Fixed Point Theory, Volume 9, No. 1, 2008, 17-22 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

CONVERGENCE OF KRASNOSELSKII ITERATIONS IN THE REAL LINE BASED ON ASYMPTOTICALLY NON-EXPANSIVE MAPPING

A. AROCKIASAMY* AND A. ANTHONY ELDRED**

*Department of Mathematics, St. Xavier's College, Palayamkottai, Tirunelveli - 627 002, India E-mail: arock_sj@rediffmail.com

> **Department of Mathematics, Loyola College, Chennai 600 034, India

Abstract. In this paper, we will discuss the convergence of Krasnoselskii iterations in the real line based on asymptotically non-expansive mapping.

Key Words and Phrases: Convergence, Krasnoselskii iteration, asymptotically non-expansive mapping, fixed point.

2000 Mathematics Subject Classification: 47H10, 54H25.

1. INTRODUCTION

Following Krasnoselskii's [3] fixed point theorem, namely "Let K be a bounded closed convex subset of a uniformly convex Banach space X. Let Fbe a non-expansive mapping of K into a compact subset of K. Let x_0 be an arbitrary point of K. Then the sequence defined by

$$x_{n+1} = \frac{x_n + Fx_n}{2}, \ (n = 0, 1, 2, \ldots)$$

converges to a fixed point of F in K" and Beardon's [2] theorem in relation to the contractions on the real line, namely "Suppose that $f : \Re \to \Re$ satisfies |f(x) - f(y)| < |x - y| whenever $x \neq y$. Then there is some ζ in $[-\infty, +\infty]$ such that for any real $x, f^n(x) \to \zeta$ as $n \to \infty$ ", we have already considered the convergence of Krasnoselskii iterations in the real line based on a nonexpansive mapping in [1] as in the following:

17

"Suppose that T is a non-expansive map defined on the real line \Re . Then for any real x, the sequence defined by

$$x_{n+1} = \frac{x_n + Tx_n}{2}, \ (n = 0, 1, 2, \ldots)$$

converges either to a fixed point in \Re or to an element $\zeta \in \{-\infty, +\infty\}$ ".

Therefore, having discussed the convergence of Krasnoselskii iterations in the real line for a non - expansive mapping already in [1], we are now going to deal with the same theorem for an asymptotically non - expansive mapping and so we are going to consider the convergence based on asymptotically nonexpansive mapping as in the following: "Suppose that $T : \Re \longrightarrow \Re$ is an asymptotically non-expansive mapping. Moreover assume that

$$\prod_{i=N}^{n} \left(\frac{1+k_n}{2}\right)$$

is convergent. Then for any real x, the sequence defined by

$$x_{n+1} = \frac{x_n + T^n x}{2}, \ (n = 0, 1, 2, \ldots)$$

converges either to a fixed point in \Re or to an element $\zeta \in \{-\infty, +\infty\}^n$.

2. Basic definitions

Definition 2.1. A space X is said to be uniformly convex if and only if given $\epsilon > 0$, there exists a $\delta(\epsilon) > 0$ such that

$$\left\|\frac{x+y}{2}\right\| \le 1-\delta(\epsilon) \quad whenever \quad \|x-y\| \ge \epsilon \quad and \quad \|x\| = \|y\| = 1.$$

The above inequality is equivalent to the following: If $x, y, p \in X$, R > 0 and $r \in [0, 2R]$, then

$$\frac{||x-p|| \le R}{||y-p|| \le R} \\ ||x-y|| \ge r \end{cases} \Rightarrow \left\| \frac{x+y}{2} \right\| \le \left(1 - \delta\left(\frac{r}{R}\right) \right) R.$$

Definition 2.2. Let K be a nonempty subset of a Banach space X. A mapping $F: K \longrightarrow K$ is said to be asymptotically non-expansive if

 $||F^n x - F^n y|| \le k_n ||x - y|| \text{ for all } x, y \in K \text{ and } \lim_{n \to \infty} k_n = 1.$

3. MAIN RESULTS

Having prepared the ground, let us now first look at the fixed point theorem of Krasnoselskii [3] in the following:

Theorem 3.1. Let K be a bounded closed convex subset of a uniformly convex Banach space X. Let F be a non-expansive mapping of K into a compact subset of K. Let x_0 be an arbitrary point of K. Then the sequence defined by

$$x_{n+1} = \frac{x_n + Fx_n}{2}, \ (n = 0, 1, 2, \ldots)$$

converges to a fixed point of F in K.

