form (1.3). Then, Γ belongs to a continuum
of periodic orbits if, and only if, ω = df + f g0 df , where g0 is any real
polynomial.

We remark that the 1-form ω = df + f g0 df has the function f as first
integral and 1 + f g0 as inverse integrating factor. The definitions of these
notions of integrability can be found in [7, 13] and the references therein.

We have characterized when the circumference Γ is a limit cycle of multi-
plicity m and when it belongs to a period annulus. We assume that the 1-form
(1.3) has degree d and the following result gives an upper bound for the pos-
sible multiplicities that the circumference may have as limit cycle of (1.3) in
terms of d. Since this upper bound is sharp, we have the value of the cyclicity
of Γ inside the family of systems of degree d whose associated 1-form reads
for (1.3). The definition of cyclicity and its relationship with the multiplicity
is described in the following section.

We denote by bxc the floor of the real number x.

Theorem 1.6. Consider the 1-form (1.3) and assume that it is of degree d.
Then, the cyclicity of Γ as a limit cycle is b(d− 1)/2c.

This work is organized as follows. The next section contains the definitions
and previous results needed to state and prove our theorems. In addition, this
section contains the description of the state of the art of the set forth problem.
The first definition that we need is the multiplicity of a limit cycle of a planar
differential system, which is given in terms of the Poincaré return map. One
of the classical tools to determine the multiplicity of a limit cycle consists
in changing the system to local coordinates and to characterize the Poincaré
return map in these coordinates. We describe how this method gives rise to
several formulae to tackle our problem. However the determination of these
formulae is computationally very difficult. Another way to do this study is to
consider the notion of analytic m-solution. This notion is introduced in [13]
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and it allows the computation of the multiplicity of a limit cycle, provided that
one knows an analytic m-solution. In order to complete the understanding of
the meaning of multiplicity, we give its relationship with the notion of cyclicity.
We remark that the cyclicity is related with the possible bifurcations of a limit
cycle, whereas the multiplicity is defined for a fixed system.

We introduce the concept of bifurcation of limit cycles from a continuum
of periodic orbits. This bifurcation can be related to the stability problem as
we will explain in Section 2. To start with, we describe how the definition of
successive Melnikov functions allows to control the number and distribution of
limit cycles bifurcating from a period annulus. A summary of the main classi-
cal results in this context and the corresponding references is given in Section
2. Françoise in [10] and Gasull and Torregrosa in [14] showed the connec-
tion between the bifurcation of limit cycles from the Hamiltonian system with
H = x2 +y2 and the determination of the order (or equivalently the multiplic-
ity) of a non-degenerate weak focus. The Melnikov functions corresponding
to adequate perturbations of the aforementioned Hamiltonian system give rise
to the computation of the first non-vanishing Liapunov constant of the weak
focus, that is, its order and its stability can be given.

Our main aim is to give the determination of the multiplicity of a limit cycle
through the use of Melnikov functions, that is, to generalize the previous result
from a weak focus to a limit cycle. We will only consider the circumference
as a limit cycle. We are able to give explicit formulae which determine when
the circumference is a limit cycle of multiplicity 1 or 2, cf. Theorems 1.1
and 1.3, respectively. Given a natural number m, with m ≥ 2, Theorem 1.4
gives explicit systems with the circumference as limit cycle of multiplicity m.
The proof of these theorems is given in Section 3. Finally, Section 4 contains
several examples to illustrate our results.

2. Definitions and previous results

In this section we first recall the definition of multiplicity for a periodic orbit
of a planar analytic differential system. We describe two ways to study the
multiplicity of a limit cycle of a differential system. The first way consists in
changing the coordinates (x, y) to curvilinear or local coordinates, in which the
determination of the Poincaré map can be done in a recursive form. The second
way is to show the equivalence between having a limit cycle of multiplicity m
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and the existence of an analytic m-solution related to it. The definition of
analytic m-solution and the proof of the mentioned equivalence is given in
[13].

Given a planar analytic differential system of the form:

dx

dt
= P (x, y),

dy

dt
= Q(x, y), (2.1)

defined in an open set U ⊆ R2, we say that a periodic orbit Γ ⊂ U is a
limit cycle if there exists a neighborhood of Γ without any other periodic
orbit, that is, Γ is an isolated periodic orbit for system (2.1). We denote by
(x, y) = γ(t) the equations corresponding to this closed trajectory and, thus,
Γ := {γ(t) | 0 ≤ t < T}, where T > 0 is the minimal period of the limit cycle.

We are interested in the behavior of the orbits of system (2.1) in a neigh-
borhood of a periodic orbit Γ. It may happen that Γ belongs to a continuous
band of periodic orbits. In such a case, it is no longer a limit cycle because it
is not isolated. The classical definitions and results related to periodic orbits
can be encountered in the following books [1, 5, 16, 19, 20, 22, 23]. We say
that a limit cycle Γ is stable (resp. unstable) when there exists a neighborhood
of it such that any orbit with initial condition in this neighborhood has Γ as
limit set when evolving the time to +∞ (resp. −∞). A limit cycle is called
semi-stable when it is stable in a inner neighborhood and unstable in an outer
neighborhood, or the other way round, unstable in a inner neighborhood and
stable in an outer one. Any periodic orbit of a planar analytic differential sys-
tem is either stable, unstable, semi-stable or it belongs to a continuous band
of periodic orbits.

In order to determine the stability of a periodic orbit Γ, we consider the
Poincaré map associated to it. To define the Poincaré map, we consider a
point p0 ∈ Γ and a section Σ through the point p0, that is, Σ is an arc of a
curve containing the point p0 and such that the considered differential system
is not tangent at any point of this arc. Since Γ is a periodic orbit, for each
point q of Σ, the solution of system (2.1) starting in q cuts Σ again in another
point, denoted by Π(q), for some positive time. We notice that since Γ is a
periodic orbit and p0 ∈ Γ, we have that Π(p0) = p0. In fact, any fixed point
of this map corresponds to a periodic orbit of system (2.1). The function
Π : Σ → Σ defined in this way is called the Poincaré map for Γ.
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The qualitative properties of the Poincaré map do not depend on the chosen
point p0 or the chosen section Σ. Moreover, the Poincaré map is a diffeomor-
phism with the same regularity than system (2.1), so in our context is an
analytic diffeomorphism. We parameterize the section Σ by a real parameter
σ ∈ (−ε, ε), with ε > 0 and σ = 0 corresponding to the point p0 ∈ Γ.

The Poincaré map gives the definition of the displacement map associated
to the periodic orbit Γ, d : Σ → Σ which is d(σ) = Π(σ)−σ. The displacement
map shows the stability of Γ because, clearly from its definition, when d(σ)
is increasing for σ near 0 then Γ is unstable; when d(σ) is decreasing for σ
near 0 then Γ is stable; and if σ = 0 is an inflection point of d(σ) then Γ is
semi-stable. If d(σ) ≡ 0 for σ near 0, then Γ is contained in a continuous band
of periodic orbits.

Moreover, the Poincaré map gives rise to the definition of multiplicity of a
limit cycle as follows:

a) If Π ≡ Id, then Γ belongs to a continuous band of periodic orbits, and
it is not a limit cycle,

b) if Π(σ) = c1 σ +O(σ2) with c1 6= 1, then Γ is said to be a limit cycle
of multiplicity 1 (or a hyperbolic limit cycle),

c) if Π(σ) = σ + cm σm + O(σm+1) and cm 6= 0, then Γ is said to be a
limit cycle of multiplicity m.

Note that c1 6= 0 because Π is diffeomorphism and Π′(0) = c1 > 0 because
Π is an increasing map.

