ON BOUNDARY VALUE PROBLEMS OF SECOND ORDER CONVEX AND NONCONVEX DIFFERENTIAL INCLUSIONS

B.C. DHAGE*, S.K. NTOUYAS** AND D.S. PALIMKAR***
*Kasubai, Gurukul Colony, Ahmedpur-413 515
Dist: Latur, Maharashtra, India
E-mail: bcd20012001@yahoo.co.in
** Department of Mathematics, University of Ioannina
45110 Ioannina, Greece
E-mail: sntouyas@cc.uoi.gr
***Kasubai, Gurukul Colony, Ahmedpur-413 515
Dist: Latur, Maharashtra, India

Abstract

This paper presents sufficient conditions for the existence of solutions to boundary value problems of second order multi-valued convex as well as nonconvex differential inclusions.

Key Words and Phrases: Boundary value problem, differential inclusion, existence theorem.
2000 Mathematics Subject Classification: 34A60, 47H10, 34B15.

1. Introduction

Let \mathbb{R} denote the real line and let $\mathcal{P}_{f}(\mathbb{R})$ denote the class of all non-empty subsets of \mathbb{R} with a property f. In particular, $\mathcal{P}_{c l}(\mathbb{R}), \mathcal{P}_{b d}(\mathbb{R}), \mathcal{P}_{c v}(\mathbb{R})$, and $\mathcal{P}_{c p}(\mathbb{R})$ denote respectively the classes of closed, bounded, convex and compact subsets of \mathbb{R}. Similarly $\mathcal{P}_{c l, b d}(\mathbb{R})$ and $\mathcal{P}_{c p, c v}(\mathbb{R})$ denote respectively the classes of all closed-bounded and compact-convex subsets of \mathbb{R}. Let $J=\left[t_{0}, t_{1}\right]$ be a closed and bounded interval in \mathbb{R} for some real numbers $t_{0}, t_{1} \in \mathbb{R}$ with $t_{0}<t_{1}$. Now consider the two point boundary value problem (in short BVP) of second order differential inclusions

$$
\begin{equation*}
-x^{\prime \prime}(t) \in F\left(t, x(t), x^{\prime}(t)\right) \text { a.e. } t \in J \tag{1.1}
\end{equation*}
$$

satisfying the boundary conditions

$$
\left.\begin{array}{rl}
a_{0} x\left(t_{0}\right)-a_{1} x^{\prime}\left(t_{1}\right) & =c_{0} \tag{1.2}\\
b_{0} x\left(t_{0}\right)+b_{1} x^{\prime}\left(t_{1}\right) & =c_{1}
\end{array}\right\}
$$

where the function and the constants involved in (1.1) and (1.2) satisfy the following properties:
(a) $F: J \times \mathbb{R} \times \mathbb{R} \rightarrow \mathcal{P}_{f}(\mathbb{R})$,
(b) $a_{0}, a_{1}, b_{0}, b_{1} \in \mathbb{R}^{+}$satisfying $a_{0} a_{1}\left(t_{1}-t_{0}\right)+a_{0} b_{1}+a_{1} b_{0}>0$ and
(c) $c_{0}, c_{1} \in \mathbb{R}$.

By a solution of BVP (1.1)-(1.2) we mean a function $x \in A C^{1}(J, \mathbb{R})$ whose second derivative exists and is a member of $L^{1}(J, \mathbb{R})$ in $F\left(t, x, x^{\prime}\right)$, i.e. there exists a $v \in L^{1}(J, \mathbb{R})$ such that $v(t) \in F\left(t, x(t), x^{\prime}(t)\right)$ for a.e $t \in J$, and $-x^{\prime \prime}(t)=v(t)$ for all $t \in J$ satisfying (1.2), where $A C^{1}(J, \mathbb{R})$ is the space of continuous real-valued functions whose first derivative exists and is absolutely continuous on J.

The special cases of the BVP (1.1)-(1.2) have been discussed in the literature for existence of the solutions. The special case of the form

$$
\begin{equation*}
-x^{\prime \prime}(t)=f\left(t, x(t), x^{\prime}(t)\right), \text { a.e. } t \in J \tag{1.3}
\end{equation*}
$$

satisfying the boundary conditions (1.2) where $f: J \times \mathbb{R} \rightarrow \mathbb{R}, a_{0}, a_{1}, b_{0}, b_{1} \in$ $\mathbb{R}_{+}, c_{0}, c_{1} \in \mathbb{R}$ and $a_{0} a_{1}\left(t_{1}-t_{0}\right)+a_{0} b_{1}+a_{1} b_{0}>0$ has been discussed in Bernfeld and Lakshmikantham [2] for the existence of solutions and in Heikkila [9] for the existence of the extremal solutions. Again when $c_{0}=c_{1}, a_{1}=0=b_{1}, a_{0}=$ b_{0}, and F not depending on x^{\prime}, the BVP (1.1)-(1.2) reduces to

$$
\begin{equation*}
y^{\prime \prime} \in F(t, y) \text { a.e } t \in J, \quad y\left(t_{0}\right)=y\left(t_{1}\right) . \tag{1.4}
\end{equation*}
$$

where $y=-x$. This is a BVP of second order differential inclusions considered in Benchohra and Ntouyas [3]. Finally, the special case of the BVP consisting of the equation

$$
\begin{equation*}
-y^{\prime \prime}(t) \in F(t, y(t)), \text { a.e } t \in J \tag{1.5}
\end{equation*}
$$

satisfying the boundary conditions (1.2) has been studied in Dhage [6] and Halidias and Papageorgiou [8] via the method of lower and upper solutions. Thus the BVP (1.1)-(1.2) is more general and so is its importance in the theory of differential inclusions. Here in the present paper, we discuss the BVP (1.1)(1.2) via a Nonlinear Alternative of Leray-Schauder type ([7], [12]) and on a
selection theorem for lower semicontinuous maps ([4]). The paper is organized as follows. In Section 2 we give some preliminaries needed in the sequel. In Section 3 we prove the main existence results for the BVP (1.1)-(1.2) when the right hand side has convex or nonconvex values.

