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1. Introduction and Preliminaries

Let E be a real Banach space. Recall that a (possibly multivalued) operator
A with domain D(A) and range R(A) in E is accretive, if for each xi ∈ D(A)
and yi ∈ Axi(i = 1, 2), there exists a j(x2 − x1) ∈ J(x2 − x1) such that

〈y2 − y1, j(x2 − x1)〉 ≥ 0,

where J is the duality map from E to the dual space E∗ give by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x2‖ = ‖x∗‖2}, x ∈ E.
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Let C be a nonempty closed convex subset of E, and T : C → C a mapping.
Recall that T is nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, for all x, y ∈ C.

A point x ∈ C is a fixed point of T provided Tx = x. Denote by F (T ) the set
of fixed points of T ; that is, F (T ) = {x ∈ C : Tx = x}. An accretive operator
A is m-accretive if R(I + rA) = E for each r > 0. Throughout this article
we always assume that A is m-accretive and has a zero (i.e., the inclusion
0 ∈ A(z) is solvable). The set of zeros of A is denoted by F . Hence,

F = {z ∈ D(A) : 0 ∈ A(z)} = A−1(0).

For each r > 0, we denote by Jr the resolvent of A, i.e., Jr = (I +rA)−1. Note
that if A is m-accretive, then Jr : E → E is nonexpansive and F (Jr) = F

for all r > 0. We also denote by Ar the Yosida approximation of A, i.e.,
Ar = 1

r (I − Jr). It is known that Jr is a nonexpansive mapping from X

to C := D(A) which will be assumed convex. One classical way to study
nonexpansive mappings is to use contractions to approximate a fixed point of
nonexpansive mappings ([2], [9]). More precisely, take t ∈ (0, 1) and define a
contraction Tt : C → C by

(1.1) Ttx = tu + (1− t)Tx, x ∈ C,

where u ∈ C is a fixed point. Banach’s Contraction Mapping Principle guar-
antees that Tt has a unique fixed point xt in C. It is unclear, in general, what
is the behavior of xt as t → 0, even if T has a fixed point. However, in the
case of T having a fixed point, Browder [2] proved that if X is a Hilbert space,
then xt converges strongly to a fixed point of T that is nearest to u. Reich [9]
extended Browder’s result to the setting of Banach spaces and proved that if
X is a uniformly smooth Banach space, then xt converges strongly to a fixed
point of T and the limit defines the (unique) sunny nonexpansive retraction
from C onto F (T ).

Recently, Kim and Xu [6] studied the sequence generated by the algorithm

(1.2) x0 ∈ C, xn+1 = αnu + (1− αn)Jrnxn, n ≥ 0,

and proved strongly convergence of scheme (1.2) in the framework of uni-
formly smooth Banach spaces and reflexive Banach spaces which have a weak
continuous duality map, respectively.
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Inspired and motivated by the iterative scheme (1.2) given by Kim and Xu
[6], this paper introduces the following iterative algorithm

(1.3)



ym−1
n = βm−1

n xn + (1− βm−1
n )Jrnxn,

...

y1
n = β1

nxn + (1− β1
n)Jrny1

n,

xn+1 = αnu + (1− αn)y1
n, n ≥ 0,

where Jrn is the resolvent of m-accretive operator A and u ∈ C is an arbitrary
(but fixed) element in C and sequences {αn} in (0,1), {βi

n}, i = 1, 2, . . . , m−1
in [0,1]. Under certain appropriate assumptions on the sequences {αn} , {βi

n}
and {rn}, that {xn} defined by the above iteration scheme converges to a zero
point of A is proved.

It is our purpose in this paper to introduce this composite iteration scheme
for approximating a zero point of accretive operators in the framework of uni-
formly smooth Banach spaces and the reflexive Banach spaces which have a
weak continuous duality map, respectively. We establish the strong conver-
gence of the composite iteration scheme {xn} defined by (1.3). The results
improve and extend results of Kim and Xu [6] and some others.

We need the following definitions and lemmas for the proof of our main
results.

The norm of E is said to be Gâteaux differentiable (and E is said to be
smooth) if

(1.4) lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x, y in its unit sphere U = {x ∈ E : ‖x‖ = 1}. It is said to be
uniformly Fréchet differentiable (and E is said to be uniformly smooth ) if the
limit in (1.4) is attained uniformly for (x, y) ∈ U × U .

Lemma 1.1. A Banach space E is uniformly smooth if and only if the duality
map J is the single-valued and norm-to-norm uniformly continuous on bounded
sets of E.

