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1. Introduction

Let (X, d) be a metric space and F : X → Pb,cl(Y ) a multivalued operator.
Denote by Hd the Pompeiu-Hausdorff metric on Pb,cl(X).

Then, F is a ϕ− contraction if ϕ : R+ → R+ is a comparison function (i.e.
ϕ is increasing and ϕn(t) → 0, as n→∞, for all t→ 0) and

H(F (x1), F (x2)) ≤ ϕ(d(x1, x2)), for all x1, x2 ∈ X.

The aim of this paper is to present some fixed point theorems of
Krasnoselskii-type for the sum of two multivalued operators.

This paper was presented at the International Conference on Nonlinear Operators, Dif-

ferential Equations and Applications held in Cluj-Napoca (Romania) from July 4 to July 8,

2007.
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2. Notations and auxiliary results

The aim of this section is to present some notions and symbols used in the
paper.

Let us consider the following families of subsets of a metric space (X, d):

P (X) := {Y ∈ P(X)| Y 6= ∅};Pb(X) := {Y ∈ P (X)| Y is bounded };

Pcp(X) := {Y ∈ P (X)| Y is compact }; Pcl(X) := {Y ∈ P (X)| Y is closed };

Pb,cl(X) := Pb(X) ∩ Pcl(X)

Let us define the following generalized functionals:

(1) D : P (X) × P (X) → R+ ∪ {+∞}, D(A,B) = inf{d(a, b) | a ∈ A, b ∈
B}.
D is called the gap functional between A and B. In particular, if x0 ∈ X

then D(x0, B) := D({x0}, B).

(2) δ : P (X)×P (X) → R+∪{+∞}, δ(A,B) = sup{d(a, b)| a ∈ A, b ∈ B}.

(3) ρ : P (X)× P (X) → R+ ∪ {+∞}, ρ(A,B) = sup{D(a,B) | a ∈ A}.
ρ is called the (generalized) excess functional.

(4) H : P (X)× P (X) → R+ ∪ {+∞}, H(A,B) = max{ρ(A,B), ρ(B,A)}.
H is the (generalized) Pompeiu-Hausdorff functional.

(5) δ : P (X) → R+ ∪ {+∞}, δA := sup{d(a, b)|a, b ∈ A}.

Definition 2.1. Let (X, d) be a metric space. If F : X → P (X) is a multi-
valued operator, then:

(1) x ∈ X is called fixed point for F if and only if x ∈ F (x);

(2) x ∈ X is called strict fixed point for F if and only if {x} = F (x).

The set FixF := {x ∈ X|x ∈ F (x)} is called the fixed point set of F . The
set SFixF := {x ∈ X|{x} = F (x)} is called the strict fixed point set of F .
Also, a sequence of successive approximations of F starting from x ∈ X is a
sequence (xn)n∈N of elements of X with x0 = x, xn+1 ∈ F (xn), for n ∈ N.
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Definition 2.2. Let X,Y be Hausdorff topological spaces and F : X → P (Y )
a multivalued operator. F is said to be upper semi-continuous in x0 ∈ X

(briefly u.s.c.) if and only if for each open subset U of Y with F (x0) ⊂ U

there exists an open neighborhood V of x0 such that for all x ∈ V we have
F (x) ⊂ U .
F is u.s.c. on X if it is u.s.c in each x0 ∈ X.

Definition 2.3. Let X,Y two metric spaces and F : X → P (Y ) a mutivalued
operator. Then F is called H-upper semicontinuous in x0 ∈ X (briefly H-
u.s.c.) if and only if for all ε > 0 there exists η > 0 such that for all x ∈
B(x0; η) we have F (x) ⊂ V (F (x0); ε).
F is H-u.s.c. on X if it is H-u.s.c. in each x0 ∈ X.

Definition 2.4. Let X,Y be Hausdorff topological spaces and F : X → P (Y )
a multivalued operator. Then F is said to be lower semi-continuous in x0 ∈ X
(briefly l.s.c.) if and only if for each open subset U ⊂ Y with F (x0) ∩ U 6= ∅
there exists an open neighborhood V of x0 such that for all x ∈ V we have
F (x) ∩ U 6= ∅.
F is l.s.c. on X if it is l.s.c in each x0 ∈ X.