2. Preliminaries

Let (X, d) be a metric space. For $x \in X$ and $Y, Z \in \mathcal{P}_{c l}(X)$ we denote by $D(x, Y)=\inf \{\|x-y\| \mid y \in Y\}$, and $\rho(Y, Z)=\sup _{a \in Y} D(a, Z)$. Define a function $H: \mathcal{P}_{b d, c l}(X) \times \mathcal{P}_{b d, c l}(X) \rightarrow \mathbb{R}^{+}$by

$$
H(A, B)=\max \{\rho(A, B), \rho(B, A)\} .
$$

The function H is called a Hausdorff metric on X. Note that $\|Y\|_{\mathcal{P}}=$ $H(Y,\{0\})$.

A map $T: X \rightarrow P_{f}(X)$ is called a multi-valued mapping on X into itself. A point $u \in X$ is called a fixed point of the multi-valued operator $T: X \rightarrow P_{f}(X)$ if $u \in T(u)$. The fixed points set of T will be denoted by $\operatorname{Fix}(T)$.

Definition 2.1. Let $T: X \rightarrow \mathcal{P}_{f}(X)$ be a multi-valued operator. Then T is called a multi-valued contraction if there exists a constant $\lambda \in(0,1)$ such that for all $x, y \in X$ we have

$$
H(T(x), T(y)) \leq \lambda\|x-y\| .
$$

The constant λ is called a contraction constant of T.
Theorem 2.2. (Covitz and Nadler [5]) Let X be a complete metric space and let $T: X \rightarrow \mathcal{P}_{c l}(X)$ be a multi-valued contraction. Then the fixed point set $\mathcal{F}(T)$ of T is non-empty and closed set in X.

A multi-valued map T is closed-valued (resp. compact-valued) if $T x$ is closed (resp. compact) subset of X for each $x \in X . T$ is said to be bounded on bounded sets if $T(B)=\bigcup_{x \in B} T(x)=\bigcup T(B)$ is a bounded subset of X for all bounded sets B in $X . T$ is called compact if $\cup T(B)$ is relatively compact for a bounded subset B of X. Finally T is called totally compact if $\overline{U T(X)}$ is a compact subset of $X . T$ is called upper semi-continuous (u.s.c.) if for every open set $N \subset X$, the set $\{x \in X: T x \subset N\}$ is open in X. Again T is called completely continuous if it is upper semi-continuous and totally bounded on X. It is known that if the multi-valued compact map T has non
empty compact values, then T is upper semi-continuous if and only if T has a closed graph (that is $x_{n} \rightarrow x_{*}, y_{n} \rightarrow y_{*}, y_{n} \in T x_{n} \Rightarrow y_{*} \in T x_{*}$).

For more details on multivalued maps we refer the interested reader to the book of Hu and Papageorgiou [10].

We apply the following nonlinear alternative in the sequel.
Theorem 2.3. (O'Regan [12]) Let U and \bar{U} be the open and closed subsets in a normed linear space X such that $0 \in U$ and let $T: \bar{U} \rightarrow \mathcal{P}_{c p, c v}(X)$ be a completely continuous multi-valued map. Then either
(i) the operator inclusion $x \in T x$ has a solution, or
(ii) there is an element $u \in \partial U$ such that $\lambda u \in T u$ for some $\lambda>1$, where ∂U is the boundary of U.

Corollary 2.4. Let $\mathcal{B}_{r}(0)$ and $\overline{\mathcal{B}_{r}(0)}$ be the open and closed balls in a normed linear space X centered at origin 0 of radius r and let $T: \overline{\mathcal{B}_{r}(0)} \rightarrow \mathcal{P}_{c p, c v}(X)$ be a completely continuous multi-valued map. Then either
(i) the operator inclusion $x \in T x$ has a solution, or
(ii) there is an element $u \in X$ such that $\|u\|=r$ and $\lambda u \in T u$ for some $\lambda>1$.

Corollary 2.5. Let $\mathcal{B}_{r}(0)$ and $\overline{\mathcal{B}_{r}(0)}$ be the open and closed balls in a normed linear space X centered at origin 0 of radius r and let $T: \overline{\mathcal{B}_{r}(0)} \rightarrow X$ be a completely continuous single-valued map. Then either
(i) the operator inclusion $x=T x$ has a solution, or
(ii) there is an element $u \in X$ such that $\|u\|=r$ and $u=\lambda$ Tu for some $\lambda<1$.

Let \mathcal{A} be a subset of $J \times \mathbb{R}$. A is called a $\mathcal{L} \otimes \mathcal{B}$-measurable if A belongs to the σ-algebra generated by all sets of the form $\mathcal{J} \times \mathcal{D}$, where \mathcal{J} is Lebesgue measurable set in J, \mathcal{D} is Borel measurable set in \mathbb{R}. A subset \mathcal{A} of $L^{1}(J, \mathbb{R})$ is called decomposable, if for all $u, v \in \mathcal{A}$ and $\mathcal{J} \subset J$ measurable, the function $u_{\chi_{\mathcal{J}}}+v_{\chi_{J \backslash \mathcal{J}}} \in \mathcal{A}$, where χ_{A} stands for the characteristic function of A.

We need the following definitions in the sequel.
Definition 2.6. Let Y be a separable metric space and let $N: Y \rightarrow$ $\mathcal{P}_{f}\left(L^{1}(J, \mathbb{R})\right)$ be a multi-valued operator. We say N has property $(B C)$ if
(i) N is lower semi-continuous (l.s.c.), and
(ii) N has closed and decomposable values.

