Fixed Point Theory, Volume 9, No. 1, 2008, 35-45 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

KRASNOSELSKII-TYPE THEOREMS FOR MULTIVALUED OPERATORS

MONICA BORICEANU

Department of Applied Mathematics, Babeş-Bolyai University 1, Kogălniceanu Str., 400084, Cluj-Napoca, Romania E-mail: bmonica@math.ubbcluj.ro

Abstract. The aim of this paper is to present some fixed point theorems of Krasnoselskiitype for the sum of two multivalued operators.

Key Words and Phrases: Fixed point, multivalued operator, densifying operator, contraction.

2000 Mathematics Subject Classification: 47H10, 54H25.

1. INTRODUCTION

Let (X, d) be a metric space and $F: X \to P_{b,cl}(Y)$ a multivalued operator. Denote by H_d the Pompeiu-Hausdorff metric on $P_{b,cl}(X)$.

Then, F is a φ - contraction if $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is a comparison function (i.e. φ is increasing and $\varphi^n(t) \to 0$, as $n \to \infty$, for all $t \to 0$) and

$$H(F(x_1), F(x_2)) \le \varphi(d(x_1, x_2)), \text{ for all } x_1, x_2 \in X.$$

The aim of this paper is to present some fixed point theorems of Krasnoselskii-type for the sum of two multivalued operators.

This paper was presented at the International Conference on Nonlinear Operators, Differential Equations and Applications held in Cluj-Napoca (Romania) from July 4 to July 8, 2007.

³⁵

MONICA BORICEANU

2. NOTATIONS AND AUXILIARY RESULTS

The aim of this section is to present some notions and symbols used in the paper.

Let us consider the following families of subsets of a metric space (X, d):

$$P(X) := \{ Y \in \mathcal{P}(X) | Y \neq \emptyset \}; P_b(X) := \{ Y \in P(X) | Y \text{ is bounded } \};$$

$$P_{cp}(X) := \{ Y \in P(X) | Y \text{ is compact } \}; P_{cl}(X) := \{ Y \in P(X) | Y \text{ is closed } \};$$

$$P_{b,cl}(X) := P_b(X) \cap P_{cl}(X)$$

Let us define the following generalized functionals:

(1)
$$D: P(X) \times P(X) \to \mathbb{R}_+ \cup \{+\infty\}, \ D(A,B) = \inf\{d(a,b) \mid a \in A, b \in B\}.$$

D is called the gap functional between A and B. In particular, if $x_0 \in X$ then $D(x_0, B) := D(\{x_0\}, B)$.

- $(2) \ \delta: P(X) \times P(X) \to \mathbb{R}_+ \cup \{+\infty\}, \ \delta(A,B) = \sup\{d(a,b) | \ a \in A, \ b \in B\}.$
- (3) $\rho: P(X) \times P(X) \to \mathbb{R}_+ \cup \{+\infty\}, \ \rho(A, B) = \sup\{D(a, B) \mid a \in A\}.$ ρ is called the (generalized) excess functional.

(4) $H: P(X) \times P(X) \to \mathbb{R}_+ \cup \{+\infty\}, H(A, B) = \max\{\rho(A, B), \rho(B, A)\}.$ *H* is the (generalized) Pompeiu-Hausdorff functional.

(5)
$$\delta: P(X) \to \mathbb{R}_+ \cup \{+\infty\}, \, \delta A := \sup\{d(a,b)|a,b \in A\}.$$

Definition 2.1. Let (X, d) be a metric space. If $F : X \to P(X)$ is a multivalued operator, then:

- (1) $x \in X$ is called fixed point for F if and only if $x \in F(x)$;
- (2) $x \in X$ is called strict fixed point for F if and only if $\{x\} = F(x)$.

