*Fixed Point Theory*, Volume 9, No. 1, 2008, 89-104 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

# ON BOUNDARY VALUE PROBLEMS OF SECOND ORDER CONVEX AND NONCONVEX DIFFERENTIAL INCLUSIONS

B.C. DHAGE\*, S.K. NTOUYAS\*\* AND D.S. PALIMKAR\*\*\*

\*Kasubai, Gurukul Colony, Ahmedpur-413 515 Dist: Latur, Maharashtra, India E-mail: bcd20012001@yahoo.co.in

\*\*Department of Mathematics, University of Ioannina 451 10 Ioannina, Greece E-mail: sntouyas@cc.uoi.gr
\*\*\*Kasubai, Gurukul Colony, Ahmedpur-413 515

Dist: Latur, Maharashtra, India

**Abstract.** This paper presents sufficient conditions for the existence of solutions to boundary value problems of second order multi-valued convex as well as nonconvex differential inclusions.

**Key Words and Phrases**: Boundary value problem, differential inclusion, existence theorem.

2000 Mathematics Subject Classification: 34A60, 47H10, 34B15.

## 1. INTRODUCTION

Let  $\mathbb{R}$  denote the real line and let  $\mathcal{P}_f(\mathbb{R})$  denote the class of all non-empty subsets of  $\mathbb{R}$  with a property f. In particular,  $\mathcal{P}_{cl}(\mathbb{R}), \mathcal{P}_{bd}(\mathbb{R}), \mathcal{P}_{cv}(\mathbb{R})$ , and  $\mathcal{P}_{cp}(\mathbb{R})$  denote respectively the classes of closed, bounded, convex and compact subsets of  $\mathbb{R}$ . Similarly  $\mathcal{P}_{cl,bd}(\mathbb{R})$  and  $\mathcal{P}_{cp,cv}(\mathbb{R})$  denote respectively the classes of all closed-bounded and compact-convex subsets of  $\mathbb{R}$ . Let  $J = [t_0, t_1]$  be a closed and bounded interval in  $\mathbb{R}$  for some real numbers  $t_0, t_1 \in \mathbb{R}$  with  $t_0 < t_1$ . Now consider the two point boundary value problem (in short BVP) of second order differential inclusions

$$-x''(t) \in F(t, x(t), x'(t)) \ a.e. \ t \in J$$
 (1.1)

satisfying the boundary conditions

$$\left. \begin{array}{c} a_0 x(t_0) - a_1 x'(t_1) = c_0 \\ b_0 x(t_0) + b_1 x'(t_1) = c_1 \end{array} \right\}$$
(1.2)

where the function and the constants involved in (1.1) and (1.2) satisfy the following properties:

- (a)  $F: J \times \mathbb{R} \times \mathbb{R} \to \mathcal{P}_f(\mathbb{R}),$
- (b)  $a_0, a_1, b_0, b_1 \in \mathbb{R}^+$  satisfying  $a_0 a_1(t_1 t_0) + a_0 b_1 + a_1 b_0 > 0$  and
- (c)  $c_0, c_1 \in \mathbb{R}$ .

By a solution of BVP (1.1)-(1.2) we mean a function  $x \in AC^1(J, \mathbb{R})$  whose second derivative exists and is a member of  $L^1(J, \mathbb{R})$  in F(t, x, x'), i.e. there exists a  $v \in L^1(J, \mathbb{R})$  such that  $v(t) \in F(t, x(t), x'(t))$  for a.e  $t \in J$ , and -x''(t) = v(t) for all  $t \in J$  satisfying (1.2), where  $AC^1(J, \mathbb{R})$  is the space of continuous real-valued functions whose first derivative exists and is absolutely continuous on J.

The special cases of the BVP (1.1)-(1.2) have been discussed in the literature for existence of the solutions. The special case of the form

$$-x''(t) = f(t, x(t), x'(t)), \text{ a.e. } t \in J$$
(1.3)

satisfying the boundary conditions (1.2) where  $f: J \times \mathbb{R} \to \mathbb{R}$ ,  $a_0, a_1, b_0, b_1 \in \mathbb{R}_+$ ,  $c_0, c_1 \in \mathbb{R}$  and  $a_0a_1(t_1-t_0)+a_0b_1+a_1b_0 > 0$  has been discussed in Bernfeld and Lakshmikantham [2] for the existence of solutions and in Heikkila [9] for the existence of the extremal solutions. Again when  $c_0 = c_1, a_1 = 0 = b_1, a_0 = b_0$ , and F not depending on x', the BVP (1.1)-(1.2) reduces to

$$y'' \in F(t, y)$$
 a.e  $t \in J$ ,  $y(t_0) = y(t_1)$ . (1.4)

where y = -x. This is a BVP of second order differential inclusions considered in Benchohra and Ntouyas [3]. Finally, the special case of the BVP consisting of the equation

$$-y''(t) \in F(t, y(t)), \text{ a.e } t \in J$$

$$(1.5)$$

satisfying the boundary conditions (1.2) has been studied in Dhage [6] and Halidias and Papageorgiou [8] via the method of lower and upper solutions. Thus the BVP (1.1)-(1.2) is more general and so is its importance in the theory of differential inclusions. Here in the present paper, we discuss the BVP (1.1)-(1.2) via a Nonlinear Alternative of Leray-Schauder type ([7], [12]) and on a selection theorem for lower semicontinuous maps ([4]). The paper is organized as follows. In Section 2 we give some preliminaries needed in the sequel. In Section 3 we prove the main existence results for the BVP (1.1)-(1.2) when the right hand side has convex or nonconvex values.