Definition 2.5. Let X,Y two metric spaces and F : X → P (Y ) a mutivalued
operator. Then F is called H-lower semicontinuous in x0 ∈ X (briefly H-
l.c.s.) if and only if for all ε > 0 there exists η > 0 such that we have
F (x0) ⊂ V (F (x); ε), for all x ∈ B(x0; η).
F is H-l.s.c. on X if it is H-l.s.c. in each x0 ∈ X

Definition 2.6. Let X,Y be Hausdorff topological spaces and F : X → P (Y )
a multivalued operator. Then F is said to be continuous in x0 ∈ X if and only
if it is l.s.c and u.s.c. in x0 ∈ X.

Definition 2.7. Let X,Y two metric spaces and F : X → P (Y ) a mutivalued
operator. Then F is called H-continuous in x0 ∈ X (briefly H-c.) if and only
if for all it is H-l.s.c. and H-u.s.c. in x0 ∈ X.

Definition 2.8. (Kuratowski)
Let X be a Banach space and A ∈ Pb(X). By the real number α(A) we

denote the infimum of all numbers ε > 0 such that A admits a finite covering
consisting of subsets of diameter less than ε.
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Remark 2.1. It easy to see that, for A,B ∈ Pb(X):
a) α(A) ≤ δ(A), where δ(A) is the diameter of the set A;
b) α(A) = 0 iff A is paracompact;
c) α(A ∪B) = max{α(A), α(B)};
d) α(B(A, ε)) ≤ α(A) + 2ε, where B(A, ε) = {x ∈ X : d(x,A) < ε};
e) A ⊂ B ⇒ α(A) ≤ α(B);
f) α(A+B) ≤ α(A) + α(B);

Definition 2.9. (Furi, Vignoli [2])
Let X be a Banach space and D ∈ P (X). Then T : D → Pcl(X) is called

densifying if is H-continuous and for every bounded set A ⊂ D, such that
α(A) > 0, we have α(T (A)) < α(A).

Definition 2.10. A function ϕ : [0,∞) → [0,∞) is called an L-function if
ϕ(s) > 0, for all s > 0 and for every s > 0 there exists u > s such that
ϕ(t) ≤ s, for t ∈ [s, u].

Every L-function satisfies ϕ(s) ≤ s, for all s ≥ 0.

Definition 2.11. Let (X,d) be a metric space. The operator T : X → X

satisfies the Meir-Keeler condition if for every ε > 0, there exists δ > 0 such
that ε ≤ d(x, y) < ε+ δ ⇒ d(T (x), T (y)) < ε.

Let (X,d) be a metric space. The operator T : X → Pcl(X) satisfies the
Meir-Keeler condition if for every ε > 0, there exists δ > 0 such that ε ≤
d(x, y) < ε+ δ ⇒ H(T (x), T (y)) < ε.

Theorem 2.1. (Lim [1])
Let X be a metric space and let T : X → X. The following are equivalent:
i) T satisfies the Meir-Keeler’s condition;
ii) There exists an L-function ϕ : [0,∞) → [0,∞) nondecreasing and right

continuous such that: d(T (x), T (y)) < ϕ(d(x, y)), for all x 6= y ∈ X.

Theorem 2.2. (Lim [1])
Let X be a metric space and let T : X → Pcl(X). The following are equiv-

alent:
i) T satisfies the Meir-Keeler’s condition;
ii) There exists an L-function ϕ : [0,∞) → [0,∞) nondecreasing and right

continuous such that: H(T (x), T (y)) < ϕ(d(x, y)), for all x 6= y ∈ X.



KRASNOSELSKII-TYPE THEOREMS FOR MULTIVALUED OPERATORS 39

Theorem 2.3. (Reich [5])
Let (X,d) be a complete metric space and T : X → Pcp(X) be a multivalued

operator satisfying the Meir-Keeler condition. Then FixT 6= 0.

3. Main results

We begin this section by presenting two auxiliary results. We need first a
definition.

Definition 3.1. Let ϕ : R+ → R+ be a mapping. Then:
(i) ϕ is called a strict comparison function if ϕ is monotone increasing and

∞∑
n=1

ϕn(t) <∞, for all t > 0.