The set $FixF := \{x \in X | x \in F(x)\}$ is called the fixed point set of F. The set $SFixF := \{x \in X | \{x\} = F(x)\}$ is called the strict fixed point set of F. Also, a sequence of successive approximations of F starting from $x \in X$ is a sequence $(x_n)_{n \in \mathbb{N}}$ of elements of X with $x_0 = x$, $x_{n+1} \in F(x_n)$, for $n \in \mathbb{N}$.

37

Definition 2.2. Let X, Y be Hausdorff topological spaces and $F : X \to P(Y)$ a multivalued operator. F is said to be upper semi-continuous in $x_0 \in X$ (briefly u.s.c.) if and only if for each open subset U of Y with $F(x_0) \subset U$ there exists an open neighborhood V of x_0 such that for all $x \in V$ we have $F(x) \subset U$.

F is u.s.c. on X if it is u.s.c in each $x_0 \in X$.

Definition 2.3. Let X, Y two metric spaces and $F : X \to P(Y)$ a mutivalued operator. Then F is called H-upper semicontinuous in $x_0 \in X$ (briefly H-u.s.c.) if and only if for all $\varepsilon > 0$ there exists $\eta > 0$ such that for all $x \in B(x_0; \eta)$ we have $F(x) \subset V(F(x_0); \varepsilon)$.

F is H-u.s.c. on X if it is H-u.s.c. in each $x_0 \in X$.

Definition 2.4. Let X, Y be Hausdorff topological spaces and $F : X \to P(Y)$ a multivalued operator. Then F is said to be lower semi-continuous in $x_0 \in X$ (briefly l.s.c.) if and only if for each open subset $U \subset Y$ with $F(x_0) \cap U \neq \emptyset$ there exists an open neighborhood V of x_0 such that for all $x \in V$ we have $F(x) \cap U \neq \emptyset$.

F is l.s.c. on X if it is l.s.c in each $x_0 \in X$.

Definition 2.5. Let X, Y two metric spaces and $F : X \to P(Y)$ a mutivalued operator. Then F is called H-lower semicontinuous in $x_0 \in X$ (briefly H-l.c.s.) if and only if for all $\varepsilon > 0$ there exists $\eta > 0$ such that we have $F(x_0) \subset V(F(x); \varepsilon)$, for all $x \in B(x_0; \eta)$.

F is H-l.s.c. on X if it is H-l.s.c. in each $x_0 \in X$

Definition 2.6. Let X, Y be Hausdorff topological spaces and $F : X \to P(Y)$ a multivalued operator. Then F is said to be continuous in $x_0 \in X$ if and only if it is l.s.c and u.s.c. in $x_0 \in X$.

Definition 2.7. Let X, Y two metric spaces and $F : X \to P(Y)$ a mutivalued operator. Then F is called H-continuous in $x_0 \in X$ (briefly H-c.) if and only if for all it is H-l.s.c. and H-u.s.c. in $x_0 \in X$.

Definition 2.8. (Kuratowski)

Let X be a Banach space and $A \in P_b(X)$. By the real number $\alpha(A)$ we denote the infimum of all numbers $\varepsilon > 0$ such that A admits a finite covering consisting of subsets of diameter less than ε .

Remark 2.1. It easy to see that, for $A, B \in P_b(X)$:

a) $\alpha(A) \leq \delta(A)$, where $\delta(A)$ is the diameter of the set A;

b) $\alpha(A) = 0$ iff A is paracompact;

c) $\alpha(A \cup B) = max\{\alpha(A), \alpha(B)\};$

d) $\alpha(B(A,\varepsilon)) \leq \alpha(A) + 2\varepsilon$, where $B(A,\varepsilon) = \{x \in X : d(x,A) < \varepsilon\};$ e) $A \subset B \Rightarrow \alpha(A) \leq \alpha(B);$

 $f) \ \alpha(A+B) \le \alpha(A) + \alpha(B);$

Definition 2.9. (Furi, Vignoli [2])

Let X be a Banach space and $D \in P(X)$. Then $T : D \to P_{cl}(X)$ is called densifying if is H-continuous and for every bounded set $A \subset D$, such that $\alpha(A) > 0$, we have $\alpha(T(A)) < \alpha(A)$.