# 2. Preliminaries

Let (X, d) be a metric space. For  $x \in X$  and  $Y, Z \in \mathcal{P}_{cl}(X)$  we denote by  $D(x, Y) = \inf\{\|x - y\| \mid y \in Y\}$ , and  $\rho(Y, Z) = \sup_{a \in Y} D(a, Z)$ . Define a function  $H : \mathcal{P}_{bd,cl}(X) \times \mathcal{P}_{bd,cl}(X) \to \mathbb{R}^+$  by

$$H(A, B) = \max\{\rho(A, B), \rho(B, A)\}.$$

The function H is called a Hausdorff metric on X. Note that  $||Y||_{\mathcal{P}} = H(Y, \{0\})$ .

A map  $T: X \to P_f(X)$  is called a multi-valued mapping on X into itself. A point  $u \in X$  is called a fixed point of the multi-valued operator  $T: X \to P_f(X)$ if  $u \in T(u)$ . The fixed points set of T will be denoted by Fix(T).

**Definition 2.1.** Let  $T : X \to \mathcal{P}_f(X)$  be a multi-valued operator. Then T is called a multi-valued contraction if there exists a constant  $\lambda \in (0, 1)$  such that for all  $x, y \in X$  we have

$$H(T(x), T(y)) \le \lambda \|x - y\|.$$

The constant  $\lambda$  is called a contraction constant of T.

**Theorem 2.2.** (Covitz and Nadler [5]) Let X be a complete metric space and let  $T : X \to \mathcal{P}_{cl}(X)$  be a multi-valued contraction. Then the fixed point set  $\mathcal{F}(T)$  of T is non-empty and closed set in X.

A multi-valued map T is closed-valued (resp. compact-valued) if Tx is closed (resp. compact) subset of X for each  $x \in X$ . T is said to be bounded on bounded sets if  $T(B) = \bigcup_{x \in B} T(x) = \bigcup T(B)$  is a bounded subset of X for all bounded sets B in X. T is called compact if  $\cup T(B)$  is relatively compact for a bounded subset B of X. Finally T is called totally compact if  $\overline{\cup T(X)}$ is a compact subset of X. T is called upper semi-continuous (u.s.c.) if for every open set  $N \subset X$ , the set  $\{x \in X : Tx \subset N\}$  is open in X. Again T is called completely continuous if it is upper semi-continuous and totally bounded on X. It is known that if the multi-valued compact map T has non empty compact values, then T is upper semi-continuous if and only if T has a closed graph (that is  $x_n \to x_*, y_n \to y_*, y_n \in Tx_n \Rightarrow y_* \in Tx_*$ ).

For more details on multivalued maps we refer the interested reader to the book of Hu and Papageorgiou [10].

We apply the following nonlinear alternative in the sequel.

**Theorem 2.3.** (O'Regan [12]) Let U and  $\overline{U}$  be the open and closed subsets in a normed linear space X such that  $0 \in U$  and let  $T : \overline{U} \to \mathcal{P}_{cp,cv}(X)$  be a completely continuous multi-valued map. Then either

- (i) the operator inclusion  $x \in Tx$  has a solution, or
- (ii) there is an element  $u \in \partial U$  such that  $\lambda u \in Tu$  for some  $\lambda > 1$ , where  $\partial U$  is the boundary of U.

**Corollary 2.4.** Let  $\mathcal{B}_r(0)$  and  $\overline{\mathcal{B}_r(0)}$  be the open and closed balls in a normed linear space X centered at origin 0 of radius r and let  $T: \overline{\mathcal{B}_r(0)} \to \mathcal{P}_{cp,cv}(X)$ be a completely continuous multi-valued map. Then either

- (i) the operator inclusion  $x \in Tx$  has a solution, or
- (ii) there is an element  $u \in X$  such that ||u|| = r and  $\lambda u \in Tu$  for some  $\lambda > 1$ .

**Corollary 2.5.** Let  $\mathcal{B}_r(0)$  and  $\overline{\mathcal{B}_r(0)}$  be the open and closed balls in a normed linear space X centered at origin 0 of radius r and let  $T : \overline{\mathcal{B}_r(0)} \to X$  be a completely continuous single-valued map. Then either

- (i) the operator inclusion x = Tx has a solution, or
- (ii) there is an element  $u \in X$  such that ||u|| = r and  $u = \lambda T u$  for some  $\lambda < 1$ .

Let  $\mathcal{A}$  be a subset of  $J \times \mathbb{R}$ . A is called a  $\mathcal{L} \otimes \mathcal{B}$ -measurable if A belongs to the  $\sigma$ -algebra generated by all sets of the form  $\mathcal{J} \times \mathcal{D}$ , where  $\mathcal{J}$  is Lebesgue measurable set in J,  $\mathcal{D}$  is Borel measurable set in  $\mathbb{R}$ . A subset  $\mathcal{A}$  of  $L^1(J, \mathbb{R})$ is called decomposable, if for all  $u, v \in \mathcal{A}$  and  $\mathcal{J} \subset J$  measurable, the function  $u_{\chi_{\mathcal{J}}} + v_{\chi_{J\setminus\mathcal{J}}} \in \mathcal{A}$ , where  $\chi_A$  stands for the characteristic function of A.