The study of the multiplicity of a limit cycle also shows the stability of the
periodic orbit Γ, because when c1 is greater than one, then Γ is unstable, if c1
is lower than one then Γ is stable. In the case that c1 = 1 we need to determine
the parity of m. If m is even then Γ is semi-stable and if m is odd then when
cm is positive Γ is unstable and when cm is negative then Γ is stable.

2.1. Curvilinear coordinates method. We define the local or curvilinear
coordinates associated to a periodic orbit, see [16, 22], to study the multiplicity
of a periodic orbit of a planar analytic differential system (2.1).

Since Γ is an oval, we can describe it with its arc-length parameter s, Γ :=
{(ϕ(s), ψ(s)) : s ∈ [0, L]}, where L > 0 is the total length of the oval. Given a
point (x, y) in a neighborhood of Γ, we consider its projection (ϕ(s), ψ(s)) over
Γ and the value n which is the length of the normal from (x, y) to (ϕ(s), ψ(s)).
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Hence, any point (x, y) in a neighborhood of Γ can be described by means of
these curvilinear coordinates (s, n). We notice that the change from cartesian
(x, y) to curvilinear coordinates (s, n) is given by:

x = ϕ(s) − nψ′(s) y = ψ(s) + nϕ′(s), (2.2)

where ψ′(s) and ϕ′(s) denote the derivative of ψ(s) and ϕ(s) with respect to s.
Since the pair (ϕ(s), ψ(s)) parameterize the oval Γ, we have that | ϕ′(s) | + |
ψ′(s) |6= 0 and, thus, the jacobian of the change described in (2.2) is different
from zero in a neighborhood of n = 0.

We apply this change of coordinates to system (2.1). Since Γ is a periodic
orbit of system (2.1), ds/dt is different from zero in a neighborhood of n =
0 and, therefore, we can write the new system in the form of the ordinary
differential equation:

dn

ds
= F (s, n), (2.3)

where we take s as the new independent variable. Moreover, F (s, 0) ≡ 0,
because in these coordinates the orbit Γ is described by n = 0. This change to
curvilinear coordinates affects an annular neighborhood of the periodic orbit
Γ and this neighborhood can be seen as a cylinder with n ∈ (−ε, ε), for ε > 0
small enough to ensure the good change to curvilinear coordinates, and the L-
periodic variable s. Hence, in these coordinates, we study ordinary differential
equations defined over a cylindrical manifold. In this way, in a neighborhood of
a periodic orbit, a system in the plane can always be considered as an ordinary
differential equation over a cylinder. We remark that there are differential
equations over a cylinder that cannot be transformed to a planar polynomial
differential system.

We develop the function F (s, n) in a series of n:

F (s, n) =
∑
j≥1

Fj(s)nj ,

where the functions Fj(s) are L-periodic in s because ϕ(s) and ψ(s) are L-
periodic.

Let us consider the flow Ψ(s;n0) of equation (2.3), that is, Ψ(s;n0) is the
function satisfying:

∂Ψ(s;n0)
∂s

= F (s,Ψ(s;n0)) and Ψ(0;n0) = n0. (2.4)
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We develop the flow Ψ(s;n0) in terms of n0 and we get:

Ψ(s;n0) =
∑
j≥1

Ψj(s)n
j
0. (2.5)

We note that since n = 0 is a solution to (2.3), we have that Ψ(s; 0) ≡ 0.
We also note that, in these coordinates, the Poincaré map associated to

n = 0 is given by Π(n0) = Ψ(L;n0), or equivalently, Π(n0) =
∑

j≥1 Ψj(L)nj
0.

We impose that Ψ(s;n0) satisfies the initial value problem (2.4) and we
develop in terms of n0. In this way we get a series of recurrent linear differential
equations for the functions Ψj(s), j ≥ 1. For instance, equating the coefficient
of n0 in the development of (2.4), we deduce that:

Ψ′
1(s) = F1(s)Ψ1(s)

and Ψ1(0) = 1. Hence, we have that:

Ψ1(L) = exp
(∫ L

0
F1(s) ds

)
.

In the same way, equating the coefficient of n2
0 in the development of (2.4), we

get that:
Ψ′

2(s) = F1(s)Ψ2(s) + F2(s)Ψ2
1(s),

and Ψ2(0) = 0. Therefore, we have that

Ψ2(s) = Ψ1(s)
(∫ s

0
Ψ1(σ)F2(σ) dσ

)
.

In a recursive way, we can give formulas for any Ψj(s) provided that Ψi(s)
with i = 1, 2, . . . , j − 1 are known. In this recursive way we can compute the
values of Ψj(L) and we can determine the multiplicity of the periodic orbit Γ.

Since Π(n0) = Ψ(L;n0), we deduce that if Ψ1(L) 6= 1, we have that Γ
is of multiplicity 1 and if Ψ1(L) = 1, Ψj(L) = 0 for j = 2, 3, . . . ,m − 1 and
Ψm(L) 6= 0, then Γ is of multiplicity m. In case that Ψ1(L) = 1 and Ψj(L) = 0
for all j ≥ 2, we have that Γ belongs to a continuous band of periodic orbits.

This way of studying the multiplicity of a limit cycle Γ is computationally
very difficult because, we first need to know these curvilinear coordinates. Sec-
ondly we need to change to these new coordinates and moreover, the recurrent
differential equations giving the expressions of Ψj(L) are more complicated as
j increases. We also remark that the computation of Ψj(L) involves j iterated
integrals.
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Remark 2.1. This study of the multiplicity can be particularized for a mon-
odromic critical point, that is a singular point of center or focus type, provided
that this point has no real characteristic directions. Then, by blowing-up, we
can think of it as a periodic orbit. For further information about monodromic
points, characteristic directions and blow-ups, see the book [23]. We can also
use curvilinear coordinates and the multiplicity corresponds to the order of
the point as a focus of the system.

Lloyd in [17] studies some properties of the flow of the ordinary differential
equation (2.3) and proves the following formulae. We use the notation we have
defined to state his result. Lloyd considers system (2.3) and proves:

Π′(n0) = exp
(∫ L

0

∂F

∂n
(s,Ψ(s;n0)) ds

)
.

Let us define the following two functions:

E(φ, n0) = exp
(∫ φ

0

∂F

∂n
(s,Ψ(s;n0)) ds

)
D(φ, n0) = E(φ, n0)

∂2F

∂n2
(φ,Ψ(φ;n0)) .

Lloyd showed that:

Π′′(n0) = E(L, n0)
∫ L

0
D(φ, n0) dφ,

Π′′′(n0) = E(L, n0)

[
3
2

(∫ L

0
D(φ, n0) dφ

)2

+

+
∫ L

0
(E(φ, n0))2

∂3F

∂n3
(φ,Ψ(φ;n0)) dφ

]
.

These formulae coincide with the values Ψ1(L),Ψ2(L) and Ψ3(L) in the case
n0 = 0.

2.2. Analytic m-solution method. An alternative way to study the multi-
plicity of a limit cycle is given in [13] where the concept of analytic m-solution
is introduced. This notion is related with the concept of multiplicity of an in-
variant curve and it arises as a generalization of the result given in [15] where
only the case of multiplicity m = 1 is treated. We state the corresponding
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definitions, which always concern a planar differential system (2.1) with a pe-
riodic orbit Γ contained in an open set U ⊆ R2. All the considered functions
are assumed to be analytic in U .

Definition 2.2. We say that a curve f(x, y) = 0, where f is analytic function
defined in an open set U , is an invariant curve of system (2.1) if the following
equality occurs:

P (x, y)
∂f

∂x
+ Q(x, y)

∂f

∂y
= k0(x, y)f(x, y), (2.6)

where k0(x, y) is an analytic function in U called the cofactor of f(x, y).

