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Abstract. Almost contractions form a class of generalized contractions that includes several

contractive type mappings like usual contractions, Kannan mappings, Zamfirescu mappings

etc. Since any usual contraction is continuous, while a Kannan mapping is not generally

continuous but is continuous at the fixed point, the main aim of this paper is to study the

continuity of both single and multi-valued almost contractions. The main results state that

any almost contraction is continuous at its fixed point(s). This answers an open question

raised in [Berinde, V., On the approximation of fixed points of weak contractive mappings

Carpathian J. Math. 19 (2003), No. 1, 7-22].
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1. Introduction

The classical Banach’s contraction principle is one of the most useful results
in nonlinear analysis. In a metric space setting its full statement is given by
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the next theorem.

Theorem B. Let (X, d) be a complete metric space and T : X → X a map
satisfying

d(Tx, Ty) ≤ a d(x, y) , for all x, y ∈ X , (1.1)

where 0 ≤ a < 1 is constant. Then:
(p1) T has a unique fixed point p in X;
(p2) The Picard iteration {xn}∞n=0 defined by

xn+1 = Txn , n = 0, 1, 2, . . . (1.2)

converges to p, for any x0 ∈ X.
(p3) The following a priori and a posteriori error estimates hold :

d(xn, x∗) ≤ an

1− a
d(x0, x1) , n = 0, 1, 2, . . . (1.3)

d(xn, x∗) ≤ a

1− a
d(xn−1, xn) , n = 1, 2, . . . (1.4)

(p4) The rate of convergence of Picard iteration is given by

d(xn, x∗) ≤ a d(xn−1, x
∗) , n = 1, 2, . . . (1.5)

A map satisfying (p1) and (p2) in Theorem B is said to be a Picard operator,
see Rus [26], [28].

A mapping satisfying (1.1) is usually called strict contraction or a-
contraction or simply contraction. Hence, Theorem B essentially shows that
any contraction is a Picard operator.

Theorem B has many applications in solving nonlinear equations. Its merit
is not only to state the existence and uniqueness of the fixed point of the strict
contraction T but also to show that the fixed point can be approximated by
means of Picard iteration (1.2). Moreover, for this iterative method both a
priori (1.3) and a posteriori (1.4) error estimates are available. Additionally,
inequality (1.5) shows that the rate of convergence of Picard iteration is linear
in the class of strict contractions.

Despite these important features, Thoeorem B suffers from one serious
drawback - the contractive condition (1.1) forces T to be continuous on the en-
tire space X. It was then naturally to ask if there exist contractive conditions
which do not imply the continuity of T . This was answered in the affirmative
by R. Kannan [16] in 1968, who proved a fixed point theorem which extends
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Theorem B to mappings that need not be continuous, by considering instead
of (1.1) the next condition: there exists 0 ≤ b < 1/2 such that

d(Tx, Ty) ≤ b
[
d(x, Tx) + d(y, Ty)

]
, for all x, y ∈ X . (1.6)

Following Kannan’s theorem, a lot of papers were devoted to obtaining fixed
point theorems for various classes of contractive type conditions that do not
require the continuity of T on X, see for example, Rus [26], [28], Taskovic [32],
and references therein.

One of them, actually a sort of dual of Kannan fixed point theorem, due to
Chatterjea [11], is based on a condition similar to (1.6): there exists 0 ≤ c <

1/2 such that

d(Tx, Ty) ≤ c
[
d(x, Ty) + d(y, Tx)

]
, for all x, y ∈ X. (1.7)

It is well known, see Rhoades [21], that the contractive conditions (1.1) and
(1.6), as well as (1.1) and (1.7), respectively, are independent.

In 1972, Zamfirescu [33] obtained a very interesting fixed point theorem, by
combining (1.1), (1.6) and (1.7) in a rather unexpected way.

Theorem Z. Let (X, d) be a complete metric space and T : X → X be a map
for which there exist the real numbers a, b and c satisfying 0 ≤ a < 1, 0 ≤ b,
c < 1/2 such that for each pair x, y in X, at least one of the following is true:

(z1) d(Tx, Ty) ≤ a d(x, y);

(z2) d(Tx, Ty) ≤ b
[
d(x, Tx) + d(y, Ty)

]
;

(z3) d(Tx, Ty) ≤ c
[
d(x, Ty) + d(y, Tx)

]
.

Then T is a Picard operator.

One of the most general contraction conditions for which the map satisfying
it is still a Picard operator, has been obtained by Ciric [13] in 1974: there exists
0 ≤ h < 1 such that

d(Tx, Ty) ≤ h ·max
{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

}
,

for all x, y ∈ X . (1.8)

Remark. A mapping satisfying (1.8) is commonly called quasi contraction.
It is obvious that each of the conditions (1.1), (1.6), (1.7) and (z1)-(z3) implies
(1.8).
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There exist many other fixed point theorems based on contractive conditions
of the type considered in this section: see [11]-[18], [19], [21], [22] and also the
monographs [3], [26], [29] and [32].