We need the following definitions in the sequel.

**Definition 2.6.** Let Y be a separable metric space and let  $N : Y \to \mathcal{P}_f(L^1(J,\mathbb{R}))$  be a multi-valued operator. We say N has property (BC) if

(i) N is lower semi-continuous (l.s.c.), and

(ii) N has closed and decomposable values.

Let  $F: J \times \mathbb{R} \to \mathcal{P}_{cp}(\mathbb{R})$  be a multi-valued function. We assign to F, a multi-valued operator  $S_F^1: C(J, \mathbb{R}) \to \mathcal{P}_f(L^1(J, \mathbb{R}))$  defined by

$$S_F^1(x) = \{ v \in L^1(J, \mathbb{R}) \mid v(t) \in F(t, x(t), x'(t)) \text{ a.e. } t \in J \}.$$

The multi-valued operator  $S_F^1$  is called *Nemytskii* or selection operator associated with the multi-function F.

**Definition 2.7.** Let  $F : J \times \mathbb{R} \to \mathcal{P}_{cp}(\mathbb{R})$  be a multi-valued function. We say F is of lower semi-continuous type (l.s.c. type) if its associated Nemytskii operator  $S_F^1$  is lower semi-continuous and has closed and decomposable values.

Now we state a selection theorem due to Bressan and Colombo [4].

**Theorem 2.8.** Let Y be a separable metric space and let  $N : Y \to \mathcal{P}_f(L^1(J,\mathbb{R}))$  be a multi-valued operator which has property (BC). Then N has a continuous selection, i.e., there exists a continuous function (single-valued)  $g: Y \to L^1(J,\mathbb{R})$  such that  $g(y) \in N(y)$  for every  $y \in Y$ .

## 3. EXISTENCE RESULTS

Define a norm  $\|\cdot\|$  in  $AC^1(J,\mathbb{R})$  by

$$||x|| = \max\left\{\sup_{t \in J} |x(t)|, \sup_{t \in J} |x'(t)|\right\}.$$
(3.1)

Before going to the main existence theorems of this section we give a useful result from the theory of boundary value problems of ordinary differential equations.

**Lemma 3.1.** [9, page 156] If  $f \in L^1(J, \mathbb{R})$ , then the BVP

$$-x''(t) = f(t) \quad a.e. \ t \in J \qquad and \qquad \begin{cases} a_0 x(t_0) - a_1 x'(t_1) = c_0 \\ b_0 x(t_0) + b_1 x'(t_1) = c_1 \end{cases}$$
(3.2)

has a unique solution x given by

$$x(t) = z(t) + \int_{t_0}^{t_1} G(t,s)f(s) \, ds, \quad t \in J,$$
(3.3)

where z is a unique solution of the homogeneous differential equation

$$-x''(t) = 0 \ a.e. \ t \in J \quad and \quad \begin{cases} a_0 x(t_0) - a_1 x'(t_1) = c_0 \\ b_0 x(t_0) + b_1 x'(t_1) = c_1 \end{cases}$$
(3.4)

given by

$$z(t) = \frac{c_0 a_1(t_1 - t) + c_0 b_1 + c_1 a_0(t - t_0) + c_1 b_0}{a_0 a_1(t_1 - t_0) + a_0 b_1 + a_1 b_0}, \quad t \in J,$$
(3.5)

and G(t,s) is the Green's function associated to the differential equation

$$-x''(t) = 0 \ a.e. \ t \in J \quad and \quad \begin{cases} a_0 x(t_0) - a_1 x'(t_1) = 0\\ b_0 x(t_0) + b_1 x'(t_1) = 0 \end{cases}$$
(3.6)

given by

$$G(t,s) = \begin{cases} \frac{(a_1(t_1-t)+b_1)(a_0(s-t_0)+b_0)}{a_0a_1(t_1-t_0)+a_0b_1+a_1b_0}, & t_0 \le s \le t \le t_1, \\ \frac{(a_1(t_1-s)+b_1)(a_0(t-t_0)+b_0)}{a_0a_1(t_1-t_0)+a_0b_1+a_1b_0}, & t_0 \le t \le s \le t_1. \end{cases}$$
(3.7)

**Remark 3.1.** It is known that the function z belongs to the class  $C^1(J, \mathbb{R})$ . Therefore it is bounded on J and there is a constant  $C_1 > 0$  with

$$C_{1} = \max\left\{\frac{c_{0}a_{1}(t_{1}-t_{0})+c_{0}b_{1}+c_{1}a_{0}(t_{1}-t_{0})+c_{1}b_{0}}{a_{0}a_{1}(t_{1}-t_{0})+a_{0}b_{1}+a_{1}b_{0}}, \frac{c_{0}b_{1}-c_{0}a_{1}+c_{1}a_{0}+c_{1}b_{0}}{a_{0}a_{1}(t_{1}-t_{0})+a_{0}b_{1}+a_{1}b_{0}}\right\}$$

such that

$$||z|| = \max\left\{\sup_{t\in J} |z(t)|, \sup_{t\in J} |z'(t)|\right\} \le C_1.$$