Lemma 1.2. (The resolvent Identity [1]) For λ > 0 and µ > 0 and x ∈ E,

Jλx = Jµ(
µ

λ
x + (1− µ

λ
)Jλx).
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Recall that if C and D are nonempty subsets of a Banach space E such
that C is nonempty closed convex and D ⊂ C, then a map Q : C → D is
sunny([5], [8]) provided Q(x + t(x − Q(x))) = Q(x) for all x ∈ C and t ≥ 0
whenever x + t(x − Q(x)) ∈ C. A sunny nonexpansive retraction is a sunny
retraction, which is also nonexpansive. Sunny nonexpansive retractions play
an important role in our argument. They are characterized as follows [4, 5,
8]: if E is a smooth Banach space, then Q : C → D is a sunny nonexpansive
retraction if and only if there holds the inequality

〈x−Qx, J(y −Qx)〉 ≤ 0 for all x ∈ C and y ∈ D.

Reich [9] showed that if E is uniformly smooth and if D is the fixed point set of
a nonexpansive mapping from C into itself, then there is a sunny nonexpansive
retraction from C onto D and it can be constructed as follows.

Lemma 1.3. (Reich [9]) Let E be a uniformly smooth Banach space and
let T : C → C be a nonexpansive mapping with a fixed point. For each
fixed u ∈ C and t ∈ (0, 1), the unique fixed point xt ∈ C of the contraction
C 3 x 7→ tu + (1 − t)tx converges strongly as t → 0 to a fixed point of T .
Define Q : C → F (T ) by Qu = s − limt→0 xt. Then Q is the unique sunny
nonexpansive retract from C onto F (T ); that is, Q satisfies the property

(1.5) 〈u−Qu, J(z −Qu)〉 ≤ 0, u ∈ C, z ∈ F (T ).

Recall that a gauge is a continuous strictly increasing function ϕ : [0,∞) →
[0,∞) such that ϕ(0) = 0 and ϕ(t) →∞ as t →∞. Associated to a gauge ϕ

is the duality map Jϕ : E → E∗ defined by

Jϕ(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖ϕ(‖x‖), ‖x∗‖ = ϕ(‖x‖)}, x ∈ E.

Following Browder [3], we say that a Banach space E has a weakly continuous
duality map if there exists a gauge ϕ for which the duality map Jϕ is single-
valued and weak-to-weak∗ sequentially continuous (i.e., if {xn} is a sequence
in E weakly convergent to a point x, then the sequence Jϕ(xn) converges
weak∗ly to Jϕ). It is known that lp has a weakly continuous duality map for
all 1 < p < ∞. Set

Φ(t) =
∫ t

0
ϕ(τ)dτ , t ≥ 0.
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Then

Jϕ(x) = ∂Φ(‖x‖), x ∈ E,

where ∂ denotes the sub-differential in the sense of convex analysis, The first
first part of the next lemma is an immediate consequence of the sub-differential
inequality an the proof of the second part can be found in [7]

Lemma 1.4. Assume that E has a weakly continuous duality map Jϕ with
gauge ϕ.

(i) For all x, y ∈ E, there holds the inequality

Φ(‖x + y‖) ≤ Φ(‖x‖) + 〈y, Jϕ(x + y)〉.

(ii) Assume a sequence xn in X is weakly convergent to a point x. The
there holds the identity

lim sup lim
n→∞

Φ(‖xn − y‖) = lim sup lim
n→∞

Φ(‖xn − x‖) + Φ(‖y − x‖), x, y ∈ E.

Notation: ” ⇀ ” stands for weak convergence and ” → ” for strong conver-
gence.

Lemma 1.5. [12] Let X be a reflexive Banach space and has a weakly con-
tinuous duality map Jϕ(x) with gauge ϕ. Let C be closed convex subset of X

and let T : C → C be a nonexpansive mapping. Fix u ∈ C and t ∈ (0, 1). Let
xt ∈ C be the unique solution in C to Eq.(1.1). Then T has a fixed point if
and only if xt remains bounded as t → 0+, and in this case, xt converges as
t → 0+ strongly to a fixed point of T .

Under the condition of Lemma 1.5, we define a map Q : C → F (T ) by

Q(u) := lim
t→0

xt, u ∈ C.

from [12 Theorem 3.2] we know Q is the sunny nonexpansive retraction from
C onto F (T ).

Lemma 1.6. In a Banach space E, there holds the inequality

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉, x, y ∈ E,

where j(x + y) ∈ J(x + y).
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Lemma 1.7. (Xu [10], [11]) Let {αn} be a sequence of nonnegative real num-
bers satisfying the condition

αn+1 ≤ (1− γn)αn + γnσn, n ≥ 0,

where {γn}∞n=0 ⊂ (0, 1) and {σn}∞n=0 such that

(i) limn→∞ γn = 0 and
∑∞

n=0 γn = ∞,

(ii) either lim supn→∞ σn ≤ 0 or
∑∞

n=0 |γnσn| < ∞.