Keeping the above theorem at the back of our mind, let us now see what Beardon [2] says in his theorem:

Theorem 3.2. Suppose that $f : \Re \to \Re$ satisfies |f(x) - f(y)| < |x - y|whenever $x \neq y$. Then there is some ζ in $[-\infty, +\infty]$ such that for any real x, $f^n(x) \to \zeta$ as $n \to \infty$.

Following Theorems 3.1 and 3.2, we have already discussed the convergence of Krasnoselskii iterations in the real line for non-expansive mapping in [1] and so we give the statement of the same as in the following:

Theorem 3.3. Suppose that $T : \Re \to \Re$ is a mapping which satisfies $|Tx - Ty| \le |x - y|$. Then for any real x, the sequence defined by

$$x_{n+1} = \frac{x_n + Tx_n}{2}, \quad (n = 0, 1, 2, \ldots)$$

converges either to a fixed point in \Re or to an element $\zeta \in \{-\infty, +\infty\}$.

Now, in this paper, we are going to discuss the convergence of Krasnoselskii iterations in the real line for asymptotically non-expansive mapping and so let us prove the theorem in the following:

Theorem 3.4. Suppose that $T : \Re \longrightarrow \Re$ is an asymptotically non-expansive mapping. Moreover assume that

$$\prod_{i=N}^{n} \left(\frac{1+k_n}{2}\right)$$

is convergent. Then for any real x, the sequence defined by

$$x_{n+1} = \frac{x_n + T^n x}{2}, \quad (n = 0, 1, 2, \ldots)$$

converges either to a fixed point in \Re or to an element $\zeta \in \{-\infty, +\infty\}$.

Proof. Suppose that T has a fixed point in \Re , say z. Let us first show that $|x_{n+1} - z| \leq |x_n - z|$, $n = 0, 1, 2, \ldots$ First of all, for any arbitrary real x_n , the sequence can be defined (by the hypothesis) by

$$x_{n+1} = \frac{x_n + T^n x_n}{2}, (n = 0, 1, 2, \ldots)$$

Since Tz = z, we have $T^n z = z$. Therefore, we have

$$\begin{aligned} |x_{n+1} - z| &= \left| \frac{1}{2} (x_n + T^n x_n) - \frac{1}{2} (z + z) \right| \\ &= \left| \frac{1}{2} (x_n + T^n x_n) - \frac{1}{2} (z + T^n z) \right| \\ &= \left| \frac{1}{2} (x_n - z) + \frac{1}{2} (T^n x_n - T^n z) \right| \\ &\leq \frac{1}{2} |x_n - z| + \frac{1}{2} |T^n x_n - T^n z| \\ &\leq \frac{1}{2} |x_n - z| + \frac{1}{2} k_n |x_n - z| \\ &\quad (Since \ T \ is \ asymptotically \ non - expansive) \\ &= \frac{1}{2} (1 + k_n) |x_n - z|. \end{aligned}$$

Therefore,

$$|x_{n+1} - z| \leq \frac{1}{2} (1 + k_n) |x_n - z|$$

That is,

$$\frac{|x_{n+1}-z|}{\left(\frac{1+k_n}{2}\right)} \leq |x_n-z|.$$

Let M be the greatest lower bound of the sequence $\{x_n - z\}$. Then there exists N such that $|x_N - z| \leq M + \epsilon$ for all n > N. Therefore,

$$\frac{|x_n - z|}{\prod\limits_{i=N}^n (1 + k_i)} \leq |x_N - z| \leq M + \epsilon.$$

This implies that

$$M \leq |x_n - z| \leq \prod_{i=N}^n (1+k_i)(M+\epsilon).$$

And therefore this implies that $|x_n - z|$ converges. Suppose there exists an $\epsilon > 0$ and N, such that

$$|x_n - T^n x_n| \ge \epsilon \text{ for all } n \ge N.$$
(3.1)