Definition 2.10. A function $\varphi : [0, \infty) \to [0, \infty)$ is called an L-function if $\varphi(s) > 0$, for all s > 0 and for every s > 0 there exists u > s such that $\varphi(t) \leq s$, for $t \in [s, u]$.

Every L-function satisfies $\varphi(s) \leq s$, for all $s \geq 0$.

Definition 2.11. Let (X,d) be a metric space. The operator $T : X \to X$ satisfies the Meir-Keeler condition if for every $\varepsilon > 0$, there exists $\delta > 0$ such that $\varepsilon \leq d(x,y) < \varepsilon + \delta \Rightarrow d(T(x),T(y)) < \varepsilon$.

Let (X,d) be a metric space. The operator $T : X \to P_{cl}(X)$ satisfies the Meir-Keeler condition if for every $\varepsilon > 0$, there exists $\delta > 0$ such that $\varepsilon \le d(x,y) < \varepsilon + \delta \Rightarrow H(T(x),T(y)) < \varepsilon$.

Theorem 2.1. (*Lim* [1])

Let X be a metric space and let $T: X \to X$. The following are equivalent: i) T satisfies the Meir-Keeler's condition;

ii) There exists an L-function $\varphi : [0, \infty) \to [0, \infty)$ nondecreasing and right continuous such that: $d(T(x), T(y)) < \varphi(d(x, y))$, for all $x \neq y \in X$.

Theorem 2.2. (Lim [1])

Let X be a metric space and let $T: X \to P_{cl}(X)$. The following are equivalent:

i) T satisfies the Meir-Keeler's condition;

ii) There exists an L-function $\varphi : [0, \infty) \to [0, \infty)$ nondecreasing and right continuous such that: $H(T(x), T(y)) < \varphi(d(x, y))$, for all $x \neq y \in X$.

Theorem 2.3. (*Reich* [5])

Let (X,d) be a complete metric space and $T: X \to P_{cp}(X)$ be a multivalued operator satisfying the Meir-Keeler condition. Then $FixT \neq 0$.

3. Main results

We begin this section by presenting two auxiliary results. We need first a definition.

Definition 3.1. Let $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ be a mapping. Then:

(i) φ is called a strict comparison function if φ is monotone increasing and $\sum_{n=1}^{\infty} \varphi^n(t) < \infty, \text{ for all } t > 0.$ (ii) φ is called a strong strict comparison function if the function $s_{\varphi}(t) := \sum_{n=1}^{\infty} \varphi^k(t)$ is increasing; (iii) φ is called an expansive function if $\varphi(t) > t$, for all t > 0 and φ is

(111) φ is called an expansive function if $\varphi(t) > t$, for all t > 0 and φ is increasing.

Lemma 3.1. Let $Y, Z \in P_{cl}(X)$ and let $\psi : \mathbb{R}_+ \to \mathbb{R}_+$ be an expansive function. Then for all $y \in Y$ there exists $z \in Z$ such that $d(y, z) \leq \psi(\rho(Y, Z))$.

Proof. We suppose by contradiction that there exists $y \in Y$ such that for all $z \in Z$ we have that: $d(y,z) > \psi(\rho(Y,Z))$. Taking the infimum of $z \in Z$ we obtain that there exists $y \in Y$ such that $D(y,Z) \ge \psi(\rho(Y,Z))$. But $\rho(Y,Z) \ge D(y,Z)$. Hence $\rho(Y,Z) \ge \psi(\rho(Y,Z))$ which is a contradiction with the definition of an expansive function.