(ii) ϕ is called a strong strict comparison function if the function sϕ(t) :=
∞∑

n=1

ϕk(t) is increasing;

(iii) ϕ is called an expansive function if ϕ(t) > t, for all t > 0 and ϕ is
increasing.

Lemma 3.1. Let Y, Z ∈ Pcl(X) and let ψ : R+ → R+ be an expansive func-
tion. Then for all y ∈ Y there exists z ∈ Z such that d(y, z) ≤ ψ(ρ(Y, Z)).

Proof. We suppose by contradiction that there exists y ∈ Y such that for
all z ∈ Z we have that: d(y, z) > ψ(ρ(Y, Z)) . Taking the infimum of z ∈ Z

we obtain that there exists y ∈ Y such that D(y, Z) ≥ ψ(ρ(Y, Z)). But
ρ(Y, Z) ≥ D(y, Z). Hence ρ(Y, Z) ≥ ψ(ρ(Y, Z)) which is a contradiction with
the definition of an expansive function. �

In order to prove the main theorems in this article we need the following
lema:

Lemma 3.2. Let (X, d) be a complete metric space, T1, T2 : X → Pcl(X)
two (ϕ,ψ)-contractions. Then ρ(FixT1, F ixT2) ≤ sφ(ψ(sup

y∈X
ρ(T1(y), T2(y)))),

where sφ(t) =
∑

k

φk(t) and φ = ψ ◦ ϕ.

Proof. Denote by δ := sφ(ψ(sup
y∈X

ρ(T1(y), T2(y)))).

We want to prove that for every x0 ∈ FixT1 there exists x∗2 ∈ FixT2 such
that d(x0, x

∗
2) ≤ δ.
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Let x0 ∈ X such that x0 ∈ T1(x0). Applying Lemma 3.1 for Y = T1(x0)
and Z = T2(x0) we obtain that there exists x1 ∈ T2(x0) such that d(x0, x1) ≤
ψ(ρ(T1(x0), T2(x0))) ≤ ψ(sup

x∈X
ρ(T1(x), T2(x))) := ψ(η).

Applying once again Lemma 3.1 for Y = T2(x0), Z = T2(x1) and
x1 ∈ T2(x0) we have that there exists x2 ∈ T2(x1) such that d(x1, x2) ≤
ψ(ρ(T2(x0), T2(x1))) ≤ ψ(ϕ(d(x0, x1))) = (ψ ◦ ϕ)(d(x0, x1)).

Proceeding this way we obtain inductively the sequence (xn)n∈N with the
following properties:

(i) xn+1 ∈ T2(xn), for all n ∈ N;
(ii) d(xn, xn+1) ≤ (ψ ◦ ϕ)n(d(x0, x1)).

From (ii) since (ψ ◦ϕ)n(t) → 0 we have that (xn)n∈N is a Cauchy sequence,
so xn → x∗ ∈ X, for all t > 0, as n→∞.

From (i) and from xn → x∗ and from the fact that T2 is closed (it is a
contraction) we get that x∗2 ∈ FixT2.

Using that (xn) is Cauchy we have: d(xn, xn+p) ≤ d(xn, xn+1) + ... +
d(xn+p−1, xn+p) ≤ (ψ ◦ϕ)n(d(x0, x1)) + ...+ (ψ ◦ϕ)n+p−1(d(x0, x1)) ≤

∑
k≥0

(ψ ◦

ϕ)k(d(x0, x1)) = sφ(d(x0, x1)), for all n ∈ N, p ∈ N∗. For p→∞ we have that
d(xn, x

∗
2) ≤ sφ(d(x0, x1)), for all n ≥ 0. Taking n = 0 and using the fact that

sφ is increasing we obtain d(x0, x
∗
2) ≤ sφ(d(x0, x1)) ≤ sφ(ψ(η)). �

Theorem 3.1. Let X be a Banach space, Y ∈ Pcl,cv(Y ). Let A : Y →
Pb,cl,cv(X) and B : Y → Pcp,cv(X) two multivalued operators such that:

i) A(y1) +B(y2) ⊂ Y , for all y1, y2 ∈ Y ;
ii) A is a multivalued (ϕ,ψ)-contraction, i.e. there exist two continuous

functions ϕ,ψ : R+ → R+ such that ψ ◦ ϕ is a strong strict comparison
function, ϕ is a comparison function and ψ is an expansive function such
that: H(A(x), A(y)) ≤ ϕ(‖x− y‖), for all x, y ∈ Y ;

iii) B is l.s.c and compact;
iv) For all ε > 0 there exists R(ε) > 0 such that sφ(ψ(R(ε))) ≤ ε, where

sφ(t) =
∞∑

k=0

φk(t), with φ = ψ ◦ ϕ.