**Remark 3.2.** It is easy to see that the Green's function G(t, s) of Lemma 3.1 is continuous in  $J \times J$  and  $G_t(t, s)$  is continuous in  $(a, b) \times (a, b) \setminus \{(t, t) \mid t \in J\}$  and satisfy the inequalities

$$|G(t,s)| = G(t,s) \le \frac{(a_1(t_1 - t_0) + b_1)(a_0(t_1 - t_0) + b_0)}{a_0a_1(t_1 - t_0) + a_0b_1 + a_1b_0} = K_1,$$
(3.8)

and

$$|G_t(t,s)| = \begin{cases} \frac{|-a_1|(a_0(s-t_0)+b_0)}{a_0a_1(t_1-t_0)+a_0b_1+a_1b_0}, & t_0 < s < t < t_1, \\ \frac{(a_1(t_1-s)+b_1)a_0}{a_0a_1(t_1-t_0)+a_0b_1+a_1b_0} & t_0 < t < s < t_1 \\ = \max\left\{\frac{a_1(a_0(t_1-t_0)+b_0)}{a_0a_1(t_1-t_0)+a_0b_1+a_1b_0}, \frac{(a_1(t_1-t_0)+b_1)a_0}{a_0a_1(t_1-t_0)+a_0b_1+a_1b_0}\right\} \\ = K_2. \end{cases}$$

$$(3.9)$$

3.1. Convex Case. Consider first the case when F is a convex-valued multivalued map. We need the following definitions in the sequel.

**Definition 3.3.** A multi-valued map  $F : J \to \mathcal{P}_{cp,cv}(\mathbb{R})$  is said to be measurable if for every  $y \in \mathbb{R}$ , the function  $t \to d(y, F(t)) = \inf\{||y - x|| : x \in F(t)\}$  is measurable.

**Definition 3.4.** A multi-valued map  $F : J \times \mathbb{R} \times \mathbb{R} \to \mathcal{P}_f(\mathbb{R})$  is called Carathéodory if

- (i)  $t \mapsto F(t, x, y)$  is measurable for all  $x, y \in \mathbb{R}$ , and
- (ii)  $(x, y) \mapsto F(t, x, y)$  is upper semi-continuous for almost all  $t \in J$ .

Further a Carathéodory multi-valued function F on  $J \times \mathbb{R}$  is called  $L^1$ -Carathéodory if

(iii) for each real number k > 0, there exists a function  $h_k \in L^1(J, \mathbb{R})$  such that

$$||F(t,x,y)||_{\mathcal{P}} = \sup\{|v|: v \in F(t,x,y)\} \le h_k(t), \quad a.e. \ t \in J$$

for all  $x, y \in \mathbb{R}$  with  $|x| \leq k, |y| \leq k$ .

Then we have the following lemmas due to Lasota and Opial [11].

**Lemma 3.2.** If dim $(X) < \infty$  and  $F : J \times X \times X \to \mathcal{P}_{cp,cv}(X)$   $L^1$ -Carathéodory, then  $S^1_F(x) \neq \emptyset$  for each  $x \in X$ .

**Lemma 3.3.** Let X be a Banach space, F an  $L^1$ -Carathéodory multi-valued map with  $S_F^1 \neq \emptyset$  and  $\mathcal{L} : L^1(J, X) \to C(J, X)$  be a linear continuous mapping. Then the operator

$$\mathcal{L} \circ S_F^1 : C(J, X) \longrightarrow \mathcal{P}_{cp, cv}(C(J, X))$$

is a closed graph operator in  $C(J, X) \times C(J, X)$ .

We list here the following assumptions:

- (H<sub>1</sub>) The multi F(t, x, y) has compact and convex values for each  $(t, x, y) \in J \times \mathbb{R} \times \mathbb{R}$ .
- $(H_2)$  F is Carathéodory.
- (H<sub>3</sub>) There exists a function  $\phi \in L^1(J, \mathbb{R})$  with  $\phi(t) > 0$  for a.e.  $t \in J$  and there is a nondecreasing function  $\psi : \mathbb{R}^+ \to (0, \infty)$  such that

$$||F(t, x, y)||_{\mathcal{P}} = \sup\{|u| : u \in F(t, x, y)\} \le \phi(t)\psi(\max\{|x|, |y|\})$$

for a.e.  $t \in J$  and for all  $x, y \in \mathbb{R}$ .

**Theorem 3.5.** Assume that  $(H_1)$ - $(H_3)$  hold. Suppose that there is a real number r > 0 such that

$$r > C_1 + \max\{K_1, K_2\} \|\phi\|_{L^1} \psi(r), \qquad (3.10)$$

where  $C_1, K_1$  and  $K_2$  are the constants defined in Remark 3.2. Then the BVP (1.1)- (1.2) has at least one solution u such that  $||u|| \leq r$ .