In order to prove the main theorems in this article we need the following lema:

Lemma 3.2. Let (X,d) be a complete metric space, $T_1, T_2 : X \to P_{cl}(X)$ two (φ, ψ) -contractions. Then $\rho(FixT_1, FixT_2) \leq s_{\phi}(\psi(\sup_{y \in X} \rho(T_1(y), T_2(y))))$,

where $s_{\phi}(t) = \sum_{k} \phi^{k}(t)$ and $\phi = \psi \circ \varphi$.

Proof. Denote by $\delta := s_{\phi}(\psi(\sup_{y \in X} \rho(T_1(y), T_2(y)))).$

We want to prove that for every $x_0 \in FixT_1$ there exists $x_2^* \in FixT_2$ such that $d(x_0, x_2^*) \leq \delta$.

Let $x_0 \in X$ such that $x_0 \in T_1(x_0)$. Applying Lemma 3.1 for $Y = T_1(x_0)$ and $Z = T_2(x_0)$ we obtain that there exists $x_1 \in T_2(x_0)$ such that $d(x_0, x_1) \leq \psi(\rho(T_1(x_0), T_2(x_0))) \leq \psi(\sup_{x_0} \rho(T_1(x), T_2(x))) := \psi(\eta)$.

Applying once again Lemma 3.1 for $Y = T_2(x_0)$, $Z = T_2(x_1)$ and $x_1 \in T_2(x_0)$ we have that there exists $x_2 \in T_2(x_1)$ such that $d(x_1, x_2) \leq \psi(\rho(T_2(x_0), T_2(x_1))) \leq \psi(\varphi(d(x_0, x_1))) = (\psi \circ \varphi)(d(x_0, x_1)).$

Proceeding this way we obtain inductively the sequence $(x_n)_{n \in \mathbb{N}}$ with the following properties:

(i) $x_{n+1} \in T_2(x_n)$, for all $n \in \mathbb{N}$;

(ii) $d(x_n, x_{n+1}) \le (\psi \circ \varphi)^n (d(x_0, x_1)).$

From (ii) since $(\psi \circ \varphi)^n(t) \to 0$ we have that $(x_n)_{n \in \mathbb{N}}$ is a Cauchy sequence, so $x_n \to x^* \in X$, for all t > 0, as $n \to \infty$.

From (i) and from $x_n \to x^*$ and from the fact that T_2 is closed (it is a contraction) we get that $x_2^* \in FixT_2$.

Using that (x_n) is Cauchy we have: $d(x_n, x_{n+p}) \leq d(x_n, x_{n+1}) + \dots + d(x_{n+p-1}, x_{n+p}) \leq (\psi \circ \varphi)^n (d(x_0, x_1)) + \dots + (\psi \circ \varphi)^{n+p-1} (d(x_0, x_1)) \leq \sum_{k \geq 0} (\psi \circ \varphi)^k (d(x_0, x_1)) = s_{\phi}(d(x_0, x_1)), \text{ for all } n \in \mathbb{N}, p \in \mathbb{N}^*.$ For $p \to \infty$ we have that $d(x_n, x_2^*) \leq s_{\phi}(d(x_0, x_1)), \text{ for all } n \geq 0.$ Taking n = 0 and using the fact that s_{ϕ} is increasing we obtain $d(x_0, x_2^*) \leq s_{\phi}(d(x_0, x_1)) \leq s_{\phi}(\psi(\eta)).$

Theorem 3.1. Let X be a Banach space, $Y \in P_{cl,cv}(Y)$. Let $A : Y \to P_{b,cl,cv}(X)$ and $B : Y \to P_{cp,cv}(X)$ two multivalued operators such that:

i) $A(y_1) + B(y_2) \subset Y$, for all $y_1, y_2 \in Y$;

ii) A is a multivalued (φ, ψ) -contraction, i.e. there exist two continuous functions $\varphi, \psi : \mathbb{R}_+ \to \mathbb{R}_+$ such that $\psi \circ \varphi$ is a strong strict comparison function, φ is a comparison function and ψ is an expansive function such that: $H(A(x), A(y)) \leq \varphi(||x - y||)$, for all $x, y \in Y$;

iii) B is l.s.c and compact;

iv) For all $\varepsilon > 0$ there exists $R(\varepsilon) > 0$ such that $s_{\phi}(\psi(R(\varepsilon))) \leq \varepsilon$, where $s_{\phi}(t) = \sum_{k=0}^{\infty} \phi^{k}(t)$, with $\phi = \psi \circ \varphi$. Then $Fix(A + B) \neq \emptyset$.