A more general class of contractive type mappings called weak contractions
were introduced and studied in [2], [4]-[8], [10], [20], see also [9]. This class
includes mappings satisfying the previous contractive conditions (except for
quasi contractions, which are known to be only in part included in the class
of weak contractions). The next section survey the most significant results
obtained in [4], [5] and [6].

2. Almost contractions

The following concept has been introduced in [6], where we used the term
of weak contraction instead of the present almost contraction.

Definition 1. Let (X, d) be a metric space. A map T : X → X is called
almost contraction or (δ, L)-contraction if there exist a constant δ ∈ (0, 1) and
some L ≥ 0 such that

d(Tx, Ty) ≤ δ · d(x, y) + Ld(y, Tx) , for all x, y ∈ X . (2.1)

Remark 1. Due to the symmetry of the distance, the almost contraction
condition (2.1) implicitly includes the following dual one

d(Tx, Ty) ≤ δ · d(x, y) + L · d(x, Ty) , for all x, y ∈ X , (2.2)

obtained from (2.1) by formally replacing d(Tx, Ty) and d(x, y) by d(Ty, Tx)
and d(y, x), respectively, and then interchanging x and y.

Consequently, in order to check the almost contractiveness of T , it is nec-
essary to check both (2.1) and (2.2).

Obviously, any strict contraction satisfies (2.1), with δ = a and L = 0, and
hence is an almost contraction (that possesses a unique fixed point).

Other examples of almost contractions are given in [5]-[8]. There are many
other examples of contractive conditions which implies the almost contractive-
ness condition, see for example Taskovic [32], Rus [29] and Berinde [3].

The main results in [6] are given below as Theorem 1 (an existence theorem)
and Theorem 2 (an existence and uniqueness theorem). Their main merit is
that extend Theorems B and Z and many other related results in literature
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to the larger class of almost contractions, in the spirit of Theorem B, that is,
in such a way that they offer a method for approximating the fixed point, for
which both a priori and a posteriori error estimates are available.

Theorem 1. Let (X, d) be a complete metric space and T : X −→ X a weak
contraction. Then

1) Fix (T ) = {x ∈ X : Tx = x} 6= φ;
2) For any x0 ∈ X, the Picard iteration {xn}∞n=0 given by (1.2) converges

to some x∗ ∈ Fix (T );
3) The following estimates

d(xn, x∗) ≤ δn

1− δ
d(x0, x1) , n = 0, 1, 2, . . .

d(xn, x∗) ≤ δ

1− δ
d(xn−1, xn) , n = 1, 2, . . .

hold, where δ is the constant appearing in (2.1).

Remark 2. 1) Note that, although the fixed point theorems B and Z actually
forces the uniqueness of the fixed point, the almost (weak) contractions need
not have a unique fixed point, as shown by Example 1 in [6].

Recall, see Rus [28], [29], [31], that an operator T : X → X is said to be
a weakly Picard operator if the sequence {Tnx0}∞n=0 converges for all x0 ∈ X

and the limits are fixed points of T . Therefore, Theorem 1 provides a large
class of weakly Picard operators.

2) It is easy to see that condition (2.1) implies the so called Banach orbital
condition

d(Tx, T 2x) ≤ a d(x, Tx) , for all x ∈ X ,

studied by various authors in the context of fixed point theorems, see the
references in [6].

It is possible to force the uniqueness of the fixed point of an almost con-
traction, see [5] and [6], by imposing an additional contractive condition, quite
similar to (2.1), as shown by the next theorem.

Theorem 2. Let (X, d) be a complete metric space and T : X → X an almost
contraction for which there exist θ ∈ (0, 1) and some L1 ≥ 0 such that

d(Tx, Ty) ≤ θ · d(x, y) + L1 · d(x, Tx) , for all x, y ∈ X . (2.3)
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Then
1) T has a unique fixed point, i.e., Fix (T ) = {x∗};
2) The Picard iteration {xn}∞n=0 given by (1.2) converges to x∗, for any

x0 ∈ X;
3) The a priori and a posteriori error estimates

d(xn, x∗) ≤ δn

1− δ
d(x0, x1) , n = 0, 1, 2, . . .

d(xn, x∗) ≤ δ

1− δ
d(xn−1, xn) , n = 1, 2, . . .

hold.
4) The rate of convergence of the Picard iteration is given by

d(xn, x∗) ≤ θ d(xn−1, x
∗) , n = 1, 2, . . .