**Proof.** Let  $X = AC^1(J, \mathbb{R})$  and consider an open ball  $\mathcal{B}_r(0)$  centered at origin of radius r, where r satisfies the condition given in (3.10). The problem of existence of a solution of BVP (1.1)-(1.2) reduces to finding the solution of the integral inclusion

$$x(t) \in z(t) + \int_{t_0}^{t_1} G(t,s)F(s,x(s),x'(s)) \, ds, \ t \in J.$$
(3.11)

Define a multi-valued map  $T: \overline{\mathcal{B}_r(0)} \to \mathcal{P}_f(AC^1(J,\mathbb{R}))$  by

$$Tx = \left\{ u \in AC^{1}(J, \mathbb{R}) : u(t) = z(t) + \int_{t_{0}}^{t_{1}} G(t, s)v(s)ds, \ v \in \overline{S_{F}^{1}}(x) \right\}.$$
(3.12)

We shall show that the multi T satisfies all the conditions of Corollary 2.4. The proof will be given in several steps.

**Step I.** We prove that Tx is a convex subset of  $AC^1(J, \mathbb{R})$  for each  $x \in AC^1(J, \mathbb{R})$ . Let  $u_1, u_2 \in Tx$ . Then there exist  $v_1$  and  $v_2$  in  $S_F^1(x)$  such that

$$u_j(t) = z(t) + \int_{t_0}^{t_1} G(t,s)v_j(s) \, ds, \ \ j = 1,2.$$

Since F(t, x, y) has convex values for all  $x, y \in \mathbb{R}$ , one has for  $0 \le k \le 1$ 

$$[kv_1 + (1-k)v_2](t) \in S_F^1(x)(t), \ \forall t \in J.$$

As a result we have

$$[ku_1 + (1-k)u_2](t) = z(t) + \int_{t_0}^{t_1} G(t,s)[kv_1(s) + (1-k)v_2(s)] \, ds.$$

Therefore  $[ku_1 + (1 - k)u_2] \in Tx$  and consequently T has convex values in  $AC^1(J, \mathbb{R})$ .

**Step II.** T maps bounded sets into bounded sets in  $AC^1(J, \mathbb{R})$ . To see this, let B be a bounded set in  $AC^1(J, \mathbb{R})$ . Then there exists a real number q > 0 such that  $||x|| \le q, \forall x \in B$ .

Now for each  $u \in Tx$ , there exists a  $v \in S_F^1(x)$  such that

$$u(t) = z(t) + \int_{t_0}^{t_1} G(t,s)v(s)ds.$$

Then for each  $t \in J$ ,

$$\begin{aligned} |u(t)| &\leq |z(t)| + \int_{t_0}^{t_1} |G(t,s)| |v(s)| \, ds \\ &\leq |z(t)| + \int_{t_0}^{t_1} |G(t,s)| \phi(s) \psi \big( \max\{|x(t)|, |x'(t)|\} \big) \, ds. \end{aligned}$$

Again,

$$\begin{aligned} |u'(t)| &\leq |z'(t)| + \int_{t_0}^{t_1} |G_t(t,s)| |v(s)| \, ds \\ &\leq |z'(t)| + \int_{t_0}^{t_1} |G_t(t,s)| \phi(s) \psi \big( \max\{|x(t)|, |x'(t)|\} \big) \, ds. \end{aligned}$$

This further implies that

$$\begin{aligned} \|u\| &= \max_{t \in J} \{ |x(t), |x'(t)| \} \\ &\leq \max_{t \in J} \max\{ |z(t)|, |z'(t)| \} \\ &+ \int_{t_0}^{t_1} \max_{t,s \in J} \{ |G(t,s)|, |G_t(t,s)| \} \phi(s) \psi \big( \max\{ |x(s)|, |x'(s)| \} \big) \, ds \\ &\leq C_1 + \max\{K_1, K_2\} \|\phi\|_{L^1} \psi(q) \end{aligned}$$

for all  $u \in Tx \subset \bigcup T(B)$ . Hence  $\bigcup T(B)$  is bounded.

**Step III.** Next we show that T maps bounded sets into equi-continuous sets. Let B be a bounded set as in step II, and  $u \in Tx$  for some  $x \in B$ . Then there exists  $v \in S_F^1(x)$  such that

$$u(t) = z(t) + \int_{t_0}^{t_1} G(t, s)v(s) \, ds.$$

Then for any  $t, \tau \in J$ , we have

$$\begin{aligned} |u(t) &- u(\tau)| \\ &\leq |z(t) - z(\tau)| + \left| \int_{t_1}^{t_2} G(t,s)v(s) \, ds - \int_{t_0}^{t_2} G(\tau,s)v(s) \, ds \right| \\ &\leq |z(t) - z(\tau)| + \int_{t_0}^{t_1} |G(t,s) - G(\tau,s)| \, |v(s)| \, ds \\ &\leq |z(t) - z(\tau)| + \int_{t_0}^{t_1} |G(t,s) - G(\tau,s)| \, \phi(s)\psi\big( \max\{|x(s)|, |x'(s)|\} \big) \, ds \\ &\leq |z(t) - z(\tau)| + \int_{t_0}^{t_1} |G(t,s) - G(\tau,s)| \, \phi(s)\psi(q) \, ds. \end{aligned}$$

Similarly we have

$$|u'(t) - u'(\tau)| \le |z'(t) - z'(\tau)| + \int_{t_0}^{t_1} |G_t(t,s) - G_t(\tau,s)|.$$

Therefore from the above two estimates, it follows that

$$\max\{|u(t) - u(\tau)|, |u'(t) - u'(\tau)|\} \to 0, \text{ as } t \to \tau.$$

As a result  $\bigcup T(B)$  is an equi-continuous set in  $AC^1(J, \mathbb{R})$ . Now an application of Arzelá-Ascoli theorem yields that the multi T is completely continuous operator on  $AC^1(J, \mathbb{R})$ .