Let $F: J \times \mathbb{R} \rightarrow \mathcal{P}_{c p}(\mathbb{R})$ be a multi-valued function. We assign to F, a multi-valued operator $S_{F}^{1}: C(J, \mathbb{R}) \rightarrow \mathcal{P}_{f}\left(L^{1}(J, \mathbb{R})\right)$ defined by

$$
S_{F}^{1}(x)=\left\{v \in L^{1}(J, \mathbb{R}) \mid v(t) \in F\left(t, x(t), x^{\prime}(t)\right) \text { a.e. } t \in J\right\}
$$

The multi-valued operator S_{F}^{1} is called Nemytskii or selection operator associated with the multi-function F.

Definition 2.7. Let $F: J \times \mathbb{R} \rightarrow \mathcal{P}_{c p}(\mathbb{R})$ be a multi-valued function. We say F is of lower semi-continuous type (l.s.c. type) if its associated Nemytskii operator S_{F}^{1} is lower semi-continuous and has closed and decomposable values.

Now we state a selection theorem due to Bressan and Colombo [4].
Theorem 2.8. Let Y be a separable metric space and let $N: Y \rightarrow$ $\mathcal{P}_{f}\left(L^{1}(J, \mathbb{R})\right)$ be a multi-valued operator which has property $(B C)$. Then N has a continuous selection, i.e., there exists a continuous function (single-valued) $g: Y \rightarrow L^{1}(J, \mathbb{R})$ such that $g(y) \in N(y)$ for every $y \in Y$.

3. Existence Results

Define a norm $\|\cdot\|$ in $A C^{1}(J, \mathbb{R})$ by

$$
\begin{equation*}
\|x\|=\max \left\{\sup _{t \in J}|x(t)|, \sup _{t \in J}\left|x^{\prime}(t)\right|\right\} \tag{3.1}
\end{equation*}
$$

Before going to the main existence theorems of this section we give a useful result from the theory of boundary value problems of ordinary differential equations.

Lemma 3.1. [9, page 156] If $f \in L^{1}(J, \mathbb{R})$, then the $B V P$

$$
-x^{\prime \prime}(t)=f(t) \text { a.e. } t \in J \quad \text { and } \quad\left\{\begin{array}{l}
a_{0} x\left(t_{0}\right)-a_{1} x^{\prime}\left(t_{1}\right)=c_{0} \tag{3.2}\\
b_{0} x\left(t_{0}\right)+b_{1} x^{\prime}\left(t_{1}\right)=c_{1}
\end{array}\right.
$$

has a unique solution x given by

$$
\begin{equation*}
x(t)=z(t)+\int_{t_{0}}^{t_{1}} G(t, s) f(s) d s, \quad t \in J \tag{3.3}
\end{equation*}
$$

where z is a unique solution of the homogeneous differential equation

$$
-x^{\prime \prime}(t)=0 \text { a.e. } t \in J \quad \text { and } \quad\left\{\begin{array}{l}
a_{0} x\left(t_{0}\right)-a_{1} x^{\prime}\left(t_{1}\right)=c_{0} \tag{3.4}\\
b_{0} x\left(t_{0}\right)+b_{1} x^{\prime}\left(t_{1}\right)=c_{1}
\end{array}\right.
$$

given by

$$
\begin{equation*}
z(t)=\frac{c_{0} a_{1}\left(t_{1}-t\right)+c_{0} b_{1}+c_{1} a_{0}\left(t-t_{0}\right)+c_{1} b_{0}}{a_{0} a_{1}\left(t_{1}-t_{0}\right)+a_{0} b_{1}+a_{1} b_{0}}, \quad t \in J \tag{3.5}
\end{equation*}
$$

and $G(t, s)$ is the Green's function associated to the differential equation

$$
-x^{\prime \prime}(t)=0 \text { a.e. } t \in J \quad \text { and } \quad\left\{\begin{array}{l}
a_{0} x\left(t_{0}\right)-a_{1} x^{\prime}\left(t_{1}\right)=0 \tag{3.6}\\
b_{0} x\left(t_{0}\right)+b_{1} x^{\prime}\left(t_{1}\right)=0
\end{array}\right.
$$

given by

$$
G(t, s)= \begin{cases}\frac{\left(a_{1}\left(t_{1}-t\right)+b_{1}\right)\left(a_{0}\left(s-t_{0}\right)+b_{0}\right)}{a_{0} a_{1}\left(t_{1}-t_{0}\right)+a_{0} b_{1}+a_{1} b_{0}}, & t_{0} \leq s \leq t \leq t_{1} \tag{3.7}\\ \frac{\left(a_{1}\left(t_{1}-s\right)+b_{1}\right)\left(a_{0}\left(t-t_{0}\right)+b_{0}\right)}{a_{0} a_{1}\left(t_{1}-t_{0}\right)+a_{0} b_{1}+a_{1} b_{0}}, & t_{0} \leq t \leq s \leq t_{1}\end{cases}
$$

Remark 3.1. It is known that the function z belongs to the class $C^{1}(J, \mathbb{R})$. Therefore it is bounded on J and there is a constant $C_{1}>0$ with

$$
C_{1}=\max \left\{\frac{c_{0} a_{1}\left(t_{1}-t_{0}\right)+c_{0} b_{1}+c_{1} a_{0}\left(t_{1}-t_{0}\right)+c_{1} b_{0}}{a_{0} a_{1}\left(t_{1}-t_{0}\right)+a_{0} b_{1}+a_{1} b_{0}}, \frac{c_{0} b_{1}-c_{0} a_{1}+c_{1} a_{0}+c_{1} b_{0}}{a_{0} a_{1}\left(t_{1}-t_{0}\right)+a_{0} b_{1}+a_{1} b_{0}}\right\}
$$

such that

$$
\|z\|=\max \left\{\sup _{t \in J}|z(t)|, \sup _{t \in J}\left|z^{\prime}(t)\right|\right\} \leq C_{1}
$$