Then Fix(A+B) 6= ∅.

Proof. Let C : Y → P (Y ) a multivalued operator defined as follows:
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a) For all x ∈ Y let Tx : Y → Pcp,cv(Y ) be defined by Tx(y) =
A(y) + B(x). Then H(Tx(y1), Tx(y2)) = H(A(y1) + B(x), A(y2) + B(x)) ≤
H(A(y1), A(y2)) ≤ ϕ(‖y1 − y2‖) ≤ (ψ ◦ ϕ)(‖y1 − y2‖). From Wegrzyk fixed
point theorem (see [7]) we have that: FixTx 6= ∅, for all x ∈ Y .

Next we will prove that the set FixTx is closed, for each x ∈ Y . Recall
that FixTx is closed if and only if for all yn ⊂ FixTx with yn → y, as n→∞
we have that y ∈ FixTx. Since yn ⊂ FixTx we have that yn ∈ Tx(yn).
Thus D(y, Tx(y)) ≤ d(y, yn) + D(yn, Tx(y)) ≤ d(y, yn) + H(Tx(yn), Tx(y)) ≤
d(y, yn) + ϕ(‖yn − y‖) → 0 as n→∞. We have that y ∈ Tx(y).

b) Let F : Y ×Y → Pcp,cv(Y ), F (x, y) = A(y)+B(x), for all (x, y) ∈ Y ×Y .
F satisfies the hypothesis of Theorem 1 in Rybinski [6]. Thus, we have that
there exists f : Y × Y → Y continuous such that f(x, y) ∈ A(f(x, y)) +B(x).

Let C(x) = FixTx be given by C : Y → Pcl(Y ) and let c : Y → Y defined
by c(x) = f(x, x) for all x ∈ Y . Then c is a continuous function and we have
that: c(x) = f(x, x) ∈ A(f(x, x)) +B(x) = A(c(x)) +B(x) = Tx(c(x)) for all
x ∈ Y . We will prove that c(Y ) is relatively compact. It is enough to prove
that C(Y ) is relatively compact.

We show that C(Y ) is totally bounded. From the fact that B is compact
we have that B(Y ) is relatively compact and thus totally bounded. So for all
ε > 0 there exists Z = {x1, x2, ..., xn} ⊂ Y such that B(Y ) ⊂ {z1, ..., zn} +

B(0, R(ε)) ⊂
n⋃

i=1

B(xi)+B(0, R(ε)),where zi ∈ B(xi), i = 1, ..., n.We have that

for all x ∈ Y , B(x) ⊂
n⋃

i=1

B(xi) + B(0, R(ε)) and hence there exists xk ∈ Z

such that ρ(B(x), B(xk)) < R(ε). So ρ(C(x), C(xk)) = ρ(FixTx, F ixTxk
)

(∗)
≤

sφ(ψ(sup
y∈Y

ρ(Tx(y), Txk
(y)))) ≤ ε. The inequality (*) follows from Lemma 3.2.

From the fact that ρ(Tx(y), Txk
(y)) = ρ(A(y) + B(x), A(y) + B(xk)) ≤

ρ(B(x), B(xk)) < R(ε) we have that sφ(ψ(R(ε))) ≤ ε. It implies that for each
u ∈ C(x) there exists vk ∈ C(xk) such that ‖u − vk‖ < ε. So for all x ∈ Y ,
C(x) ⊂ Q+B(0, ε), where Q = {v1, ..., vk, ..., vn} with vi ∈ C(xi), i = 1, ..., n.
Since in a Banach space a totally bounded set is relatively compact we get
that C(Y ) is relatively compact.



42 MONICA BORICEANU

Thus c : Y → Y satisfies the hypothesis in Schauder’s theorem. Let x∗ ∈ Y a
fixed point for c. We have that x∗ = c(x∗) ∈ A(c(x∗))+B(x∗) = A(x∗)+B(x∗).