Proof. Let $C: Y \to P(Y)$ a multivalued operator defined as follows:

a) For all $x \in Y$ let $T_x : Y \to P_{cp,cv}(Y)$ be defined by $T_x(y) =$ A(y) + B(x). Then $H(T_x(y_1), T_x(y_2)) = H(A(y_1) + B(x), A(y_2) + B(x)) \le$ $H(A(y_1), A(y_2)) \le \varphi(||y_1 - y_2||) \le (\psi \circ \varphi)(||y_1 - y_2||)$. From Wegrzyk fixed point theorem (see [7]) we have that: $FixT_x \neq \emptyset$, for all $x \in Y$.

Next we will prove that the set $FixT_x$ is closed, for each $x \in Y$. Recall that $FixT_x$ is closed if and only if for all $y_n \subset FixT_x$ with $y_n \to y$, as $n \to \infty$ we have that $y \in FixT_x$. Since $y_n \subset FixT_x$ we have that $y_n \in T_x(y_n)$. Thus $D(y, T_x(y)) \le d(y, y_n) + D(y_n, T_x(y)) \le d(y, y_n) + H(T_x(y_n), T_x(y)) \le$ $d(y, y_n) + \varphi(||y_n - y||) \to 0$ as $n \to \infty$. We have that $y \in T_x(y)$.

b) Let $F: Y \times Y \to P_{cp,cv}(Y), F(x,y) = A(y) + B(x)$, for all $(x,y) \in Y \times Y$. F satisfies the hypothesis of Theorem 1 in Rybinski [6]. Thus, we have that there exists $f: Y \times Y \to Y$ continuous such that $f(x, y) \in A(f(x, y)) + B(x)$.

Let $C(x) = FixT_x$ be given by $C: Y \to P_{cl}(Y)$ and let $c: Y \to Y$ defined by c(x) = f(x, x) for all $x \in Y$. Then c is a continuous function and we have that: $c(x) = f(x, x) \in A(f(x, x)) + B(x) = A(c(x)) + B(x) = T_x(c(x))$ for all $x \in Y$. We will prove that c(Y) is relatively compact. It is enough to prove that C(Y) is relatively compact.

We show that C(Y) is totally bounded. From the fact that B is compact we have that B(Y) is relatively compact and thus totally bounded. So for all $\varepsilon > 0$ there exists $Z = \{x_1, x_2, ..., x_n\} \subset Y$ such that $B(Y) \subset \{z_1, ..., z_n\} +$ $B(0, R(\varepsilon)) \subset \bigcup_{i=1}^{n} B(x_i) + B(0, R(\varepsilon)), \text{ where } z_i \in B(x_i), i = 1, ..., n. \text{ We have that}$ for all $x \in Y$, $B(x) \subset \bigcup_{i=1}^{n} B(x_i) + B(0, R(\varepsilon))$ and hence there exists $x_k \in Z$