Remark 3.2. It is easy to see that the Green's function $G(t, s)$ of Lemma 3.1 is continuous in $J \times J$ and $G_{t}(t, s)$ is continuous in $(a, b) \times(a, b) \backslash\{(t, t) \mid t \in J\}$ and satisfy the inequalities

$$
\begin{equation*}
|G(t, s)|=G(t, s) \leq \frac{\left(a_{1}\left(t_{1}-t_{0}\right)+b_{1}\right)\left(a_{0}\left(t_{1}-t_{0}\right)+b_{0}\right)}{a_{0} a_{1}\left(t_{1}-t_{0}\right)+a_{0} b_{1}+a_{1} b_{0}}=K_{1} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{align*}
\left|G_{t}(t, s)\right| & = \begin{cases}\frac{\left|-a_{1}\right|\left(a_{0}\left(s-t_{0}\right)+b_{0}\right)}{a_{0} a_{1}\left(t_{1}-t_{0}\right)+a_{0} b_{1}+a_{1} b_{0}}, & t_{0}<s<t<t_{1} \\
\frac{\left(a_{1}\left(t_{1}-s\right)+b_{1}\right) a_{0}}{a_{0} a_{1}\left(t_{1}-t_{0}\right)+a_{0} b_{1}+a_{1} b_{0}} & t_{0}<t<s<t_{1}\end{cases} \\
& =\max \left\{\frac{a_{1}\left(a_{0}\left(t_{1}-t_{0}\right)+b_{0}\right)}{a_{0} a_{1}\left(t_{1}-t_{0}\right)+a_{0} b_{1}+a_{1} b_{0}}, \frac{\left(a_{1}\left(t_{1}-t_{0}\right)+b_{1}\right) a_{0}}{a_{0} a_{1}\left(t_{1}-t_{0}\right)+a_{0} b_{1}+a_{1} b_{0}}\right\} \\
& =K_{2} \tag{3.9}
\end{align*}
$$

3.1. Convex Case. Consider first the case when F is a convex-valued multivalued map. We need the following definitions in the sequel.

Definition 3.3. A multi-valued map $F: J \rightarrow \mathcal{P}_{c p, c v}(\mathbb{R})$ is said to be measurable if for every $y \in \mathbb{R}$, the function $t \rightarrow d(y, F(t))=\inf \{\|y-x\|: x \in F(t)\}$ is measurable.

Definition 3.4. A multi-valued map $F: J \times \mathbb{R} \times \mathbb{R} \rightarrow \mathcal{P}_{f}(\mathbb{R})$ is called Carathéodory if
(i) $t \mapsto F(t, x, y)$ is measurable for all $x, y \in \mathbb{R}$, and
(ii) $(x, y) \mapsto F(t, x, y)$ is upper semi-continuous for almost all $t \in J$.

Further a Carathéodory multi-valued function F on $J \times \mathbb{R}$ is called L^{1} Carathéodory if
(iii) for each real number $k>0$, there exists a function $h_{k} \in L^{1}(J, \mathbb{R})$ such that

$$
\|F(t, x, y)\|_{\mathcal{P}}=\sup \{|v|: v \in F(t, x, y)\} \leq h_{k}(t), \quad \text { a.e. } t \in J
$$

for all $x, y \in \mathbb{R}$ with $|x| \leq k,|y| \leq k$.
Then we have the following lemmas due to Lasota and Opial [11].
Lemma 3.2. If $\operatorname{dim}(X)<\infty$ and $F: J \times X \times X \rightarrow \mathcal{P}_{c p, c v}(X) L^{1}$ Carathéodory, then $S_{F}^{1}(x) \neq \emptyset$ for each $x \in X$.
Lemma 3.3. Let X be a Banach space, F an L^{1}-Carathéodory multi-valued map with $S_{F}^{1} \neq \emptyset$ and $\mathcal{L}: L^{1}(J, X) \rightarrow C(J, X)$ be a linear continuous mapping. Then the operator

$$
\mathcal{L} \circ S_{F}^{1}: C(J, X) \longrightarrow \mathcal{P}_{c p, c v}(C(J, X))
$$

is a closed graph operator in $C(J, X) \times C(J, X)$.
We list here the following assumptions:
$\left(H_{1}\right)$ The multi $F(t, x, y)$ has compact and convex values for each $(t, x, y) \in$ $J \times \mathbb{R} \times \mathbb{R}$.
$\left(H_{2}\right) F$ is Carathéodory.
$\left(H_{3}\right)$ There exists a function $\phi \in L^{1}(J, \mathbb{R})$ with $\phi(t)>0$ for a.e. $t \in J$ and there is a nondecreasing function $\psi: \mathbb{R}^{+} \rightarrow(0, \infty)$ such that

$$
\|F(t, x, y)\|_{\mathcal{P}}=\sup \{|u|: u \in F(t, x, y)\} \leq \phi(t) \psi(\max \{|x|,|y|\})
$$

for a.e. $t \in J$ and for all $x, y \in \mathbb{R}$.
Theorem 3.5. Assume that $\left(H_{1}\right)-\left(H_{3}\right)$ hold. Suppose that there is a real number $r>0$ such that

$$
\begin{equation*}
r>C_{1}+\max \left\{K_{1}, K_{2}\right\}\|\phi\|_{L^{1}} \psi(r) \tag{3.10}
\end{equation*}
$$

where C_{1}, K_{1} and K_{2} are the constants defined in Remark 3.2. Then the BVP (1.1)- (1.2) has at least one solution u such that $\|u\| \leq r$.

Proof. Let $X=A C^{1}(J, \mathbb{R})$ and consider an open ball $\mathcal{B}_{r}(0)$ centered at origin of radius r, where r satisfies the condition given in (3.10). The problem of existence of a solution of BVP (1.1)-(1.2) reduces to finding the solution of the integral inclusion

$$
\begin{equation*}
x(t) \in z(t)+\int_{t_{0}}^{t_{1}} G(t, s) F\left(s, x(s), x^{\prime}(s)\right) d s, \quad t \in J \tag{3.11}
\end{equation*}
$$

Define a multi-valued map $T: \overline{\mathcal{B}_{r}(0)} \rightarrow \mathcal{P}_{f}\left(A C^{1}(J, \mathbb{R})\right)$ by

$$
\begin{equation*}
T x=\left\{u \in A C^{1}(J, \mathbb{R}): u(t)=z(t)+\int_{t_{0}}^{t_{1}} G(t, s) v(s) d s, \quad v \in \overline{S_{F}^{1}}(x)\right\} \tag{3.12}
\end{equation*}
$$

We shall show that the multi T satisfies all the conditions of Corollary 2.4. The proof will be given in several steps.