The following result shows that there always exists an invariant curve which
implicitly describes the considered periodic orbit Γ. This result is proved in
[1, 22], see also [13].

Lemma 2.3. [1, 13] If system (2.1) has a limit cycle Γ, then there exists an
analytic invariant curve f(x, y) = 0 for system (2.1) defined in a neighborhood
U of Γ and such that Γ ⊆ {(x, y) ∈ U : f(x, y) = 0}. Moreover, the curve
f(x, y) = 0 can always be chosen such that the vector ∇f(x, y) is different
from zero in all the points of Γ.

Once the notion of invariant curve has been introduced, we give the defini-
tion of generalized exponential factor.

Definition 2.4. [13] A function Fd = exp
(
gd/f

d
)

with d ∈ N, d ≥ 1 is
called a generalized exponential factor of order d associated to the invariant
curve f(x, y) = 0 for system (2.1) if it satisfies

P (x, y)
∂Fd

∂x
+ Q(x, y)

∂Fd

∂y
= kd(x, y)Fd(x, y),

where kd(x, y) is an analytic function in U called the cofactor of Fd(x, y) and
gd(x, y) is an analytic function in U with gd(p) 6= 0, ∀p ∈ Γ.

We can determine the multiplicity m of the considered periodic orbit Γ =
{γ(t) : 0 ≤ t < T}, contained in the invariant curve f(x, y) = 0 and whose
existence is ensured by Lemma 2.3, using the notion of analytic m-solution.
Given a positive integer m, we say that f(x, y) = 0 is an analytic m-solution of
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system (2.1) if there exist m−1 generalized exponential factors of consecutive
orders d = 1, 2, 3, ...,m− 1, whose cofactors satisfy that:∫ T

0
kj(γ(t)) dt = 0 for j = 0, 1, 2, ...,m− 2 and

∫ T

0
km−1(γ(t)) dt 6= 0.

The following theorem is proved in [13].

Theorem 2.5. [13] If Γ is a limit cycle of system (2.1) and f(x, y) = 0 is
an analytic invariant curve defined in a neighborhood U of Γ and such that
Γ ⊆ {(x, y) ∈ U : f(x, y) = 0} with ∇f(x, y) different from zero in all the
points of Γ, then Γ has multiplicity m if, and only if, f(x, y) = 0 is an analytic
m-solution of (2.1).

The particular case of multiplicity m = 1 is already treated in the following
theorem, proved in [15].

Theorem 2.6. [15] Let us consider a system (1.1) and Γ := {γ(t) : 0 < t < T}
a periodic orbit of minimal period T > 0. Assume that f : U ⊆ R2 → R is
an invariant curve with γ ⊆ {(x, y) : f(x, y) = 0} and let k0(x, y) be the C1

function given in (2.6). We assume that if p ∈ U is such that f(p) = 0 and
∇f(p) = 0, then p is a singular point of system (1.1). Then,∫ T

0
k0(γ(t))dt =

∫ T

0
div(γ(t))dt,

where div(x, y) is the divergence of system (1.1).

2.3. Relationship with the cyclicity. We have seen the definition of multi-
plicity of a periodic orbit, but we are also interested in another concept related
with the bifurcations of a limit cycle of multiplicity m. This concept is the
cyclicity whose definition is the following.

We consider system (2.1) and any unfolding of it of the form:

ẋ = Pλ(x, y), ẏ = Qλ(x, y), (2.7)

where Pλ(x, y) and Qλ(x, y) are analytic functions in the same neighborhood
(x, y) ∈ U and analytic in the set of parameters λ ∈ Rk. Moreover, when
λ = 0, P0(x, y) and Q0(x, y) coincide with the functions P and Q defining the
unperturbed system (2.1).

We recall, see for instance [1], that a fixed system (2.7) and system (2.1)
are said to be δ-close if ‖λ‖ < δ. We say that two ovals Γ1, Γ2 are ε-close
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if d(Γ1,Γ2) < ε where d(·, ·) denotes the Hausdorff distance between compact
sets.

Definition 2.7. We say that the cyclicity of a periodic orbit Γ of system (2.1)
is m if the following two conditions hold.

(i) There exists ε0 > 0 and δ0 > 0 such that for any system of the form
(2.7) which is δ-close to system (2.1), with δ < δ0, has at most m limit
cycles which are ε-close to Γ, with ε < ε0.

(ii) Given ε > 0, δ > 0, with ε < ε0 and δ < δ0, there exists a system of
the form (2.7) which is δ-close to system (2.1) with exactly m limit
cycles ε-close to Γ.

As we have defined the notion of cyclicity, when we perturb system (2.1),
we are considering any analytic unfolding of it, that is any system of the form
(2.7) with any λ ∈ Rk and any k ∈ N. Thus, as it is stated and proved in [1],
a limit cycle Γ of multiplicity m has cyclicity exactly m. The proof of this
fact uses the Weierstrass Preparation Theorem, see for instance [5]. In the
particular case that m = 1, we say that Γ is a limit cycle of multiplicity 1,
and we have that any perturbation of the system of the form (2.7) has one,
and only one, limit cycle bifurcating from Γ. This property gives rise to the
denomination of hyperbolic for any limit cycle Γ of multiplicity 1.

However, bifurcation problems do not usually consider any analytic unfold-
ing but the restriction to a particular family. This particular family usually
has a finite number of parameters and, more concretely, is usually a poly-
nomial family. That is, the cyclicity is usually studied inside a certain fixed
family of systems of the form (2.7). In this sense, the multiplicity establishes
an upper bound for the cyclicity inside the restricted family of study, which
does not need to be attained.

One of our interests is to study the maximum multiplicity of the circumfer-
ence as limit cycle inside of the family of planar polynomial differential systems
of degree d. This maximum multiplicity is what we denote the cyclicity of the
circumference inside the aforementioned family. We know that this number is
finite due to the following result of Françoise and Pugh [9].

Theorem 2.8. [9] A periodic orbit has finite cyclicity inside any analytic
family of vector fields depending on a finite number of parameters.
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2.4. Melnikov method. In this section we describe a method to tackle a
completely different problem to the one of determining the multiplicity of a
periodic orbit, which is our concern. The method of Melnikov functions serves
to determine the periodic orbits which persist from the perturbation of a period
annulus. In the following section we describe how this method can be used to
solve a related problem to ours: to give the multiplicity of a weak focus. This
use of Melnikov method was introduced in [10, 14]. Since a weak focus can
be seen as a limit cycle by blowing up, we base on the previous result to give
the way of studying the multiplicity of a limit cycle by means of the Melnikov
method.

Let us describe the context in which the Melnikov method is introduced.
Let H be a real polynomial and let us consider the associated Hamiltonian
system

ẋ = −Hy, ẏ = Hx. (2.8)

We consider a perturbation of the previous system of the form:

ẋ = −Hy + ε P1, ẏ = Hx + εQ1, (2.9)

where P1, Q1 are real polynomials in (x, y). We assume that the unperturbed
system (2.8) has a continuum of periodic orbits and we aim to study which
ones of them persist in system (2.9). We parameterize the period annulus of
system (2.8) by h ∈ I ⊂ R, where I is an open real interval and H = h denotes
one of the periodic orbits. The parameter h only has sense in the open interval
I which is usually bounded.

We write system (2.9) as a 1-form so as to make the calculations easier:

Hxdx+Hydy + ε(Q1dx− P1dy) = 0.

We denote by ω = Q1dx− P1dy and system (2.9) takes the form:

dH + εω = 0.