such that $\rho(B(x), B(x_k)) < R(\varepsilon)$. So $\rho(C(x), C(x_k)) = \rho(FixT_x, FixT_{x_k}) \stackrel{(*)}{\leq}$ $s_{\phi}(\psi(\sup_{y\in Y} \rho(T_x(y), T_{x_k}(y)))) \leq \varepsilon$. The inequality (*) follows from Lemma 3.2. From the fact that $\rho(T_x(y), T_{x_k}(y)) = \rho(A(y) + B(x), A(y) + B(x_k)) \leq$ $\rho(B(x), B(x_k)) < R(\varepsilon)$ we have that $s_{\phi}(\psi(R(\varepsilon))) \leq \varepsilon$. It implies that for each $u \in C(x)$ there exists $v_k \in C(x_k)$ such that $||u - v_k|| < \varepsilon$. So for all $x \in Y$, $C(x) \subset Q + B(0,\varepsilon)$, where $Q = \{v_1, ..., v_k, ..., v_n\}$ with $v_i \in C(x_i), i = 1, ..., n$. Since in a Banach space a totally bounded set is relatively compact we get that C(Y) is relatively compact.

Thus $c: Y \to Y$ satisfies the hypothesis in Schauder's theorem. Let $x^* \in Y$ a fixed point for c. We have that $x^* = c(x^*) \in A(c(x^*)) + B(x^*) = A(x^*) + B(x^*)$.

Theorem 3.2. Let X be a Banach space, $Y \in P_{cl,cv}(Y)$. Let $A : Y \to P_{b,cl,cv}(X)$ and $B : Y \to P_{cp,cv}(X)$ two multivalued operators such that:

i) If $y \in A(y) + B(x) \subset Y$, for all $x \in Y$ then $y \in Y$;

ii) A is a multivalued (φ, ψ) -contraction, i.e. there exist two continuous functions $\varphi, \psi : \mathbb{R}_+ \to \mathbb{R}_+$ such that $\psi \circ \varphi$ is a strong strict comparison function, φ is a comparison function and ψ is an expansive function such that: $H(A(x), A(y)) \leq \varphi(||x - y||)$, for all $x, y \in Y$;

- iii) B is l.s.c and compact;
- iv) For all $\varepsilon > 0$ there exists $R(\varepsilon) > 0$ such that $s_{\phi}(\psi(R(\varepsilon))) \leq \varepsilon$, where $s_{\phi}(t) = \sum_{k=0}^{\infty} \phi^{k}(t)$, with $\phi = \psi \circ \varphi$. Then $Fix(A + B) \neq \emptyset$.

Proof. Let $C: Y \to P(Y)$ a multivalued operator defined as follows:

a) For all $x \in Y$ let $T_x : Y \to P_{cp,cv}(Y)$ be defined by $T_x(y) = A(y) + B(x)$. Then $H(T_x(y_1), T_x(y_2)) = H(A(y_1) + B(x), A(y_2) + B(x)) \leq H(A(y_1), A(y_2)) \leq \varphi(||y_1 - y_2||) \leq (\psi \circ \varphi)(||y_1 - y_2||)$. From Wegrzyk fixed point theorem (see [7]) we have that: $FixT_x \neq \emptyset$, for all $x \in Y$.

Next we will prove that the set $FixT_x$ is closed, for each $x \in Y$. Recall that $FixT_x$ is closed if and only if for all $y_n \subset FixT_x$ with $y_n \to y$, as $n \to \infty$ we have that $y \in FixT_x$. Since $y_n \subset FixT_x$ we have that $y_n \in T_x(y_n)$. Thus $D(y,T_x(y)) \leq d(y,y_n) + D(y_n,T_x(y)) \leq d(y,y_n) + H(T_x(y_n),T_x(y)) \leq d(y,y_n) + \varphi(||y_n - y||) \to 0$ as $n \to \infty$. We have that $y \in T_x(y)$. From i) we have that $FixT_x \subset Y$.

b) Let $F: Y \times Y \to P_{cp,cv}(Y)$, F(x,y) = A(y) + B(x), for all $(x,y) \in Y \times Y$. F satisfies the hypothesis of Theorem 1 in Rybinski [6]. Thus, we have that there exists $f: Y \times Y \to Y$ continuous such that $f(x,y) \in A(f(x,y)) + B(x)$.