Step I. We prove that $T x$ is a convex subset of $A C^{1}(J, \mathbb{R})$ for each $x \in$ $A C^{1}(J, \mathbb{R})$. Let $u_{1}, u_{2} \in T x$. Then there exist v_{1} and v_{2} in $S_{F}^{1}(x)$ such that

$$
u_{j}(t)=z(t)+\int_{t_{0}}^{t_{1}} G(t, s) v_{j}(s) d s, \quad j=1,2
$$

Since $F(t, x, y)$ has convex values for all $x, y \in \mathbb{R}$, one has for $0 \leq k \leq 1$

$$
\left[k v_{1}+(1-k) v_{2}\right](t) \in S_{F}^{1}(x)(t), \quad \forall t \in J
$$

As a result we have

$$
\left[k u_{1}+(1-k) u_{2}\right](t)=z(t)+\int_{t_{0}}^{t_{1}} G(t, s)\left[k v_{1}(s)+(1-k) v_{2}(s)\right] d s
$$

Therefore $\left[k u_{1}+(1-k) u_{2}\right] \in T x$ and consequently T has convex values in $A C^{1}(J, \mathbb{R})$.

Step II. T maps bounded sets into bounded sets in $A C^{1}(J, \mathbb{R})$. To see this, let B be a bounded set in $A C^{1}(J, \mathbb{R})$. Then there exists a real number $q>0$ such that $\|x\| \leq q, \forall x \in B$.

Now for each $u \in T x$, there exists a $v \in S_{F}^{1}(x)$ such that

$$
u(t)=z(t)+\int_{t_{0}}^{t_{1}} G(t, s) v(s) d s
$$

Then for each $t \in J$,

$$
\begin{aligned}
|u(t)| & \leq|z(t)|+\int_{t_{0}}^{t_{1}}|G(t, s) \| v(s)| d s \\
& \leq|z(t)|+\int_{t_{0}}^{t_{1}}|G(t, s)| \phi(s) \psi\left(\max \left\{|x(t)|,\left|x^{\prime}(t)\right|\right\}\right) d s
\end{aligned}
$$

Again,

$$
\begin{aligned}
\left|u^{\prime}(t)\right| & \leq\left|z^{\prime}(t)\right|+\int_{t_{0}}^{t_{1}}\left|G_{t}(t, s)\right||v(s)| d s \\
& \leq\left|z^{\prime}(t)\right|+\int_{t_{0}}^{t_{1}}\left|G_{t}(t, s)\right| \phi(s) \psi\left(\max \left\{|x(t)|,\left|x^{\prime}(t)\right|\right\}\right) d s
\end{aligned}
$$

This further implies that

$$
\begin{aligned}
\|u\|= & \max _{t \in J}\left\{\left|x(t),\left|x^{\prime}(t)\right|\right\}\right. \\
\leq & \max _{t \in J} \max \left\{|z(t)|,\left|z^{\prime}(t)\right|\right\} \\
& +\int_{t_{0}}^{t_{1}} \max _{t, s \in J}\left\{|G(t, s)|,\left|G_{t}(t, s)\right|\right\} \phi(s) \psi\left(\max \left\{|x(s)|,\left|x^{\prime}(s)\right|\right\}\right) d s \\
\leq & C_{1}+\max \left\{K_{1}, K_{2}\right\}\|\phi\|_{L^{1}} \psi(q)
\end{aligned}
$$

for all $u \in T x \subset \bigcup T(B)$. Hence $\bigcup T(B)$ is bounded.

Step III. Next we show that T maps bounded sets into equi-continuous sets. Let B be a bounded set as in step II, and $u \in T x$ for some $x \in B$. Then there exists $v \in S_{F}^{1}(x)$ such that

$$
u(t)=z(t)+\int_{t_{0}}^{t_{1}} G(t, s) v(s) d s
$$

Then for any $t, \tau \in J$, we have

$$
\begin{aligned}
\mid u(t) & -u(\tau) \mid \\
& \leq|z(t)-z(\tau)|+\left|\int_{t_{1}}^{t_{2}} G(t, s) v(s) d s-\int_{t_{0}}^{t_{2}} G(\tau, s) v(s) d s\right| \\
& \leq|z(t)-z(\tau)|+\int_{t_{0}}^{t_{1}}|G(t, s)-G(\tau, s)||v(s)| d s \\
& \leq|z(t)-z(\tau)|+\int_{t_{0}}^{t_{1}}|G(t, s)-G(\tau, s)| \phi(s) \psi\left(\max \left\{|x(s)|,\left|x^{\prime}(s)\right|\right\}\right) d s \\
& \leq|z(t)-z(\tau)|+\int_{t_{0}}^{t_{1}}|G(t, s)-G(\tau, s)| \phi(s) \psi(q) d s
\end{aligned}
$$

Similarly we have

$$
\left|u^{\prime}(t)-u^{\prime}(\tau)\right| \leq\left|z^{\prime}(t)-z^{\prime}(\tau)\right|+\int_{t_{0}}^{t_{1}}\left|G_{t}(t, s)-G_{t}(\tau, s)\right|
$$

Therefore from the above two estimates, it follows that

$$
\max \left\{|u(t)-u(\tau)|,\left|u^{\prime}(t)-u^{\prime}(\tau)\right|\right\} \rightarrow 0, \text { as } t \rightarrow \tau
$$

As a result $\bigcup T(B)$ is an equi-continuous set in $A C^{1}(J, \mathbb{R})$. Now an application of Arzelá-Ascoli theorem yields that the multi T is completely continuous operator on $A C^{1}(J, \mathbb{R})$.