Let Π(h; ε) be the Poincaré map associated to system (2.9) over a transversal
section Σ parameterized by h. Let γε(h) be the arc of orbit of system (2.9)
with initial point h ∈ Σ and ending point Π(h; ε). In the particular case that
for a value h0 ∈ Σ the corresponding γε(h) is a periodic orbit, we have that the
initial and ending points of γε(h) are the same. That is, we have a function
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h̄(ε) such that h̄(0) = h0 and Π(h̄(ε); ε) = h̄(ε). In such a case, we say that
the periodic orbit H = h0 persists.

We can develop Π(h; ε) in a neighborhood of ε = 0. We recall that when
ε = 0 we have that Π(h; 0) ≡ h because we have a period annulus. Therefore,

Π(h; ε) = h+ Π1(h) ε+O(ε2),

The function Π1(h) is called the first Melnikov function and it can be shown,
see for instance [10], that it can be computed through the following Abelian
integral:

Π1(h) =
∫

H=h
ω. (2.10)

Proposition 2.9. [9, 10] Suppose that the orbit H = h0 persists, then
Π1(h0) = 0.

The proof of this proposition can be found in [10].
We observe that at first order in ε, the maximum number of isolated zeros

of the function Π1(h) is an upper bound for the number of the limit cycles
that bifurcate from the considered period annulus.

This observation leads to the statement of the 16th weak Hilbert problem.
As stated in the paper of Arnold [2], this problem reads for:

GivenH(x, y) a real polynomial of degree n and any continuous
family of closed connected components of its level curvesH = h

and given ω any polynomial 1-form of degree d; to determine
the maximum number of isolated zeros of the function Π1(h)
in terms of n and d.

The existence of an upper bound for the number of isolated zeros of Π1(h) in
terms of n and d is proved by Varchenko [21]. This proof is an existential one
and not a quantitative one.

In the previous Proposition 2.9 a necessary condition for an oval H = h0 to
persist after the perturbation is given. A sufficient condition is the next one:

Proposition 2.10. [9, 10] If h0 is such that Π1(h0) = 0 and Π′
1(h0) 6= 0 (i.e.,

h0 is a simple zero of the function Π1(h)), then there exists a unique periodic
orbit of system (2.7) which bifurcates from H = h0.

The proof of this result can be found in [11] and the references therein.
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If instead of having a simple isolated zero of Π1(h), we have a multiple zero
(although isolated), its multiplicity gives an upper bound for the number of
periodic orbits which bifurcate from it as the following proposition shows.

Proposition 2.11. [9, 10] Let h0 such that

Π1(h0) = 0,Π′
1(h0) = 0, . . . ,Πm−1

1 (h0) = 0, Πm
1 (h0) 6= 0,

then there exist at most m periodic orbits (not necessarily real ones) of system
(2.7) which bifurcate from H = h0.

The proof of this proposition is analogous to the one of Proposition 2.10 but
using Weierstrass Preparation Theorem instead of Implicit Function Theorem,
see for instance [5].

Since Π1(h) is an analytic function of h, if it has a non-isolated zero, then
Π1(h) ≡ 0. In such a case we denote by ω1 = Q1dx− P1dy and we have that
the Pfaffian form dH + ε ω1 = 0 gives rise to a uniparametric family of the
periodic orbits at first order in ε. For the sake of completeness, we consider
an analytic perturbation of dH = 0:

dH +
∑
i≥1

εi ωi = 0, (2.11)

where ωi are polynomial 1-forms. In case Π1(h) ≡ 0, we need to compute the
second order term in ε for Π(h; ε) = h + Π2(h) ε2 + O(ε3).

We remark that the hypothesis
∫
H=h ω1 ≡ 0 implies a certain expression for

ω1 in terms of H. For instance, any 1-form ω1 is of the form ω1 = g dH + dS

with g and S real polynomials then, we always have that
∫
H=h ω1 ≡ 0. This

assertion is true because the first term in the integrand is zero since H = h is
constant and, thus dH|H=h ≡ 0. Moreover, the second term is an integral of a
differential of a polynomial over a closed curve and, thus, its value is zero.

Françoise in [10] gives the following definition:

Definition 2.12. [10] A real polynomial H(x, y) satisfies the ?-condition if
the next implication holds: given any polynomial 1-form ω such that

∫
H=h ω ≡

0, then ω = g dH + dS, where g, S are polynomials.

In fact, generic polynomials H satisfy the ?-condition as the following The-
orem 2.13 shows. We remark that if H satisfies the ?-condition, we have
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completely restricted the form of any ω with
∫
H=h ω ≡ 0. Moreover, in gen-

eral, if one knows the degree of ω, the degrees of the polynomials g and S are
bounded in terms of the degrees of ω and H.

We recall that polynomials of Morse type are generic and that a polynomial
is of Morse type if all its singular points (finite or infinite) have different
tangents, i.e. the Hessian matrix in any critical point is a non degenerated
bilinear form. The following result is proved in [18]:

Theorem 2.13. [18] All the Morse polynomials satisfy the ?-condition.

For example, the polynomial H = (x2 + y2 − 1)/2 is of Morse type, so it
satisfies the ?-condition.

If H is a real polynomial that satisfies the ?-condition then, a construc-
tive way to find the polynomials g and S is the following one. Suppose that∫
H=h ω ≡ 0 and we know that there exist polynomials g and S such that
ω = gdH + dS. We calculate the differential of ω which needs to satisfy:

dω = dg ∧ dH + g ∧ d(2)H + d(2)S,

where ∧ is the alternate product and we recall that the operator d(2) ≡ 0.
Thus, dω = dg ∧ dH, which defines a partial differential equation for g. This
partial differential equation is always solvable by means of the characteristics’
method. Once we know the polynomial g, we compute the polynomial S using
that ω − g dH needs to be an exact 1-form.

Following the reasonings given in [11], we call the second Melnikov function
associated to (2.11) to the following one:

Π2(h) =
∫

H=h
(ω2 − g1ω1).

In the case that
∫
H=h(ω2 − g1ω1) ≡ 0, we have the following equality ω2 −

g1ω1 = g2dH + dS2, where g2 and S2 are polynomials. By an analogous
reasoning, we have that, in this case, Π(h; ε) = h + ε3 Π3(h) + O(ε4), with

Π3(h) =
∫

H=h
(ω3 − g1ω2 − g2ω1),

which is defined to be the third Melnikov function.
A recursive analysis, which can be found [11], allows to find an explicit

formula for Πn(h), called the nth Melnikov function, provided that the n− 1
previous Melnikov functions are all identically null.
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2.5. Order of a weak focus through Melnikov functions. In this section
we consider a system (2.1) with a non-degenerated singular point of center or
focus type, which we assume to be at the origin. Such a system takes the
form:

ẋ = −y + p(x, y), ẏ = x + q(x, y), (2.12)

where p and q are analytic functions in a neighborhood of the origin without
constant nor linear terms. Taking a transversal section through the origin,
we can define the Poincaré map Π(σ) associated to this singular point (which
corresponds to σ = 0) analogously as before. It can be shown that, in case
the origin is not a center, this Poincar return map always takes the form
Π(σ) = σ + V2k−1σ

2k−1 + O(σ2k) with V2k−1 6= 0, k ≥ 1. In such a case,
we say that the origin of system (2.12) is a weak focus of order k. The value
V2k−1 is called a Liapunov constant. The origin of system (2.12) is a center if,
and only if, Π(σ) ≡ σ.

Françoise, in [10], is the first author who determines the order of a weak
focus using Melnikov functions. He considers the following system:

ẋ = −y + ε Pn, ẏ = x+ εQn,

where Pn and Qn are homogeneous polynomials of degree n, which can be
seen as a perturbation of the Hamiltonian system with H = (x2 + y2)/2.

We remark that, in this section, n denotes a natural number. We do this
remark to avoid possible confusion with the n which we have used in the
section of the curvilinear coordinates.