Let $C(x) = FixT_x$ be given by $C: Y \to P_{cl}(Y)$ and let $c: Y \to Y$ defined by c(x) = f(x, x) for all $x \in Y$. Then c is a continuous function and we have that: $c(x) = f(x, x) \in A(f(x, x)) + B(x) = A(c(x)) + B(x) = T_x(c(x))$ for all $x \in Y$. We will prove that c(Y) is relatively compact. It is enough to prove that C(Y) is relatively compact.

We show that C(Y) is totally bounded. From the fact that B is compact we have that B(Y) is relatively compact and thus totally bounded. So for all $\varepsilon > 0$ there exists $Z = \{x_1, x_2, ..., x_n\} \subset Y$ such that $B(Y) \subset \{z_1, ..., z_n\} +$ $B(0, R(\varepsilon)) \subset \bigcup_{i=1}^{n} B(x_i) + B(0, R(\varepsilon)), \text{where } z_i \in B(x_i), i = 1, ..., n. \text{ We have that}$ for all $x \in Y$, $B(x) \subset \bigcup_{i=1}^{n} B(x_i) + B(0, R(\varepsilon))$ and hence there exists $x_k \in Z$

such that $\rho(B(x), B(x_k)) < R(\varepsilon)$. So $\rho(C(x), C(x_k)) = \rho(FixT_x, FixT_{x_k}) \stackrel{(*)}{\leq}$ $s_{\phi}(\psi(\sup_{x \in V} \rho(T_x(y), T_{x_k}(y)))) \leq \varepsilon$. The inequality (*) follows from Lemma 3.2. From the fact that $\rho(T_x(y), T_{x_k}(y)) = \rho(A(y) + B(x), A(y) + B(x_k)) \leq$ $\rho(B(x), B(x_k)) < R(\varepsilon)$ we have that $s_{\phi}(\psi(R(\varepsilon))) \leq \varepsilon$. It implies that for each $u \in C(x)$ there exists $v_k \in C(x_k)$ such that $||u - v_k|| < \varepsilon$. So for all $x \in Y$, $C(x) \subset Q + B(0,\varepsilon)$, where $Q = \{v_1, ..., v_k, ..., v_n\}$ with $v_i \in C(x_i), i = 1, ..., n$. Since in a Banach space a totally bounded set is relatively compact we get that C(Y) is relatively compact.

Thus $c: Y \to Y$ satisfies the hypothesis in Schauder's theorem. Let $x^* \in Y$ a fixed point for c. We have that $x^* = c(x^*) \in A(c(x^*)) + B(x^*) = A(x^*) + B(x^*)$.

Theorem 3.3. Let (X, d) be a metric space, D a complete subset of X and let $T: D \to P(X)$ be a densifying multivalued operator. Then any bounded sequence $\{x_n\}$, such that $D(x_n, T(x_n)) \to 0$, as $n \to \infty$ is compact and all the limit points of $\{x_n\}$ are fixed for T.

Proof. Let $\{x_n\}$ be a bounded sequence such that $D(x_n, T(x_n)) \to 0$, as $n \to \infty$. Put $M = \{x_n : n = 1, 2, ..\}$, so that $T(M) = \{T(x_n) : n = 1, 2, ...\}$. Given any $\varepsilon > 0$, it follows that $B(T(M), \varepsilon)$ contains all but a finite number of elements of M, since $D(x_n, T(x_n)) \to 0$. Then $\alpha(M) \leq \alpha(B(T(M), \varepsilon)) \leq \alpha(B(T(M), \varepsilon))$ $\alpha(T(M)) + 2\varepsilon$; hence $\alpha(T(M)) \ge \alpha(M)$. Therefore $\{x_n\}$ is compact. By the H-continuity of T all the limit points of $\{x_n\}$ are fixed for T.

Corollary 3.1. Let (X, d) be a bounded, complete metric space and $T: x \to d$ P(X) be a densifying multivalued operator. If $inf\{D(x,T(x)): x \in X\} = 0$ then T has at least a fixed point.