Step IV. Next we prove that T has a closed graph. Let $\left\{x_{n}\right\} \subset A C^{1}(J, \mathbb{R})$ be a sequence such that $x_{n} \rightarrow x_{*}$ and let $\left\{y_{n}\right\}$ be a sequence defined by $y_{n} \in T x_{n}$ for each $n \in \mathbb{N}$ such that $y_{n} \rightarrow y_{*}$. We must show that $y_{*} \in T x_{*}$. Since $y_{n} \in T x_{n}$, there exists a $v_{n} \in S_{F}^{1}\left(x_{n}\right)$ such that

$$
y_{n}(t)=z(t)+\int_{t_{0}}^{t_{1}} G(t, s) v_{n}(s) d s
$$

Consider the linear and continuous operator $\mathcal{L}: L^{1}(J, \mathbb{R}) \rightarrow A C^{1}(J, \mathbb{R})$ defined by

$$
\mathcal{L} v(t)=\int_{t_{0}}^{t_{1}} G(t, s) v(s) d s
$$

Now

$$
\begin{aligned}
\max _{t \in J}\left\{\left|y_{n}(t)-z(t)-\left(y_{*}(t)-z(t)\right)\right|\right. & \left.,\left|y_{n}^{\prime}(t)-z^{\prime}(t)-\left(y_{*}^{\prime}(t)-z^{\prime}(t)\right)\right|\right\} \\
& \leq \max _{t \in J}\left\{\left|y_{n}(t)-y_{*}(t)\right|,\left|y_{n}^{\prime}(t)-y_{*}^{\prime}(t)\right|\right\} \\
& =\left\|y_{n}-y_{*}\right\| \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

From Lemma 3.2 it follows that $\left(\mathcal{K} \circ S_{F}^{1}\right)$ is a closed graph operator and from the definition of \mathcal{L} one has

$$
y_{n}-z \in\left(\mathcal{L} \circ \overline{S_{F}^{1}}\left(x_{n}\right)\right)
$$

As $x_{n} \rightarrow x_{*}$ and $y_{n} \rightarrow y_{*}$, there is a $v_{*} \in S_{F}^{1}\left(x_{*}\right)$ such that

$$
y_{*}(t)=z(t)+\int_{t_{0}}^{t_{1}} G(t, s) v_{*}(s) d s
$$

Hence the multi T is an upper semi-continuous operator on $\overline{\mathcal{B}_{r}(0)}$.
Thus, T is an upper semi-continuous and compact operator on $\overline{\mathcal{B}_{r}(0)}$. Now an application of Corollary 2.4 yields that either (i) the operator inclusion $x \in T x$ has a solution in $\overline{\mathcal{B}_{r}(0)}$, or (ii) there is an element $u \in X$ with $\|u\|=r$ such that $\lambda u \in T u$ for some $\lambda>1$. We show that the assertion (ii) is not possible. Assume the contrary. Then proceeding with the arguments as in Step II, we obtain

$$
r=\|u\| \leq C_{1}+\max \left\{K_{1}, K_{2}\right\}\|\phi\|_{L^{1}} \psi(r)
$$

which is a contradiction to (3.10). Hence BVP (1.1) -(1.2) has a solution u on J such that $\|u\| \leq r$.
3.2. Nonconvex Case. Now, we study the case when F is not necessarily convex valued. We give two results. The first, Theorem 3.6, based on Covitz and Nadler fixed point theorem, and the second, Theorem 3.7, based on the Leray-Schauder Alternative for single valued maps combined with a selection theorem due to Bressan and Colombo [4] for lower semicontinuous multivalued operators with decomposable values.

The following assumptions will be needed in the sequel.
$\left(H_{4}\right)$ The multi-valued function $t \mapsto F(t, x, y)$ is measurable and integrably bounded for all $x, y \in \mathbb{R}$.
$\left(H_{5}\right)$ The multi-function $F: J \times \mathbb{R} \times \mathbb{R} \rightarrow \mathcal{P}_{c l}(\mathbb{R})$ satisfies

$$
H\left(F\left(t, x_{1}, y_{1}\right), F\left(t, x_{2}, y_{2}\right)\right) \leq \ell_{1}(t)\left|x_{1}-y_{1}\right|+\ell_{2}(t)\left|x_{2}-y_{2}\right| \text { a.e. } t \in J
$$

for all $x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{R}$, where ℓ_{1}, ℓ_{2} are integrable functions.
$\left(H_{6}\right)$ The multi-function $F: J \times \mathbb{R} \times \mathbb{R} \rightarrow \mathcal{P}_{c p}(\mathbb{R})$ satisfies:
(a) $(t, x, y) \mapsto F(t, x, y)$ is $(\mathcal{L} \otimes \mathcal{B} \otimes \mathcal{B})$-measurable, and
(b) $(x, y) \mapsto F(t, x, y)$ is lower semi-continuous for almost every $t \in J$.

Lemma 3.4. Let $F: J \times \mathbb{R} \times \mathbb{R} \rightarrow \mathcal{P}_{c p}(\mathbb{R})$ be an integrably bounded multi-valued function satisfying $\left(H_{6}\right)$. Then F is of lower semi-continuous type.

First, we prove an existence result for BVP (1.1)-(1.2) under a Lipschitz condition on multi-valued function F.

Theorem 3.6. Assume that the hypotheses $\left(H_{4}\right)$ and $\left(H_{5}\right)$ hold and suppose that

$$
\left(\left\|\ell_{1}\right\|_{L^{1}}+\left\|\ell_{2}\right\|_{L^{1}}\right) \max \left\{K_{1}, K_{2}\right\}<1
$$

where K_{1} and K_{2} are given in Remark 3.2. Then the BVP (1.1)-(1.2) has at least one solution on J.