Gasull and Torregrosa in [14], see also the references therein, study any
system of the form (2.12) with the aim to determine the order of the weak focus
using the Melnikov functions. In order to correctly define the perturbations
which lead to this method, we write system (2.12) in the form

ẋ = −y + P1 + P2 + P3 + . . . , ẏ = x+Q1 +Q2 +Q3 + . . . , (2.13)

where Pi and Qi are homogeneous polynomials of degree i + 1. They prove
the following result:

Theorem 2.14. [14] We write system (2.13) as the 1-form,

dH + ω1 + ω2 + · · · = 0,
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where ωi is the 1-form ωi = −Qidx + Pidy, with Pi and Qi homogeneous
polynomials of degree i+ 1. If V2 = V3 = · · · = Vn−1 = 0, then

Vn =
1

2
n+1

2

1

ρ
n+1

2

∫
H=ρ

n−1∑
i=1

ωihn+1−i,

where h0 ≡ 1, and hm is such that

d

(
m∑

l=1

ωlhm−l

)
= −d(hmdH).

We remark that if n is even then Vn = 0.

The main idea to prove this theorem is to consider system (2.13) as the
following perturbation of the Hamiltonian system with H = (x2 + y2)/2.

ẋ = −y + εP1 + ε2P2 + ε3P3 + . . . , ẏ = x+ εQ1 + ε2Q2 + ε3Q3 + . . . , (2.14)

The relationship between system (2.13) and the perturbation (2.14) is the
change of coordinates (x, y) 7→ (εx, εy), which ensures that the Poincaré map
associated to the origin of system (2.13) coincides with the one defined for
(2.14).

There are two basic ideas which allow to make the relationship between
the two following problems: the study of the order of the weak focus at the
origin of system (2.13) and the number of limit cycles which persist under the
perturbation described in (2.14). The first idea is that the order in ε of the
perturbation in (2.14) must reflect the multiplicity of vanishing at the origin
of the corresponding terms. Since we relate system (2.13) with (2.14) by the
change of coordinates (x, y) 7→ (εx, εy), we have that the perturbative terms
(Pi, Qi) must go with εi. On the other side, Melnikov functions, in this case,
are always a monomial in ρ (the level curve H = ρ is parameterized with
ρ > 0 in the notation used in [14]) multiplied by the corresponding Liapunov
constant, as we have seen in Theorem 2.14.

2.6. The inverse problem for the circumference. Given a planar differ-
ential system of the form (2.1), a direct problem is to determine the invariant
algebraic curves that it possesses. This problem is related with the integra-
bility problem. As an inverse problem, it has also been studied which pla-
nar polynomial differential systems possess a certain fixed invariant algebraic
curve, see [7], [8] and the references therein.
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We are interested in the problem of studying the multiplicity of the cir-
cumference as limit cycle of a planar polynomial differential system. Thus,
we aim to know the systems which possess the circumference Γ as invariant
algebraic curve. Throughout this section, we write f = (x2 + y2 − 1)/2 and
Γ := {f = 0}. This characterization is a corollary of the following result due
to Christopher, Llibre, Pantazi and Zhang in [7]. This result has also been
encountered by [3].

Theorem 2.15. [3, 7] Let f = 0 be a nonsingular algebraic curve, then all
polynomial systems with f = 0 as an invariant algebraic curve, are of the
form:

ẋ = −fyc(x, y) + f a(x, y), ẏ = fxc(x, y) + f b(x, y),

where a(x, y), b(x, y), c(x, y) are polynomials.
Moreover, if the system is of degree d and the curve f = 0 is of degree n

and we assume that the curve f = 0 does not contain any singular point at
infinity, we have that deg(c) ≤ d − n + 1, deg(a, b) ≤ d − n, where deg(·)
denotes the degree.

In the particular case where we look for the systems with the circumference
as invariant algebraic curve, we have the following result.

Theorem 2.16. All the systems with the circumference as invariant algebraic
curve are of the form:

ẋ = −y c(x, y) + f(x, y) a(x, y), ẏ = x c(x, y) + f(x, y) b(x, y),

with f(x, y) = (x2 + y2 − 1)/2 and a(x, y), b(x, y), c(x, y) are polynomials.

We remark that if the system has degree d, then deg(c) ≤ d − 1 and
deg(a, b) ≤ d− 2, which is proved in [7].

For the sake of completeness, we are going to prove this theorem, using
different techniques to the ones described in [3, 7].

Lemma 2.17. We consider a polynomial system (2.1) with the circumference
f = 0 as periodic orbit. We write Γ := {γ(t) : 0 ≤ t < T}, where T is
the minimal positive period. Then, there exists a function τ(t) with τ(0) =
0, τ(T ) = 2π and such that γ(t) = (cos τ(t), sin τ(t)).
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Proof. We consider the parametrization of the periodic orbit Γ in terms of
the time t of the system which is γ(t) = (x0(t), y0(t)) and we choose t such
that x0(0) = 1, y0(0) = 0. We consider the function G(t, τ) = y0(t) − sin τ ,
and we apply the Implicit Function Theorem at the point (t, τ) = (0, 0):

G(0, 0) = 0 and
∂G(t, τ)
∂τ

= − cos τ
∣∣∣∣
t=0,τ=0

= −1 6= 0.

Therefore, there exists τ(t) such that τ(0) = 0 and y0(t) = sin τ(t). Since
we know that x2

0(t) + y2
0(t) = 1, we deduce that x2

0(t) = 1 − y2
0(t) = 1 −

sin2 τ(t) = cos2(τ(t)). The hypothesis x0(0) = 1, y0(0) = 0 ensures that
x0(t) = cos(τ(t)).

Since the curve Γ := {γ(t) : 0 ≤ t < T} is a compact set, there is no
problem in extending τ(t) over all the interval [0, T ] and τ(T ) = 2π because
the minimal positive period of the functions cos τ and sin τ is 2π. �

We are going to prove Theorem 2.16 using Bézout Theorem, see for instance
[12]:

Theorem 2.18. [12] Let f1 = 0 and f2 = 0 be two algebraic curves with
f1 and f2 square-free polynomials. We assume that the two curves share an
infinity number of intersection points, then either f1 divides f2 or f2 divides
f1.

Proof of Theorem 2.16. We consider system (2.1) and we define the
function c = −yP + xQ which is a polynomial. Since the circumference
Γ := {γ(t) : 0 ≤ t < T} is a periodic orbit of the system, we have that
γ̇(t) = (P (γ(t)), Q(γ(t))). Using Lemma 2.17, we deduce that P (γ(t)) =
− sin τ(t) τ̇(t) and Q(γ(t)) = cos τ(t) τ̇(t). Thus,

c(γ(t)) = sin2 τ(t) τ̇(t) + cos2 τ(t) τ̇(t) = τ̇(t).

We consider the polynomial A = P + y c and we evaluate it in γ(t):

A(γ(t)) = − sin τ(t) τ̇(t) + sin τ(t) τ̇(t) ≡ 0.

Using Theorem 2.18 and the fact that f is irreducible, we have that the
polynomial f divides A. Thus, there exists a polynomial a such that A = af .
Using that A = P + y c, we have P + y c = af and, so, P = −y c + af .
Reasoning as before, we consider the function B = Q−x c and we obtain the
result. �
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3. Proofs of the main results

In this section, we are going to prove the main results that we have stated
in the first section. The first Theorem 1.1 characterizes when Γ is a hyperbolic
limit cycle of system (1.2). We recall the statement of this theorem.

Theorem 3.1. Γ is a limit cycle of multiplicity 1 of system (1.2) if, and only

if,
∮

f=0

ω0

c
6= 0.