Remark 3. Note that, by the symmetry of the distance, (2.3) is satisfied for
all x, y ∈ X if and only if

d(Tx, Ty) ≤ θ d(x, y) + L1d(y, Ty) , (2.4)

also holds, for all x, y ∈ X.
So, similarly to the case of the dual conditions (2.1) and (2.2), in concrete

applications it is necessary to check that both conditions (2.3) and (2.4) are
satisfied.

As shown in [6], an operator T satisfying one of the conditions (1.1), (1.6),
(1.7), or the conditions in Theorem Z, also satisfies the uniqueness conditions
(2.1) and (2.4). Therefore, in view of Example 1 in [6], Theorem 2 (and
also Theorem 1) in this section properly generalizes Theorem Z. The results
obtained for single-valued mappings have been extended to the multi-valued
case in [2], [10] and [20].

3. Continuity of single-valued almost contractions

The next Example shows that an almost contraction (and a quasi-
contraction, too) need not be continuous.

Example 1. Let [0, 1] be the unit interval with the usual norm and let T :

[0, 1] → [0, 1] be given by Tx =
2
3

, for x ∈ [0, 1) and T1 = 0. Then: 1) T



FIXED POINTS AND CONTINUITY OF ALMOST CONTRACTIONS 29

satisfies (1.5) with h ∈
[2
3
, 1

)
; 2) T satisfies (2.1) with 1 > δ ≥

2
3

and L ≥ δ;

3) T has a unique fixed point, x∗ =
2
3

; 4) T does not satisfy (2.3); 5) T is not
continuous.

In [23], Rhoades found a large class of contractive type mappings which are
continuous at their unique fixed point, but are not continuous on the whole
space X.

It was then naturally to ask in [6] a similar question for the almost con-
tractions, whose set of fixed points Fix (T ) is not a singleton: is a almost
contraction continuous at any fixed point of it ? The positive answer is given
by the next Theorem.

Theorem 3. Let (X, d) be a complete metric space and T : X → X be an
almost contraction. Then T is continuous at p, for any p ∈ Fix (T ).

Proof. Since T is an almost contraction, there exist a constant δ ∈ (0, 1) and
some L ≥ 0 such that (2.1) is satisfied. We know by Theorem 1 that for any
x0 ∈ X the Picard iteration {xn}∞n=0 defined by xn+1 = Txn, n = 0, 1, 2, . . .

converges to some p ∈ Fix (T ).
Let {yn}∞n=0 be any sequence in X converging to p. Then by taking y := yn

and x := p in the almost contraction condition (2.1),

d(Tx, Ty) ≤ δ · d(x, y) + Ld(y, Tx) ,

we get
d(Tp, Tyn) ≤ δd(p, yn) + Ld(yn, Tp), n = 0, 1, 2, . . .

which, in view of Tp = p, is equivalent to

d(Tyn, Tp) ≤ (δ + L) · d(yn, p), n = 0, 1, 2, . . . . (3.1)

Now by letting n → ∞ in (3.1) we get Tyn → Tp as n → ∞, which shows
that T is continuous at p.

As the fixed point p has been chosen arbitrarily in Fix (T ), the proof is
complete. �

A mapping for which there exist a constant δ ∈ (0, 1) and some L ≥ 0 such
that

d(Tx, Ty) ≤ δ · d(x, y) + Lmin{d(x, Tx), d(y, Ty), d(x, Ty),
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d(y, Tx)}, ∀x, y ∈ X. (3.2)

is said to be a strict almost contraction.
The strict almost contraction have been introduced and studied in [1] by

Babu, Sanddhya and Kameswari, by answering an open question in [6]. As
condition (3.2) is obtained by combining the almost contraction condition (2.1)
and the uniqueness condition (2.3), they obtained a fixed point theorem that
ensure the uniqueness of the fixed point. It is obvious that any strict almost
contraction is an almost contraction, i.e., it does satisfy (2.1) and also satisfies
the uniqueness condition (2.3) but the reverse is not generally true, see the
examples in [1].

By Theorem 3 we get the following result for the class of strict almost
contractions, for which we give a direct proof.

Corollary 1. Let (X, d) be a complete metric space and T : X → X be
a generalized almost contraction, i.e., a mapping satisfying (3.2) and let
Fix (T ) = {p}. Then T is continuous at p.

Proof. Since T is a strict almost contraction, there exist a constant δ ∈ (0, 1)
and some L ≥ 0 such that (3.2) is satisfied. We know by Theorem 2.9 in [1]
that T has a unique fixed point, say p.