Proof. First, we transform the BVP (1.1)-(1.2) into a fixed point inclusion problem in a suitable Banach space. Let $X=C^{1}(J, \mathbb{R})$ be equipped with the norm given by (3.2). Then X is a Banach space with this norm. Define a multivalued operator T on X by (3.12). Then the BVP (1.1)-(1.2) is equivalent to the operator inclusion

$$
\begin{equation*}
x(t) \in T x(t), t \in J \tag{3.13}
\end{equation*}
$$

We will show that the multi-valued operator T satisfies all the conditions of Theorem 2.2. Clearly the operator T is well defined since $S_{F}^{1}(x) \neq \emptyset$ for each $x \in X$.

First we show that $T x$ is closed subset of X for each $x \in X$. This follows easily if we show the values of Nemytskii operator S_{F}^{1} has closed values in $L^{1}(J, \mathbb{R})$. Let $\left\{w_{n}\right\}$ be a sequence in $L^{1}(J, \mathbb{R})$ converging to a point w. Then $w_{n} \rightarrow w$ in measure, and so, there exists a subsequence S of positive integers with w_{n} converging a.e. to w as $n \rightarrow \infty$ through S. Now since $\left(\mathrm{H}_{4}\right)$ holds, the
values of S_{F}^{1} are closed in $L^{1}(J, \mathbb{R})$. Thus for each $x \in X$, we have that $T x$ is non-empty and closed subset of X.

Next we show that T is a multi-valued contraction on X. Let $x, y \in X$ and let $u_{1} \in T(x)$. Then $u_{1} \in X$ and $u_{1}(t)=z(t)+\int_{t_{0}}^{t_{1}} k(t, s) v_{1}(s) d s$ for some $v_{1} \in S_{F}^{1}(x)$. From hypothesis $\left(\mathrm{H}_{5}\right)$ it follows that

$$
H\left(F\left(t, x(t), x^{\prime}(t)\right), F\left(t, y(t), y^{\prime}(t)\right) \leq \ell_{1}(t)|x(t)-y(t)|+\ell_{2}(t)\left|x^{\prime}(t)-y^{\prime}(t)\right|\right.
$$

Hence there is $w \in F\left(t, y(t), y^{\prime}(t)\right)$ such that

$$
\left|v_{1}(t)-w\right| \leq \ell_{1}(t)|x(t)-y(t)|+\ell_{2}(t)\left|x^{\prime}(t)-y^{\prime}(t)\right|
$$

Thus the multi-valued operator U defined by $U(t)=S_{F}^{1}(y)(t) \cap K(t) t \in J$, where $K(t)$ is given by

$$
K(t)=\left\{w| | v_{1}(t)-w\left|\leq \ell_{1}(t)\right| x(t)-y(t)\left|+\ell_{2}(t)\right| x^{\prime}(t)-y^{\prime}(t) \mid\right\}
$$

has nonempty values and is measurable. Let v_{2} be a measurable selection for U (which does exist by Kuratowski-Ryll-Nardzewski's selection theorem. See [1]). Then $v_{2} \in F\left(t, y(t), y^{\prime}(t)\right)$ and

$$
\left|v_{1}(t)-v_{2}(t)\right| \leq \ell_{1}(t)|x(t)-y(t)|+\ell_{2}(t)\left|x^{\prime}(t)-y^{\prime}(t)\right| \quad \text { for } \quad \text { a.e. } \quad t \in J
$$

Define $u_{2}(t)=z(t)+\int_{t_{0}}^{t_{1}} k(t, s) v_{2}(s) d s$. It follows that $u_{2} \in T x$ and

$$
\begin{aligned}
\left|u_{1}(t)-u_{2}(t)\right| & \leq\left|\int_{t_{0}}^{t_{1}} k(t, s) v_{1}(s) d s-\int_{t_{0}}^{t_{1}} k(t, s) v_{2}(s) d s\right| \\
& \leq \int_{t_{0}}^{t_{1}}|k(t, s)|\left|v_{1}(s)-v_{2}(s)\right| d s \\
& \leq \int_{t_{0}}^{t_{1}} k(t, s)\left[\ell_{1}(t)|x(t)-y(t)|+\ell_{2}(t)\left|x^{\prime}(t)-y^{\prime}(t)\right|\right] d s \\
& \leq K_{1}\left(\left\|\ell_{1}\right\|_{L^{1}}+\left\|\ell_{2}\right\|_{L^{1}}\right)\|x-y\|
\end{aligned}
$$

Similarly we have

$$
\left|u_{1}^{\prime}(t)-u_{2}^{\prime}(t)\right| \leq K_{2}\left(\left\|\ell_{1}\right\|_{L^{1}}+\left\|\ell_{2}\right\|_{L^{1}}\right)\|x-y\|
$$

Therefore,

$$
\left\|u_{1}-u_{2}\right\| \leq\left(\left\|\ell_{1}\right\|_{L^{1}}+\left\|\ell_{2}\right\|_{L^{1}}\right) \max \left\{K_{1}, K_{2}\right\}\|x-y\|
$$

From this, and the analogous inequality obtained by interchanging the roles of x and y we obtain

$$
H(T(x), T(y)) \leq\left(\left\|\ell_{1}\right\|_{L^{1}}+\left\|\ell_{2}\right\|_{L^{1}}\right) \max \left\{K_{1}, K_{2}\right\}\|x-y\|,
$$

for all $x, y \in X$. This shows that T is a multi-valued contraction since $\left(\left\|\ell_{1}\right\|_{L^{1}}+\right.$ $\left.\left\|\ell_{2}\right\|_{L^{1}}\right) \max \left\{K_{1}, K_{2}\right\}<1$. Now an application of Theorem 2.2 yields that T has a fixed point which further implies that the BVP (1.1)-(1.2) has a solution on J.