Proof. As proved in Theorem 2.16, we consider the system (1.2) with the
circumference as a periodic orbit:

ẋ = −y c(x, y) + f(x, y) a(x, y), ẏ = x c(x, y) + f(x, y) b(x, y)

where f = (x2 + y2 − 1)/2 and a, b, c are polynomials. We write the afore-
mentioned system as a 1-form:

ω = c df + fω0, where ω0 = b dx− a dy.

Since f = 0 is a periodic orbit, we have that the polynomial c does not vanish
in a neighborhood of the circumference. Therefore, in such a neighborhood
we can write ω ∼ df + f ω0

c .
Theorem 2.5 ensures that Γ is a limit cycle of multiplicity 1 if, and only

if,
∫ T
0 k0(γ(t))dt 6= 0, where k0 is the cofactor of f . We observe that this

cofactor is k0 = ax + by as the following computations show: ẋfx + ẏfy =
(−yc+ fa)x+ (xc+ fb)y = fax+ fby = f(ax+ by).

These computations can also be performed using the equivalent Pfaffian
form: ω ∧ df = (cdf + fω0) ∧ df = f(ω0 ∧ df) = f(by + ax)dx ∧ dy. This last
equality comes from ω0∧df = (bdx−ady)∧(xdx+ydy) = bydx∧dy−axdy∧dx =
(by+ ax)dx∧ dy. We deduce that ω ∧ df = f(by+ ax)dx∧ dy, from which we
conclude that k0 = (ax+ by).

We parameterize using polar coordinates, or equivalently the parameteriza-
tion described in Lemma 2.17.∫ T

0
k0(γ(t))dt =

∫ 2π

0

ax+ by

c(x, y)

∣∣∣∣
x=cos τ, y=sin τ

dτ =
∮

f=0

ω0

c
,

where we have used that c(γ(t)) = τ̇(t). �

We consider the particular case in which c is a constant different from zero
and by scaling we take c ≡ 1. The second main Theorem 1.3 characterizes
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when Γ is a limit cycle of multiplicity 2, provided that c ≡ 1. The statement
of this theorem is the following.

Theorem 3.2. Consider the particular case c(x, y) ≡ 1. Then, Γ is a limit
cycle of multiplicity 2 of system (1.2) if, and only if, ω0 = g0df + dS0 + fω1

and
∮

f=0
e−S0(ω1 − g0dS0) 6= 0.

Proof. This proof is based on the result given by Proposition 1.2. We have
that there exist polynomials g0, S0 and a polynomial ψ such that ω0 = g0 df +
dS0 + ψ(f) (y dx − x dy). Since c ≡ 1, the previous theorem ensures that Γ
has multiplicity ≥ 1 if, and only if,

∮
f=0 ω0 = 0. Therefore, we deduce that:

0 =
∮

f=0
g0df +dS0 +ψ(f)(y dx − x dy) = ψ(0)

∮
f=0

y dx − x dy = ψ(0) 2π.

This identity implies that ψ(0) = 0. Therefore, ψ(f) = f φ(f) for a certain
polynomial φ. We conclude that ω0 = g0 df + dS0 + f ω1, where ω1 is the
following polynomial 1-form ω1 = φ(f) (ydx− xdy).

Theorem 2.5 gives that Γ has multiplicity 2 if, and only if, there ex-
ists a generalized exponential factor of order 1 whose cofactor k1 satisfies
that

∫ T
0 k1(γ(t)) dt 6= 0. We are going to show that the function F1 =

exp{−e−S0/f} is a generalized exponential factor of order 1 with cofactor
k1 = ∗

(
e−S0 ((ω1 − g0dS0) ∧ df + fω1 ∧ dS0)

)
where ∗ is the Hodge operator.

We recall that the Hodge operator gives the equivalence between 2-forms and
functions over the real plane as follows. If ξ(x, y)(dx ∧ dy) is a 2-form, then
∗ (ξ(x, y)(dx ∧ dy)) = ξ(x, y) which is the equivalent function. On the other
way round, given a function ξ(x, y) then ∗ (ξ(x, y)) = ξ(x, y)(dx ∧ dy) which
is the corresponding 2-form.

We consider F1 = exp{−e−S0/f} and we have that the Pfaffian form ω

reads for ω = df + f (g0 df + dS0) + f2 ω1.
Then we have:

ω ∧ dF1 = F1

[(
df + f (g0 df + dS0) + f2 ω1

)
∧ e−S0

(
f dS0 + df

f2

)]
=

F1 e
−S0

f2

[
fdf ∧ dS0 + f2 g0 df ∧ dS0 + f dS0 ∧ df +

+ f3ω1 ∧ dS0 + f2 ω1 ∧ df
]

= F1 e
−S0 [(ω1 − g0 dS0) ∧ df + f ω1 ∧ dS0] .
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Using the same parameterization as in the proof of the previous theorem, we
see that ∫ T

0
k1(γ(t)) dt =

∮
f=0

e−S0(ω1 − g0dS0),

and the claim follows. �

In order to study a polynomial case, we are going to restrict ourselves to
the particular case in which c ≡ 1 and S0 is a constant, that is, we are going
to determine when the circumference is a limit cycle of multiplicity m, with
m ≥ 2, of the following 1-form:

ω = df + f g0 df + f2 ω1,

where, f = (x2 +y2−1)/2, g0 is a polynomial in R[x, y] and ω1 is the following
1-form ω1 = ψ(f) (y dx− x dy), with ψ a polynomial in R[x], where we have
used the result of Françoise stated in Proposition 1.2.

The statement of Theorem 1.4 is the following.

Theorem 3.3. Consider the 1-form (1.3). Then, Γ is a limit cycle of multi-
plicity m if, and only if, ω = df + f g0 df + fm φ(f) (ydx − xdy), with φ a
polynomial in R[x] such that φ(0) 6= 0.

Proof. We suppose that ω = df+fg0df+ fm φ(f) (ydx−xdy), with φ(0) 6= 0,
and we aim to see that Γ is a limit cycle of multiplicity m of system (1.3).

We consider Fj = exp{1/f j}, and we see that for j = 1, 2, . . . ,m − 1, it
is an exponential factor associated to f = 0 of order j and with cofactor
kj = − fm−j−1 φ(f) (x2 + y2) as the following computations show. We have
that dFj = −j Fj df/f

j+1,

ω ∧ dFj = −fmφ(f)
j

f j+1
Fj (ydx− xdy) ∧ df

= −j fm−j−1φ(f)(x2 + y2)Fj dx ∧ dy.

Since φ(0) 6= 0 and the term (x2 + y2) is equal to 1 over γ(t) we deduce that∫ 2π
0 kj(γ(t))dt = 0 for j = 1, 2, . . . ,m−2 and

∫ 2π
0 km−1(γ(t))dt 6= 0. Therefore,

using Theorem 2.5 we deduce that f = 0 is an analytic m-solution and, thus,
Γ is a limit cycle of multiplicity m.

Reciprocally, we suppose that Γ is a limit cycle of multiplicity m of system
(1.3) and we will see that ω reads for ω = df + fg0df + fm φ(f) (ydx− xdy),
with φ(0) 6= 0.
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Using Proposition 1.2, we can write ω = df+fg0df+f2ψ(f)(ydx−xdy) and
we only need to show that ψ(f) = fm−2φ(f) with φ a polynomial such that
φ(0) 6= 0. We know, by Theorem 2.5, that Γ is a limit cycle of multiplicity m if,
and only if, there exists m−1 generalized exponential factors F1, F2, . . . , Fm−1

associated to f = 0 of consecutive orders from 1 tom−1 and whose respectively
associated cofactors k1, k2, . . . , km−1 are such that

∫ T
0 kj(γ(t))dt = 0, for j =

0, 1, . . . ,m− 2 and
∫ T
0 km−1(γ(t))dt 6= 0.