**Step IV.** Next we prove that T has a closed graph. Let  $\{x_n\} \subset AC^1(J, \mathbb{R})$  be a sequence such that  $x_n \to x_*$  and let  $\{y_n\}$  be a sequence defined by  $y_n \in Tx_n$  for each  $n \in \mathbb{N}$  such that  $y_n \to y_*$ . We must show that  $y_* \in Tx_*$ . Since  $y_n \in Tx_n$ , there exists a  $v_n \in S_F^1(x_n)$  such that

$$y_n(t) = z(t) + \int_{t_0}^{t_1} G(t,s)v_n(s) \, ds.$$

Consider the linear and continuous operator  $\mathcal{L}: L^1(J, \mathbb{R}) \to AC^1(J, \mathbb{R})$  defined by

$$\mathcal{L}v(t) = \int_{t_0}^{t_1} G(t,s)v(s) \, ds$$

Now

$$\max_{t \in J} \{ |y_n(t) - z(t) - (y_*(t) - z(t))|, |y'_n(t) - z'(t) - (y'_*(t) - z'(t))| \}$$
  
$$\leq \max_{t \in J} \{ |y_n(t) - y_*(t)|, |y'_n(t) - y'_*(t)| \}$$
  
$$= ||y_n - y_*|| \to 0 \text{ as } n \to \infty.$$

From Lemma 3.2 it follows that  $(\mathcal{K} \circ S_F^1)$  is a closed graph operator and from the definition of  $\mathcal{L}$  one has

$$y_n - z \in (\mathcal{L} \circ \overline{S_F^1}(x_n)).$$

As  $x_n \to x_*$  and  $y_n \to y_*$ , there is a  $v_* \in S^1_F(x_*)$  such that

$$y_*(t) = z(t) + \int_{t_0}^{t_1} G(t,s)v_*(s)ds.$$

Hence the multi T is an upper semi-continuous operator on  $\overline{\mathcal{B}_r(0)}$ .

Thus, T is an upper semi-continuous and compact operator on  $\overline{\mathcal{B}_r(0)}$ . Now an application of Corollary 2.4 yields that either (i) the operator inclusion  $x \in Tx$  has a solution in  $\overline{\mathcal{B}_r(0)}$ , or (ii) there is an element  $u \in X$  with ||u|| = rsuch that  $\lambda u \in Tu$  for some  $\lambda > 1$ . We show that the assertion (ii) is not possible. Assume the contrary. Then proceeding with the arguments as in Step II, we obtain

$$r = ||u|| \le C_1 + \max\{K_1, K_2\} ||\phi||_{L^1} \psi(r),$$

which is a contradiction to (3.10). Hence BVP (1.1) -(1.2) has a solution u on J such that  $||u|| \leq r$ .

3.2. Nonconvex Case. Now, we study the case when F is not necessarily convex valued. We give two results. The first, Theorem 3.6, based on Covitz and Nadler fixed point theorem, and the second, Theorem 3.7, based on the Leray-Schauder Alternative for single valued maps combined with a selection theorem due to Bressan and Colombo [4] for lower semicontinuous multivalued operators with decomposable values.

The following assumptions will be needed in the sequel.

- (H<sub>4</sub>) The multi-valued function  $t \mapsto F(t, x, y)$  is measurable and integrably bounded for all  $x, y \in \mathbb{R}$ .
- $(H_5)$  The multi-function  $F: J \times \mathbb{R} \times \mathbb{R} \to \mathcal{P}_{cl}(\mathbb{R})$  satisfies

$$H(F(t, x_1, y_1), F(t, x_2, y_2)) \le \ell_1(t)|x_1 - y_1| + \ell_2(t)|x_2 - y_2|$$
 a.e.  $t \in J$ 

for all  $x_1, x_2, y_1, y_2 \in \mathbb{R}$ , where  $\ell_1, \ell_2$  are integrable functions.

- $(H_6)$  The multi-function  $F: J \times \mathbb{R} \times \mathbb{R} \to \mathcal{P}_{cp}(\mathbb{R})$  satisfies:
  - (a)  $(t, x, y) \mapsto F(t, x, y)$  is  $(\mathcal{L} \otimes \mathcal{B} \otimes \mathcal{B})$ -measurable, and
  - (b)  $(x, y) \mapsto F(t, x, y)$  is lower semi-continuous for almost every  $t \in J$ .

**Lemma 3.4.** Let  $F: J \times \mathbb{R} \times \mathbb{R} \to \mathcal{P}_{cp}(\mathbb{R})$  be an integrably bounded multi-valued function satisfying  $(H_6)$ . Then F is of lower semi-continuous type.

First, we prove an existence result for BVP (1.1)-(1.2) under a Lipschitz condition on multi-valued function F.

**Theorem 3.6.** Assume that the hypotheses  $(H_4)$  and  $(H_5)$  hold and suppose that

$$(\|\ell_1\|_{L^1} + \|\ell_2\|_{L^1}) \max\{K_1, K_2\} < 1,$$

where  $K_1$  and  $K_2$  are given in Remark 3.2. Then the BVP (1.1)-(1.2) has at least one solution on J.