Now, we prove our second existence result for BVP (1.1)-(1.2).
Theorem 3.7. Assume that the hypotheses $\left(H_{3}\right)-\left(H_{6}\right)$ hold and there exists a real number $r>0$ satisfying

$$
\begin{equation*}
r>C_{1}+\max \left\{K_{1}, K_{2}\right\}\|\phi\|_{L^{1}} \psi(r), \tag{3.14}
\end{equation*}
$$

where C_{1}, K_{1} and K_{2} are the constants defined in Remark 3.2. Then the BVP (1.1)-(1.2) has at least one solution on J.

Proof. First, we transform the BVP (1.1)-(1.2) into a fixed point problem in a suitable normed linear space. The problem of existence of a solution of BVP (1.1)- (1.2) reduces to finding a solution of the integral equation

$$
\begin{equation*}
x(t)=z(t)+\int_{t_{0}}^{t_{1}} k(t, s) f(x(s)) d s, \quad t \in J \tag{3.15}
\end{equation*}
$$

where $f(x(\cdot)) \in L^{1}$ with $f(x(t)) \in F\left(t, x(t), x^{\prime}(t)\right)$ a.e. $t \in J$ (this is a consequence of $\left(H_{3}\right),\left(H_{6}\right)$ and Theorem 2.8). We study the integral equation (3.15) in the space $A C^{1}(J, \mathbb{R})$. Let $X=A C^{1}(J, \mathbb{R})$ and define an open ball $\mathcal{B}_{r}(0)$ in X centered at origin 0 of radius r, where the real number $r>0$ satisfies the inequality (3.12). Define the operator T on $\overline{\mathcal{B}_{r}(0)}$ by

$$
\begin{equation*}
T x(t)=z(t)+\int_{t_{0}}^{t_{1}} k(t, s) f(x((s))) d s \tag{3.16}
\end{equation*}
$$

Then the integral equation (3.15) is equivalent to the operator equation

$$
\begin{equation*}
x(t)=T x(t), t \in J \tag{3.17}
\end{equation*}
$$

We will show that the multi-valued operator T satisfies all the conditions of Corollary 2.5.

First, we show that T is continuous on $\overline{\mathcal{B}_{r}(0)}$. Since $\left(H_{3}\right)$ holds, we have

$$
|f(x(t))| \leq \phi(t) \psi\left(\max \left\{\left|x(t),\left|x^{\prime}(t)\right|\right\}\right) \text { a.e. } t \in J\right.
$$

for all $x \in A C^{1}(J, \mathbb{R})$. Let $\left\{x_{n}\right\}$ be a sequence in $\overline{\mathcal{B}_{r}(0)}$ converging to a point $x \in \overline{\mathcal{B}_{r}(0)}$. Then

$$
\left|f\left(x_{n}(t)\right)\right| \leq \phi(t) \psi(r) \text { a.e. } t \in J
$$

Hence by the dominated convergence theorem and continuity of f, we obtain

$$
\begin{aligned}
\lim _{n \rightarrow \infty} T x_{n}(t) & =z(t)+\int_{t_{0}}^{t_{1}} G(t, s) f\left(x_{n}((s))\right) d s \\
& =z(t)+\int_{t_{0}}^{t_{1}} G(t, s) f(x((s))) d s \\
& =T x(t)
\end{aligned}
$$

and

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(T x_{n}\right)^{\prime}(t) & =z^{\prime}(t)+\int_{t_{0}}^{t_{1}} G_{t}(t, s) f\left(x_{n}((s))\right) d s \\
& =z^{\prime}(t)+\int_{t_{0}}^{t_{1}} G_{t}(t, s) f(x((s))) d s \\
& =(T x)^{\prime}(t)
\end{aligned}
$$

for all $t \in J$. As a result, T is continuous on $\overline{\mathcal{B}_{r}(0)}$. Next following the arguments as in the proof of Theorem 3.5 with appropriate modifications, it is shown that T is a compact operator on $\overline{\mathcal{B}_{r}(0)}$. Now an application of Corollary 2.5 yields that either (i) the operator equation $x=T x$ has a solution in $\overline{\mathcal{B}_{r}(0)}$, or (ii) there is an element $u \in X$ such that $\|u\|=r$ and $u=\lambda T u$ for some $\lambda \in(0,1)$. If the assertion (ii) holds, then we obtain a contradiction to (3.12). Hence assertion (i) holds and the BVP (1.1)-(1.2) has a solution $u \in A C^{1}(J, \mathbb{R})$ such that $\|u\| \leq r$. This completes the proof.

References

[1] J.-P. Aubin and A. Cellina, Differential Inclusions, Springer Verlag, 1984.
[2] S. Bernfeld and V. Lakshmikantham, An Introduction to Boundary Value Problems, Academic Press, New York, 1974.
[3] M. Benchohra and S.K. Ntouyas, On second order differential inclusions with periodic boundary conditions, Acta Math. Univ. Comeniana, LXIX (2000), 173-181.
[4] A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math., 90(1988), 69-86.
[5] H. Covitz and S.B. Nadler jr., Multivalued contraction mappings in generalized metric spaces, Israel J. Math., 8(1970), 5-11.
[6] B.C. Dhage, On boundary value problems of second order differential inclusions, Diss. Math.-Differential Inclusions, Control Optim., 24(2004), 73-96.
[7] A. Granas and J. Dugundji, Fixed Point Theory, Springer Verlag, 2003.
[8] N. Halidias and N.S. Papageorgiou, Second order multi-valued boundary value problems, Arch. Math. (Brno), 34(1998), 267-284.
[9] S. Heikkila, On second order discontinuous scaler boundary value problem, Nonlinear Studies, 3(1996), 153-162.
[10] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis, Vol. I: Theory, Kluwer Academic Publishers, Dordrechet, 1997.
[11] A. Lasota and Z. Opial, An application of Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phy., 13(1965), 781-786.
[12] D. O'Regan, Fixed point theory for closed multi-functions, Arch. Math. (Brno), 34(1998), 191-197.

Received: January 30, 2006; Accepted: August 6, 2007.