Then $|x_n - z - (T^n x_n - T^n z)| \ge \epsilon$ for all $n \ge N$. Since T is asymptotically non-expansive, we have

$$|T^n x_n - T^n z| \leq k_n |x_n - z|$$

Since the space \Re is uniformly convex, there exists a constant δ , $0 < \delta < 1$ such that

$$\begin{aligned} |x_{n+1} - z| &= \left| \frac{1}{2} (x_n - z) + \frac{1}{2} (T^n x_n - T^n z) \right| \\ &\leq \delta \max \{ |x_n - z| , |T^n x_n - T^n z| \} (by \ definition) \\ &= \max \{ \delta |x_n - z| , \delta k_n |T^n x_n - T^n z| \} \\ &< \delta k_n |x_n - z| \ for \ all \ n \ge N. \end{aligned}$$

Therefore $\lim_{n \to \infty} x_n = z$ where Tz = z.

If there does not exist an $\epsilon > 0$ for which (3.1) holds, there exists a subsequence $x_{n_k} \in [-\infty, +\infty]$ such that $\lim_{k \to \infty} (x_{n_k} - Tx_{n_k}) = 0$ and such that the sequence $\{Tx_{n_k}\}$ converges. Suppose $\{Tx_{n_k}\}$ converges to a fixed point. This implies that $\lim_{k \to \infty} (x_{n_k}) = \zeta = \lim_{k \to \infty} (Tx_{n_k})$ and hence $T\zeta = \zeta$. As $\lim_{k \to \infty} |(x_{n_k}) - \zeta| = 0$, we have $\lim_{n \to \infty} |x_n - \zeta| = 0$. Suppose $Tx_{n_k} \to \infty$. Then $x_{n_k} \to \infty$. Therefore, $x_{n_{k+1}} \to \infty$. Similarly if $Tx_{n_k} \to -\infty$, then $x_{n_{k+1}} \to -\infty$. If $x_n < Tx_n$, then $x_n < x_{n+1} < Tx_n$. Suppose $Tx_{n+1} < x_{n+1}$. This implies

$$|Tx_{n+1} - Tx_n| = |Tx_{n+1} - x_{n+1}| + |x_{n+1} - Tx_n|$$

= |Tx_{n+1} - x_{n+1}| + |x_n - x_{n+1}|.

Since T does not have a fixed point, $x_{n+1} < Tx_{n+1}$. This implies that $x_{n+1} < x_{n+2}$. Therefore $\{x_n\}$ is an asymptotically increasing sequence. Therefore,

since $x_{n_k} \to \infty$, we have $x_n \to \infty$. If $Tx_n < x_n$, then $x_n > x_{n+1} > Tx_n$. Suppose $Tx_{n+1} > x_{n+1}$. This implies

$$Tx_{n+1} - Tx_n| = |Tx_{n+1} - x_{n+1}| + |x_{n+1} - Tx_n|$$

= |Tx_{n+1} - x_{n+1}| + |x_n - x_{n+1}|.

Since T does not have a fixed point, $x_{n+1} > Tx_{n+1}$. This implies that $x_{n+1} > x_{n+2}$. Therefore $\{x_n\}$ is an asymptotically decreasing sequence. Since $x_{n_k} \longrightarrow -\infty$, we have $x_n \longrightarrow -\infty$. Hence the theorem.

Acknowledgement

The authors are indebted to Dr. P. Veeramani, Department of Mathematics, Indian Institute of Technology Madras, Chennai - 600 036 (India) and Dr. S. Somasundaram, Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli - 627 012 (India) for the knowledge they have acquired from the meaningful discussions with them.

References

- A. Arockiasamy and A. Anthony Eldred, Convergence of Krasnoselskii iterations in the Real line, Proceedings of the International Conference on Mathematics and Computer Science, Department of Mathematics, Loyola college, Chennai - 600 034 (India), 1-3 March, (2007), 687-688.
- [2] A.F. Beardon, Contractions of the Real line, The Mathematical Association of America, 113(June-July 2006), 557-558.
- M.A. Krasnoselskii, Two comments on the method of successive approximations, Usp. Mat.Nauk 10, No. 1,(1955), 123-127.

Received: June 8, 2007; Accepted: October 22, 2007.