**Proof.** First, we transform the BVP (1.1)-(1.2) into a fixed point inclusion problem in a suitable Banach space. Let  $X = C^1(J, \mathbb{R})$  be equipped with the norm given by (3.2). Then X is a Banach space with this norm. Define a multivalued operator T on X by (3.12). Then the BVP (1.1)-(1.2) is equivalent to the operator inclusion

$$x(t) \in Tx(t), \ t \in J. \tag{3.13}$$

We will show that the multi-valued operator T satisfies all the conditions of Theorem 2.2. Clearly the operator T is well defined since  $S_F^1(x) \neq \emptyset$  for each  $x \in X$ .

First we show that Tx is closed subset of X for each  $x \in X$ . This follows easily if we show the values of Nemytskii operator  $S_F^1$  has closed values in  $L^1(J, \mathbb{R})$ . Let  $\{w_n\}$  be a sequence in  $L^1(J, \mathbb{R})$  converging to a point w. Then  $w_n \to w$  in measure, and so, there exists a subsequence S of positive integers with  $w_n$  converging a.e. to w as  $n \to \infty$  through S. Now since (H<sub>4</sub>) holds, the

values of  $S_F^1$  are closed in  $L^1(J, \mathbb{R})$ . Thus for each  $x \in X$ , we have that Tx is non-empty and closed subset of X.

Next we show that T is a multi-valued contraction on X. Let  $x, y \in X$  and let  $u_1 \in T(x)$ . Then  $u_1 \in X$  and  $u_1(t) = z(t) + \int_{t_0}^{t_1} k(t,s)v_1(s) ds$  for some  $v_1 \in S_F^1(x)$ . From hypothesis (H<sub>5</sub>) it follows that

$$H(F(t, x(t), x'(t)), F(t, y(t), y'(t)) \le \ell_1(t)|x(t) - y(t)| + \ell_2(t)|x'(t) - y'(t)|.$$

Hence there is  $w \in F(t, y(t), y'(t))$  such that

$$|v_1(t) - w| \le \ell_1(t)|x(t) - y(t)| + \ell_2(t)|x'(t) - y'(t)|.$$

Thus the multi-valued operator U defined by  $U(t) = S_F^1(y)(t) \cap K(t)$   $t \in J$ , where K(t) is given by

$$K(t) = \{ w | |v_1(t) - w| \le \ell_1(t) |x(t) - y(t)| + \ell_2(t) |x'(t) - y'(t)| \},\$$

has nonempty values and is measurable. Let  $v_2$  be a measurable selection for U (which does exist by Kuratowski-Ryll-Nardzewski's selection theorem. See [1]). Then  $v_2 \in F(t, y(t), y'(t))$  and

$$\begin{aligned} |v_1(t) - v_2(t)| &\leq \ell_1(t) |x(t) - y(t)| + \ell_2(t) |x'(t) - y'(t)| \quad \text{for} \quad \text{a.e.} \quad t \in J. \\ \text{Define } u_2(t) &= z(t) + \int_{t_0}^{t_1} k(t,s) v_2(s) \, ds. \text{ It follows that } u_2 \in Tx \text{ and} \\ |u_1(t) - u_2(t)| &\leq \left| \int_{t_0}^{t_1} k(t,s) v_1(s) \, ds - \int_{t_0}^{t_1} k(t,s) v_2(s) \, ds \right| \\ &\leq \int_{t_0}^{t_1} |k(t,s)| |v_1(s) - v_2(s)| \, ds \\ &\leq \int_{t_0}^{t_1} k(t,s) \left[ \ell_1(t) |x(t) - y(t)| + \ell_2(t) |x'(t) - y'(t)| \right] ds \end{aligned}$$

$$\leq K_1^{\circ}(\|\ell_1\|_{L^1} + \|\ell_2\|_{L^1})\|x - y\|.$$

Similarly we have

$$|u_1'(t) - u_2'(t)| \le K_2(||\ell_1||_{L^1} + ||\ell_2||_{L^1})||x - y||.$$

Therefore,

$$||u_1 - u_2|| \le (||\ell_1||_{L^1} + ||\ell_2||_{L^1}) \max\{K_1, K_2\}||x - y||_{L^1}$$

From this, and the analogous inequality obtained by interchanging the roles of x and y we obtain

$$H(T(x), T(y)) \le (\|\ell_1\|_{L^1} + \|\ell_2\|_{L^1}) \max\{K_1, K_2\} \|x - y\|,$$

for all  $x, y \in X$ . This shows that T is a multi-valued contraction since  $(\|\ell_1\|_{L^1} + \|\ell_2\|_{L^1}) \max\{K_1, K_2\} < 1$ . Now an application of Theorem 2.2 yields that T has a fixed point which further implies that the BVP (1.1)-(1.2) has a solution on J.

Now, we prove our second existence result for BVP (1.1)-(1.2).

**Theorem 3.7.** Assume that the hypotheses  $(H_3)$ - $(H_6)$  hold and there exists a real number r > 0 satisfying

$$r > C_1 + \max\{K_1, K_2\} \|\phi\|_{L^1} \psi(r), \tag{3.14}$$

where  $C_1, K_1$  and  $K_2$  are the constants defined in Remark 3.2. Then the BVP (1.1)-(1.2) has at least one solution on J.