We remark that F1 = exp{1/f} is a generalized exponential factor associ-
ated to f = 0 of order 1 as the following computations show: dF1 = −F1 df/f

2

and

ω ∧ dF1 = −f2ψ(f)
1
f2
F1(ydx− xdy) ∧ df = −ψ(f)(x2 + y2)F1.

We see that its cofactor is k1 = −ψ(f)(x2 + y2) so
∫ 2π
0 k1(γ(t))dt = −ψ(0)2π.

Since we assume that Γ has multiplicity m with m ≥ 2, we deduce that Γ has
multiplicity 2 if, and only if, ψ(0) 6= 0, and the claim for m = 2 follows.

We show the inductive step over m. We suppose that ψ(f) = fm−3φ̃(f), we
will see that φ̃(0) = 0 and, therefore, ψ(f) = fm−2φ(f). We see that Fm−2 =
exp{1/fm−2} is a generalized exponential factor associated to f = 0 of order
m−2 with cofactor km−2 = (2−m)φ̃(f)(x2 +y2). The computations to show
this fact are the same performed in the previous paragraph. Since Γ is a limit
cycle of multiplicity m by assumption, we deduce that

∫ T
0 km−2(γ(t)) dt = 0.

Therefore, φ̃(0) = 0 and thus we deduce that ψ(f) = fm−2φ(f) for a certain
polynomial φ. To end the proof, we only need to see that φ(0) 6= 0. We see
that Fm−1 = exp{1/fm−1} is a generalized exponential factor associated to
f = 0 of order m − 1 with cofactor km−1 = (1 − m)φ(f)(x2 + y2), using
the same computations as before. By Theorem 2.5, we conclude that Γ is a
limit cycle of multiplicity m if, and only if,

∫ T
0 km−1(γ(t)) dt 6= 0. Therefore

φ(0) 6= 0 and the claim follows. �

We are going to prove the following corollary, stated as Corollary 1.5, which
specifies when the circumference Γ belongs to a period annulus for the 1-form
described in (1.3).

Corollary 3.4. Consider the 1-form (1.3). Then, Γ belongs to a continuum
of periodic orbits if, and only if, ω = df + f g0 df , where g0 is any real
polynomial.
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Proof. If Γ belongs to a continuum of periodic orbits, then Γ is a periodic orbit
with any multiplicity m for any natural number m. Therefore, in Theorem
1.4 we have that φ(f) ≡ 0 and the claim follows.

If ω = df+fg0df , we see that f is a first integral of this 1-form, so Γ belongs
to a continuum of periodic orbits. �

We end this section with the proof of Theorem 1.6. We recall that we are
under the hypothesis that, in the Pfaffian form ω = c df+f(g0 df+dS0)+f2 ω1,
c ≡ 1 and S0 is a constant. Thus, we can consider the 1-form (1.3).

Theorem 3.5. Consider the 1-form (1.3) and assume that it is of degree d.
Then, the cyclicity of Γ as a limit cycle is b(d− 1)/2c.

Proof. Note that if ω is a polynomial 1-form of degree d of the form (1.3),
where d = 1, 2, 3, 4, then the result is obvious or it is a consequence of Theorem
1.1.

We assume that d ≥ 5 from now on. If ω is the polynomial 1-form given
in (1.3) and it is of degree d, we have ω = df + fg0df + f2ψ(f)(ydx − xdy),
and ψ(f) is a polynomial in f of degree d− 5, i.e, ψ(s) is a polynomial in s of
degree b(d− 5)/2c.

We remark that by Theorem 1.4 and its Corollary 1.5 we deduce that the
maximum multiplicity of Γ as limit cycle of ω is when ψ(f) = f b(d−5)/2c ν̃

where ν̃ needs to be a nonzero constant. Then, using Theorem 1.4 again, we
get that this maximum multiplicity, i.e. the cyclicity, is b(d− 5)/2c+ 2.

To end the proof, we only need to show the following formula:⌊
d− 5

2

⌋
+ 2 =

⌊
d− 1

2

⌋
,

for any natural number d.
• If d is even then there exists k an integer number, such that d = 2k, and

b(d− 5)/2c+ 2 = b(2k − 5)/2c+ 2 = bk − 5/2c+ 2 = k − 3 + 2 = k − 1.

On the other hand, b(d− 1)/2c = b(2k − 1)/2c = bk − 1/2c = k − 1.
• If d is odd, there exists k an integer number such that d = 2k + 1, and

b(d− 5)/2c+ 2 = b(2k + 1− 5)/2c+ 2 = bk − 2c+ 2 = k − 2 + 2 = k.

On the other hand b(d− 1)/2c = b(2k + 1− 1)/2c = k. �
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4. Examples

Our purpose in this section is to apply the results given in Section 3 to some
distinguished systems of the form (1.2). We apply our results to quadratic,
cubic and quartic systems with the circumference as algebraic limit cycle.

The following result is due to Ch’in Yuan-shün [6] and characterizes the
algebraic limit cycles of degree 2 for a quadratic system.

Theorem 4.1. [6] If a quadratic system has an algebraic limit cycle of degree
2, then after an affine change of variables, the limit cycle becomes the circle

Γ := x2 + y2 − 1 = 0. (4.1)

Moreover, Γ is the unique limit cycle of the quadratic system which can be
written in the form

ẋ = −y (c10x + c01y + c00)− (x2 + y2 − 1),
ẏ = x (c10x + c01y + c00),

(4.2)

with c10 6= 0, c200 + 4(c01 + 1) > 0 and c200 > c210 + c201.

We state some known results related to quadratic systems with an algebraic
limit cycle. It is shown by Evdokimenko that there are no algebraic limit cycles
of degree 3 for a quadratic system. Related to the study of algebraic limit
cycles of degree 4, Chavarriga, Llibre and Sorolla [4] proved that any quadratic
system with an algebraic limit cycle of degree 4 is affine-equivalent to one of
four concrete families. There are other examples of quadratic systems with an
algebraic limit cycle of degrees 5 and 6, which were encountered by Llibre and
Świrszcz. In [15], Giacomini and Grau proved that all the mentioned known
algebraic limit cycles of a quadratic system are hyperbolic. For a survey on
these results see [4, 15] and the references therein.

In the first example, we characterize all quadratic systems with the circum-
ference as a limit cycle and we study its multiplicity. We first prove a Lemma
to describe the systems under study.

Lemma 4.2. Let us consider all quadratic systems with the circumference as
a periodic orbit. By a rotation and a scaling, these systems are of one of the
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following two forms:

(1) ẋ = −y + f a00, ẏ = x+ f b00

(2) ẋ = −y (1− ν x) + f a00, ẏ = x (1− ν x) + f b00,

where f(x, y) = (x2 + y2− 1)/2 as along all the section, and a00, b00 and ν are
real numbers with 0 < ν < 1.

Proof. Since the system has the circumference as a periodic orbit, using
Theorem 2.16, it takes the form:

ẋ = −y c(x, y) + f(x, y) a(x, y), ẏ = x c(x, y) + f(x, y) b(x, y),

with f(x, y) = (x2+y2−1)/2 and a(x, y), b(x, y), c(x, y) polynomials. We also
have that the circumference f(x, y) = 0 and c(x, y) = 0 have no intersection
points. Since the system is quadratic, then a(x, y) and b(x, y) are real numbers
and there are two cases to choose c(x, y). In the first case, c(x, y) is a nonzero
constant which, by scaling, can be taken to be c(x, y) ≡ 1. In the second case,
c(x, y) is a polynomial of degree 1 which, by rotation, can be taken such that
the curve c(x, y) = 0 is a straight line perpendicular to the x-axis. Therefore,
by a scaling, we can take c(x, y) = 1− ν x with 0 < ν < 1. �

Example 1. We are going to analyze the cyclicity of the circumference in
each of the two forms of the system that we have described in the Lemma 4.2:

(1) If we write the system in the Pfaffian form ω = 0, we have ω =
df + f ω0, with ω0 = dS0 and S0 = b00 x− a00 y. Then we apply Theorem 1.1,

and we have that Γ is a limit cycle of multiplicity 1 if, and only if,
∮

f=0

ω0

c
6= 0.