Proof. It follows immediately from the theorem above.

Corollary 3.2. Let (X, d) be a complete metric space and $T : X \to P(X)$ be a completely continuous multivalued operator. If $\inf\{D(x, T(x)) : x \in X\} = 0$ then T has at least a fixed point.

Proof. It follows immediately from the corollary above.

Corollary 3.3. Let $T : D \to P(F)$ be a multivalued operator defined on a closed subset D of a Frechet space F such that T = G + H, where $G : D \to P(F)$ is a completely continuous operator and $H : D \to P(F)$ is contractive. Then any bounded sequence $\{x_n\}$ such that $D(x_n, T(x_n)) \to 0$, as $n \to \infty$ is compact and all the limit points of $\{x_n\}$ are fixed for T.

Proof. It is sufficient to prove that T is densifying. Let $A \subset F$ be a bounded set with $\alpha(A) > 0$. We have $\alpha(T(A)) \leq \alpha(G(A) + H(A)) \leq \alpha(G(A)) + \alpha(H(A)) = \alpha(H(A)) < \alpha(A)$.

Theorem 3.4. Let X be a Banach space and $Y \in P_{cl,b,cv}(X)$. Let $A, B : Y \to X$ such that:

- i) $A(x) + B(y) \in Y$, for all $x, y \in Y$;
- ii) A satisfies the Meir-Keeler condition;
- *iii*)B is completely continuous.
- Then $Fix(A+B) \neq \emptyset$.

Proof. From (i) we have that A satisfies the Meir-Keeler condition. Lim showed in Theorem 2.1 that A is a nonlinear contraction. Applying the main result in Nashed and Wong [3] the conclusion follows.

Theorem 3.5. Let X be a Banach space and $Y \in P_{cl,b,cv}(X)$. Let $A, B : Y \to P_{cp,cv}(X)$ such that:

i) $A(x) + B(y) \in Y$, for all $x, y \in Y$;

ii) A satisfies the Meir-Keeler condition;

iii)B is l.s.c and compact.

If we denote by φ the function from Lim's characterisation theorem, then there exists $\psi : \mathbb{R}_+ \to \mathbb{R}_+$ an expansive function such that $\psi \circ \varphi$ is a comparison function and:

iv) For all $\varepsilon > 0$ there exists $R(\varepsilon) > 0$ such that $s_{\phi}(\psi(R(\varepsilon))) \leq \varepsilon$, where $s_{\phi}(t) = \sum_{k=0}^{\infty} \phi^{k}(t)$, with $\phi = \psi \circ \varphi$. Then $Fix(A+B) \neq \emptyset$.

Proof. From the hypothesis we have that A satisfies the Meir-Keeler condition, so from Theorem 2.2 we have that A satisfies the following condition: $H(A(x), A(y)) \leq \varphi(||x - y||)$, for all $x, y \in Y$, with $x \neq y$. By Theorem 3.1 the conclusion follows.

References

- Teck-Cheong Lim, On characterizations of Meir-Keeler contractive maps, Nonlinear Analysis 46(2001), 113-120.
- M. Furi, A. Vignoli, *Fixed points for densifying mappings*, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8) 47(1970), 465-467.
- [3] M.Z. Nashed, J.S. Wong, Some variants of a fixed point theorem of Krasnoselskii and applications to nonlinear integral equations, J. Math. Mech., 18(1969), 767-777.
- [4] A. Petruşel, Operatorial Inclusions, House of the Book of Science, 2002.
- [5] S. Reich, Fixed point of contractive functions, Boll. U.M.I., 5(1972), 26-42.
- [6] L. Rybinski, Multivalued contraction with parameter, Ann. Polon. Math., 45(1985), 275-282.
- [7] R. Wegrzyk, Fixed point theorems for multifunctions and their applications to functional equations, Diss. Math., 201(1982).

Received: November 21, 2007; Accepted: February 6, 2008.