�

Theorem 3.2. Let X be a Banach space, Y ∈ Pcl,cv(Y ). Let A : Y →
Pb,cl,cv(X) and B : Y → Pcp,cv(X) two multivalued operators such that:

i) If y ∈ A(y) +B(x) ⊂ Y , for all x ∈ Y then y ∈ Y ;
ii) A is a multivalued (ϕ,ψ)-contraction, i.e. there exist two continuous

functions ϕ,ψ : R+ → R+ such that ψ ◦ ϕ is a strong strict comparison
function, ϕ is a comparison function and ψ is an expansive function such
that: H(A(x), A(y)) ≤ ϕ(‖x− y‖), for all x, y ∈ Y ;

iii) B is l.s.c and compact;
iv) For all ε > 0 there exists R(ε) > 0 such that sφ(ψ(R(ε))) ≤ ε, where

sφ(t) =
∞∑

k=0

φk(t), with φ = ψ ◦ ϕ.

Then Fix(A+B) 6= ∅.

Proof. Let C : Y → P (Y ) a multivalued operator defined as follows:
a) For all x ∈ Y let Tx : Y → Pcp,cv(Y ) be defined by Tx(y) =

A(y) + B(x). Then H(Tx(y1), Tx(y2)) = H(A(y1) + B(x), A(y2) + B(x)) ≤
H(A(y1), A(y2)) ≤ ϕ(‖y1 − y2‖) ≤ (ψ ◦ ϕ)(‖y1 − y2‖). From Wegrzyk fixed
point theorem (see [7]) we have that: FixTx 6= ∅, for all x ∈ Y .

Next we will prove that the set FixTx is closed, for each x ∈ Y . Recall
that FixTx is closed if and only if for all yn ⊂ FixTx with yn → y, as n→∞
we have that y ∈ FixTx. Since yn ⊂ FixTx we have that yn ∈ Tx(yn).
Thus D(y, Tx(y)) ≤ d(y, yn) + D(yn, Tx(y)) ≤ d(y, yn) + H(Tx(yn), Tx(y)) ≤
d(y, yn) + ϕ(‖yn − y‖) → 0 as n → ∞. We have that y ∈ Tx(y). From i) we
have that FixTx ⊂ Y .

b) Let F : Y ×Y → Pcp,cv(Y ), F (x, y) = A(y)+B(x), for all (x, y) ∈ Y ×Y .
F satisfies the hypothesis of Theorem 1 in Rybinski [6]. Thus, we have that
there exists f : Y × Y → Y continuous such that f(x, y) ∈ A(f(x, y)) +B(x).

Let C(x) = FixTx be given by C : Y → Pcl(Y ) and let c : Y → Y defined
by c(x) = f(x, x) for all x ∈ Y . Then c is a continuous function and we have
that: c(x) = f(x, x) ∈ A(f(x, x)) +B(x) = A(c(x)) +B(x) = Tx(c(x)) for all
x ∈ Y . We will prove that c(Y ) is relatively compact. It is enough to prove
that C(Y ) is relatively compact.
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We show that C(Y ) is totally bounded. From the fact that B is compact
we have that B(Y ) is relatively compact and thus totally bounded. So for all
ε > 0 there exists Z = {x1, x2, ..., xn} ⊂ Y such that B(Y ) ⊂ {z1, ..., zn} +

B(0, R(ε)) ⊂
n⋃

i=1

B(xi)+B(0, R(ε)),where zi ∈ B(xi), i = 1, ..., n.We have that

for all x ∈ Y , B(x) ⊂
n⋃

i=1

B(xi) + B(0, R(ε)) and hence there exists xk ∈ Z

such that ρ(B(x), B(xk)) < R(ε). So ρ(C(x), C(xk)) = ρ(FixTx, F ixTxk
)

(∗)
≤

sφ(ψ(sup
y∈Y

ρ(Tx(y), Txk
(y)))) ≤ ε. The inequality (*) follows from Lemma 3.2.

From the fact that ρ(Tx(y), Txk
(y)) = ρ(A(y) + B(x), A(y) + B(xk)) ≤

ρ(B(x), B(xk)) < R(ε) we have that sφ(ψ(R(ε))) ≤ ε. It implies that for each
u ∈ C(x) there exists vk ∈ C(xk) such that ‖u − vk‖ < ε. So for all x ∈ Y ,
C(x) ⊂ Q+B(0, ε), where Q = {v1, ..., vk, ..., vn} with vi ∈ C(xi), i = 1, ..., n.
Since in a Banach space a totally bounded set is relatively compact we get
that C(Y ) is relatively compact.