This integral is always equal to zero and, moreover, Γ belongs to a continuum
of periodic orbits because we can write ω = df + f d(S0) and H = f eS0 is a
first integral.

(2) If we write the system as a 1-form, then, ω = (1 − ν x)df + f ω0,
where ω0 = b00 dx − a00 dy. Using Theorem 1.1, Γ is a limit cycle of

multiplicity 1 if, and only if,
∮

f=0

ω0

c
6= 0. We have that

∮
f=0

ω0

c
=∫ 2π

0

−b00 sin θ − a00 cos θ
1− ν cos θ

dθ. If we separate in two integrals, then:

∮
f=0

ω0

c
=
−b00

ν

∫ 2π

0

ν sin θ
1− ν cos θ

dθ − a00

∫ 2π

0

cos θ
1− ν cos θ

dθ.
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The first integral is always equal to zero because:∫ 2π

0

ν sin θ
1− ν cos θ

dθ = −b00
ν

ln |1− ν cos θ|
∣∣∣2 π

0
= 0.

Using basic rules of integration, the second one is equal to∫ 2π

0

cos θ
1− ν cos θ

dθ =
2πν√

1− ν2 (1 +
√

1− ν2)
,

and, since 0 < ν < 1, we deduce that the integral
∮
f=0 ω0/c is equal to zero

only if a00 = 0. Then, Γ is a limit cycle of multiplicity 1 if, and only if, a00 6= 0.
If we suppose that a00 = 0, then, the Pfaffian form ω = 0 can be written

as ω = (1 − ν x) df + fω0, where ω0 = b00 dx = d(b00 x). We have ω =
(1− ν x)df + f S0 and Γ belongs to a continuum of periodic orbits because a
first integral is H = f(1− ν x)−b00/ν .

In summary, in the family of quadratic systems, the cyclicity of the circum-
ference as a limit cycle is 1. In this way, we recover the results described by
Theorem 4.1 (except the uniqueness) and also the hyperbolicity.

We note that the cyclicity is 1 which does not contradict Theorem 1.6
because c 6≡ 1, which is one of its hypothesis.

In order to apply the other results given in Section 3, we give the next
example. To do this, we must consider the case in which c ≡ 1. In this
example we study the family of cubic systems with the circumference as a
limit cycle.
Example 2. We consider all cubic systems with the circumference as a limit
cycle, that is of the form (1.2), and with c ≡ 1. By a rotation and a scaling,
these systems are:

ẋ = −y + f a(x, y), ẏ = x+ f b(x, y),

where a(x, y) = a00 + a10x+ a01y and b(x, y) = b00 + b10x+ b01y with aij , bij

are real numbers for i, j = 0, 1. We write this system as a 1-form as follows,
ω = df + fω0, with ω0 = b(x, y) dx− a(x, y) dy. Using Theorem 1.1, we need
to see when

∮
f=0

ω0
c 6= 0. Since∮

f=0

ω0

c
= −(a10 + b01)π.

We deduce that if a10 + b01 6= 0 then, Γ is a limit cycle of multiplicity 1.
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We suppose that b01 = −a10 and we consider ω = df + f ω0 with ω0 =
(b00 + b10x − a10y)dx − (a00 + a10x + a01y)dy. We can rewrite ω0 as follows:
ω0 = d(b00x+b10x

2/2−a10xy−a00y−a10xy−a01y
2/2). If we write ω0 as before,

then we have ω ∼ df+f dS0, where S0 = 2b00x+b10x2−2a00y−2a10xy−a01y
2.

In this way, the system has a first integral H = feS0 and therefore Γ belongs
to a continuum of periodic orbits.
Example 3. We consider all quartic systems with the circumference as a limit
cycle, that is of the form (1.2), and with c ≡ 1. By a rotation and a scaling,
these systems are:

ẋ = −y + f a(x, y), ẏ = x+ f b(x, y),

where a(x, y) = a00 + a10x + a01y + a20x
2 + a11xy + a02y

2 and b(x, y) =
b00 + b10x + b01y + b20x

2 + b11xy + b02y
2 with aij , bij are real numbers for

i, j = 0, 1, 2. We write this system as a Pfaffian form as follows, ω = df + fω0,
with ω0 = b(x, y) dx− a(x, y) dy. Reasoning as the previous examples, we use
Theorem 1.1 and we get that Γ is a limit cycle of multiplicity 1 if, and only if,∮
f=0

ω0
c 6= 0. Since ∮

f=0

ω0

c
= −(a10 + b01)π,

we deduce that if a10 + b01 6= 0 then, Γ is a limit cycle of multiplicity 1.
We suppose that b01 = −a10 and we know that there exists S0, g0 and ω1

such that ω0 = g0 df + dS0 + f ω1. We calculate g0, S0 and ω1 as follows:∮
f=h

ω0 =
∫ 2π

0

√
1 + 2h(−a20(1 + 2h) cos3 θ − cos2 θ(a10

√
1 + 2h+

+(a11 + b20)(1 + 2h) sin θ)− sin θ(b00 − a10

√
1 + 2h sin θ +

+b02(1 + 2h) sin2 θ)− cos θ(a00 + (a01 + b10)
√

1 + 2h sin θ +

+(a02 + b11)(1 + 2h) sin2 θ))) dθ ≡ 0.

This fact implies that ω1 ≡ 0. To calculate g0 we need to solve the equation
dg0 ∧ df − dω1 = 0 with respect to g0. We get g0(x, y) = −a11x − 2b02x +
2a20y + b11y. Now, we know that ω0 = g0 df + dS0 and we replace the value
of g0(x, y) so that dS0 = ω0 − g0df . Solving this last equation we have that:
S0(x, y) = (6b00x + 3b10x

2 + 2a11x
3 + 4b02x3 + 2b20x3 − 6a00y − 6a10xy −

6a20x
2y − 3a01y

2 + 6b02xy
2 − 2a02y

3 − 4a20y
3 − 2b11y3)/6.
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Using Theorem 1.3, if the integral
∮
f=0 e

−S0(ω1 − g0dS0) is different from
zero, then Γ has multiplicity 2. We see that this integral can be written as the
sum of the following two integrals:∮

f=0
e−S0(ω1 − g0dS0) = −(a11 + 2b02)

∮
f=0

xe−S0d(−S0) +

+ (2a20 + b11)
∮

f=0
ye−S0d(−S0).

Using integration by parts we deduce that:∮
f=0

e−S0(ω1−g0dS0) = (a11 +2b02)
∮

f=0
e−S0 dx − (2a20 +b11)

∮
f=0

e−S0 dy.

To be able to apply the Theorem 1.4 we need to suppose that S0 is constant.
We impose S0 to be a constant and we have that ω = df + f g0 df . Applying
Corollary 1.5, Γ belongs to a continuum of periodic orbits.

In summary, under the hypothesis c ≡ 1 and S0 is a constant, in the family
of the quartic systems, the cyclicity of the circumference as a limit cycle is 1.
If we consider the case c ≡ 1 but S0 is not a constant then it can occur that,
in the family of the quartic systems, the cyclicity of the circumference as a
limit cycle is greater or equal to 2.

In future works we will study the more general cases in which either c or S0

are not constants. We are also addressed the problem of studying algebraic
curves of higher degree than the circumference.
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