Let {yn}∞n=0 be any sequence in X converging to p. Then by taking y := yn

and x := p in the strict almost contraction condition (3.2),

d(Tx, Ty) ≤ δ · d(x, y) + Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}

we get

d(Tp, Tyn) ≤ δd(p, yn), n = 0, 1, 2, . . .

since

min{d(p, Tp), d(yn, T yn), d(p, Tyn), d(yn, Tp)} = d(p, Tp) = 0.

and therefore, the previous inequality is equivalent to

d(Tyn, Tp) ≤ δ · d(yn, p), n = 0, 1, 2, . . . . (3.3)

Now by letting n → ∞ in (3.3) we get Tyn → Tp as n → ∞, which shows
that T is continuous at p. �
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4. Continuity of multi-valued almost contractions

In order to study the much more complicated case of multi-valued almost
contractions (mappings that were introduced and studied in [2], [10] and [20])
we need the following concepts and results.

Let (X, d) be a metric space and let P(X) (C(X) and CB(X) ) denote the
family of all nonempty subsets of X (nonempty closed, nonempty closed and
bounded, respectively).

For A,B ⊂ X and a ∈ X, we consider the following functionals:

d(a,B) = inf{d(a, b) : b ∈ B} , the distance between a and B,

D(A,B) = inf{d(a, b) : a ∈ A, b ∈ B} , the distance between A and B,

δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B} , the diameter of A and B

and
H(A,B) = max{sup{d(a,B) : a ∈ A}, sup{d(b, A) : b ∈ B}},

the Hausdorff-Pompeiu metric on CB(X) induced by d.
It is known that CB(X) is a metric space equipped with the Hausdorff-

Pompeiu distance function H. It is also known, see for example Lemma 8.1.4
in Rus [29], that if (X, d) is a complete metric space then (CB(X),H) is a
complete metric space, too.

A multi-valued map T : X → C(X) is said to be continuous at a point p if

lim
n→∞

d(xn, p) = 0 implies lim
n→∞

H(Txn, Tp) = 0.

(Note that in [24] instead of H is used the functional D).
Let T : X → P(X) be a multi-valued mapping. An element x ∈ X such

that x ∈ T (x) is called a fixed point of T . We denote by Fix (T ) the set of all
fixed points of T, i.e.,

Fix (T ) = {x ∈ X : x ∈ T (x)}.

The next theorem shows that any generalized strict almost contraction is con-
tinuous at the fixed point.

Theorem 4. Let (X, d) be a complete metric space and T : X → CB(X)
be a generalized multi-valued (θ, L)-strict almost contraction, i.e., a mapping
satisfying for which there exist θ ∈ (0, 1) and some L ≥ 0 such that ∀x, y ∈ X,

H(Tx, Ty) ≤ θ · d(x, y) + Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}
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(4.1)

Then Fix (T ) 6= ∅ and for any p ∈ Fix (T ), T is continuous at p.

Proof. The first part of the conclusion follows by Theorem 7 in [10].
Let {yn}∞n=0 be any sequence in X converging to p. Then by taking y := yn

and x := p in the generalized strict almost contraction condition (4.1), we get

d(Tp, Tyn) ≤ δd(p, yn), n = 0, 1, 2, . . .

since

min{d(p, Tp), d(yn, T yn), d(p, Tyn), d(yn, Tp)} = d(p, Tp) = 0.

and therefore, the previous inequality is equivalent to

d(Tyn, Tp) ≤ δ · d(yn, p), n = 0, 1, 2, . . . . (4.2)

Now by letting n → ∞ in (4.2) we get Tyn → Tp as n → ∞, which shows
that T is continuous at p. �

The previous result can be extended without any difficulty to the more
general class of generalized almost contractions.

Theorem 5. Let (X, d) be a complete metric space and T : X → CB(X) be
a generalized multi-valued (θ, L)-almost contraction, i.e., a mapping satisfying
for which there exist θ ∈ (0, 1) and some L ≥ 0 such that ∀x, y ∈ X,

H(Tx, Ty) ≤ θ · d(x, y) + Ld(y, Tx). (4.3)

Then Fix (T ) 6= ∅ and for any p ∈ Fix (T ), T is continuous at p.

Proof. The first part of the conclusion follows by Theorem 3 in [2]. Let
{yn}∞n=0 be any sequence in X converging to p. Then by taking y := yn and
x := p in the generalized almost contraction condition (4.3), we get

d(Tp, Tyn) ≤ δd(p, yn) + Ld(yn, Tp), n = 0, 1, 2, . . .

which, in view of Tp = p, is equivalent to

d(Tyn, Tp) ≤ (δ + L) · d(yn, p), n = 0, 1, 2, . . . . (4.4)

Now by letting n → ∞ in (4.4) we get Tyn → Tp as n → ∞, which shows
that T is continuous at p. �
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For other concepts of continuity of multi-valued mappings and other classes
of generalized multi-valued almost contractions (see our papers [2], [10] and
[20]) the study will be presented in a future work.
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