**Proof.** First, we transform the BVP (1.1)-(1.2) into a fixed point problem in a suitable normed linear space. The problem of existence of a solution of BVP (1.1)-(1.2) reduces to finding a solution of the integral equation

$$x(t) = z(t) + \int_{t_0}^{t_1} k(t,s) f(x(s)) \, ds, \ t \in J,$$
(3.15)

where  $f(x(\cdot)) \in L^1$  with  $f(x(t)) \in F(t, x(t), x'(t))$  a.e.  $t \in J$  (this is a consequence of  $(H_3)$ ,  $(H_6)$  and Theorem 2.8). We study the integral equation (3.15) in the space  $AC^1(J, \mathbb{R})$ . Let  $X = AC^1(J, \mathbb{R})$  and define an open ball  $\mathcal{B}_r(0)$  in X centered at origin 0 of radius r, where the real number r > 0 satisfies the inequality (3.12). Define the operator T on  $\overline{\mathcal{B}_r(0)}$  by

$$Tx(t) = z(t) + \int_{t_0}^{t_1} k(t,s) f(x((s))) \, ds.$$
(3.16)

Then the integral equation (3.15) is equivalent to the operator equation

$$x(t) = Tx(t), \ t \in J.$$
 (3.17)

We will show that the multi-valued operator T satisfies all the conditions of Corollary 2.5.

First, we show that T is continuous on  $\overline{\mathcal{B}_r(0)}$ . Since  $(H_3)$  holds, we have

$$|f(x(t))| \le \phi(t)\psi(\max\{|x(t), |x'(t)|\})$$
 a.e.  $t \in J$ 

for all  $x \in AC^1(J, \mathbb{R})$ . Let  $\{x_n\}$  be a sequence in  $\overline{\mathcal{B}_r(0)}$  converging to a point  $x \in \overline{\mathcal{B}_r(0)}$ . Then

$$|f(x_n(t))| \le \phi(t)\psi(r)$$
 a.e.  $t \in J$ .

Hence by the dominated convergence theorem and continuity of f, we obtain

$$\lim_{n \to \infty} Tx_n(t) = z(t) + \int_{t_0}^{t_1} G(t, s) f(x_n((s))) \, ds$$
$$= z(t) + \int_{t_0}^{t_1} G(t, s) f(x((s))) \, ds$$
$$= Tx(t)$$

and

$$\lim_{n \to \infty} (Tx_n)'(t) = z'(t) + \int_{t_0}^{t_1} G_t(t,s) f(x_n((s))) \, ds$$
$$= z'(t) + \int_{t_0}^{t_1} G_t(t,s) f(x((s))) \, ds$$
$$= (Tx)'(t)$$

for all  $t \in J$ . As a result, T is continuous on  $\overline{\mathcal{B}_r(0)}$ . Next following the arguments as in the proof of Theorem 3.5 with appropriate modifications, it is shown that T is a compact operator on  $\overline{\mathcal{B}_r(0)}$ . Now an application of Corollary 2.5 yields that either (i) the operator equation x = Tx has a solution in  $\overline{\mathcal{B}_r(0)}$ , or (ii) there is an element  $u \in X$  such that ||u|| = r and  $u = \lambda T u$  for some  $\lambda \in (0, 1)$ . If the assertion (ii) holds, then we obtain a contradiction to (3.12). Hence assertion (i) holds and the BVP (1.1)-(1.2) has a solution  $u \in AC^1(J, \mathbb{R})$  such that  $||u|| \leq r$ . This completes the proof.

#### References

- [1] J.-P. Aubin and A. Cellina, Differential Inclusions, Springer Verlag, 1984.
- [2] S. Bernfeld and V. Lakshmikantham, An Introduction to Boundary Value Problems, Academic Press, New York, 1974.
- [3] M. Benchohra and S.K. Ntouyas, On second order differential inclusions with periodic boundary conditions, Acta Math. Univ. Comeniana, LXIX (2000), 173-181.

- [4] A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math., 90(1988), 69-86.
- [5] H. Covitz and S.B. Nadler jr., Multivalued contraction mappings in generalized metric spaces, Israel J. Math., 8(1970), 5-11.
- B.C. Dhage, On boundary value problems of second order differential inclusions, Diss. Math.-Differential Inclusions, Control Optim., 24(2004), 73-96.
- [7] A. Granas and J. Dugundji, Fixed Point Theory, Springer Verlag, 2003.
- [8] N. Halidias and N.S. Papageorgiou, Second order multi-valued boundary value problems, Arch. Math. (Brno), 34(1998), 267-284.
- [9] S. Heikkila, On second order discontinuous scaler boundary value problem, Nonlinear Studies, 3(1996), 153-162.
- [10] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis, Vol. I: Theory, Kluwer Academic Publishers, Dordrechet, 1997.
- [11] A. Lasota and Z. Opial, An application of Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phy., 13(1965), 781-786.
- [12] D. O'Regan, Fixed point theory for closed multi-functions, Arch. Math. (Brno), 34(1998), 191-197.

Received: January 30, 2006; Accepted: August 6, 2007.