Thus c : Y → Y satisfies the hypothesis in Schauder’s theorem. Let x∗ ∈ Y a
fixed point for c. We have that x∗ = c(x∗) ∈ A(c(x∗))+B(x∗) = A(x∗)+B(x∗).

�

Theorem 3.3. Let (X, d) be a metric space, D a complete subset of X and
let T : D → P (X) be a densifying multivalued operator. Then any bounded
sequence {xn}, such that D(xn, T (xn)) → 0, as n→∞ is compact and all the
limit points of {xn} are fixed for T .

Proof. Let {xn} be a bounded sequence such that D(xn, T (xn)) → 0, as
n → ∞. Put M = {xn : n = 1, 2, ..}, so that T (M) = {T (xn) : n = 1, 2, ...}.
Given any ε > 0, it follows that B(T (M), ε) contains all but a finite number
of elements of M , since D(xn, T (xn)) → 0. Then α(M) ≤ α(B(T (M), ε)) ≤
α(T (M)) + 2ε; hence α(T (M)) ≥ α(M). Therefore {xn} is compact. By the
H-continuity of T all the limit points of {xn} are fixed for T . �

Corollary 3.1. Let (X, d) be a bounded, complete metric space and T : x →
P (X) be a densifying multivalued operator. If inf{D(x, T (x)) : x ∈ X} = 0
then T has at least a fixed point.

Proof. It follows immediately from the theorem above. �
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Corollary 3.2. Let (X, d) be a complete metric space and T : X → P (X) be
a completely continuous multivalued operator. If inf{D(x, T (x)) : x ∈ X} = 0
then T has at least a fixed point.

Proof. It follows immediately from the corollary above. �

Corollary 3.3. Let T : D → P (F ) be a multivalued operator defined on a
closed subset D of a Frechet space F such that T = G + H, where G : D →
P (F ) is a completely continuous operator and H : D → P (F ) is contractive.
Then any bounded sequence {xn} such that D(xn, T (xn)) → 0, as n → ∞ is
compact and all the limit points of {xn} are fixed for T .

Proof. It is sufficient to prove that T is densifying. Let A ⊂ F be a bounded
set with α(A) > 0. We have α(T (A)) ≤ α(G(A) + H(A)) ≤ α(G(A)) +
α(H(A)) = α(H(A)) < α(A). �

Theorem 3.4. Let X be a Banach space and Y ∈ Pcl,b,cv(X). Let A,B : Y →
X such that:

i) A(x) +B(y) ∈ Y , for all x, y ∈ Y ;
ii) A satisfies the Meir-Keeler condition;
iii)B is completely continuous.
Then Fix(A+B) 6= ∅.

Proof. From (i) we have that A satisfies the Meir-Keeler condition. Lim
showed in Theorem 2.1 that A is a nonlinear contraction. Applying the main
result in Nashed and Wong [3] the conclusion follows. �

Theorem 3.5. Let X be a Banach space and Y ∈ Pcl,b,cv(X). Let A,B : Y →
Pcp,cv(X) such that:

i) A(x) +B(y) ∈ Y , for all x, y ∈ Y ;
ii) A satisfies the Meir-Keeler condition;
iii)B is l.s.c and compact.
If we denote by ϕ the function from Lim’s characterisation theorem, then

there exists ψ : R+ → R+ an expansive function such that ψ◦ϕ is a comparison
function and:

iv) For all ε > 0 there exists R(ε) > 0 such that sφ(ψ(R(ε))) ≤ ε, where

sφ(t) =
∞∑

k=0

φk(t), with φ = ψ ◦ ϕ.

Then Fix(A+B) 6= ∅ .
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Proof. From the hypothesis we have that A satisfies the Meir-Keeler condi-
tion, so from Theorem 2.2 we have that A satisfies the following condition:
H(A(x), A(y)) ≤ ϕ(‖x − y‖), for all x, y ∈ Y , with x 6= y. By Theorem 3.1
the conclusion follows. �
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