Then {αn}∞n=0 converges to zero.

2. Main results

Theorem 2.1. Assume that E is a uniformly smooth Banach space and A

is an m-accretive operator in E. Given a point u ∈ C , the initial guess
x0 ∈ C is chosen arbitrarily and given sequences {αn}∞n=0 in (0,1) {βi

n}∞n=0,
i = 1, 2, . . . ,m− 1 in [0, 1], the following conditions are satisfied

(i)
∑∞

n=0 αn = ∞, limn→∞ αn = 0 and
∑∞

n=0 |αn+1 − αn| < ∞;

(ii) rn ≥ ε, ∀n ≥ 0 and β1
n + (1 + β1

n)
∑m−1

k=2

k∏
i=2

(1 − βi
n) < a <

1, for some a ∈ (0, 1);
(iii)

∑∞
n=0 |βi

n+1−βi
n| < ∞, for i = 1, · · · ,m−1 and

∑∞
n=0 |rn−rn−1| < ∞.

Let {xn}∞n=1 be the composite process defined by

ym−1
n = βm−1

n xn + (1− βm−1
n )Jrnxn,

...

y1
n = β1

nxn + (1− β1
n)Jrny1

n,

xn+1 = αnu + (1− αn)y1
n, n ≥ 0.

Then {xn}∞n=1 converges strongly to a zero point of A.

Proof. First we observe that {xn}∞n=0 is bounded. Indeed, taking a fixed
point p of T , we have

(2.1) ‖ym−1
n − p‖ ≤ βm−1

n ‖xn − p‖+ (1− βm−1
n )‖Jrnxn − p‖ ≤ ‖xn − p‖.
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It follows from (1.3) and (2.1) that

(2.2)

‖ym−2
n − p‖ ≤ βm−2

n ‖xn − p‖+ (1− βm−2
n )‖Jrnym−1

n − p‖

≤ βm−2
n ‖xn − p‖+ (1− βm−2

n )‖ym−1
n − p‖

≤ βm−2
n ‖xn − p‖+ (1− βm−2

n )‖xn − p‖

≤ ‖xn − p‖

In a similar way, we obtain

(2.3)

‖yi
n − p‖ ≤ βi

n‖xn − p‖+ (1− βi
n)‖Jrnyi+1

n − p‖

≤ βi
n‖xn − p‖+ (1− βi

n)‖yi+1
n − p‖

≤ βi
n‖xn − p‖+ (1− βi

n)‖xn − p‖

≤ ‖xn − p‖, for i = 1, · · · , m− 2.

Therefore, we have

‖xn+1 − p‖ = ‖αn(u− p) + (1− αn)(y1
n − p)‖

≤ αn‖u− p‖+ (1− αn)‖y1
n − p‖‖

≤ αn‖u− p‖+ (1− αn)‖xn − p‖‖

≤ max{‖u− p‖, ‖xn − p‖}.

Now, an induction yields

(2.4) ‖xn − p‖ ≤ max{‖u− p‖, ‖x0 − p‖}, n ≥ 0.

This implies that {xn} is bounded, so are {yi
n}, i = 1, . . . ,m− 1 . It follows

from (1.3) and condition (i) that

(2.5) ‖xn+1 − y1
n‖ ≤ αn‖u− y1

n‖ → 0, as n → 0.

Next, we claim that

(2.6) lim
n→∞

‖xn+1 − xn‖ = 0.

In order to prove (2.6), we considerym−1
n = βm−1

n xn + (1− βm−1
n )Jrnxn,

ym−1
n−1 = βm−1

n−1 xn−1 + (1− βm−1
n−1 )Jrn−1xn−1.



250 XIAOLONG QIN, SHIN MIN KANG AND MEIJUAN SHANG

It follows that

ym−1
n − ym−1

n−1 = (1− βm−1
n )(Jrnxn − Jrn−1xn−1) + βm−1

n (xn − xn−1)

+ (βm−1
n − βm−1

n−1 )(xn−1 − Jrn−1xn−1).

It follows that
(2.7)

‖ym−1
n − ym−1

n−1 ‖ ≤ (1− βm−1
n )‖Jrnxn − Jrn−1xn−1‖+ βm−1

n ‖xn − xn−1‖

+ |βm−1
n − βm−1

n−1 |‖xn−1 − Jrn−1xn−1‖.

From Lemma 1.2, the resolvent identity implies that

Jrnxn = Jrn−1(
rn−1

rn
xn + (1− rn−1

rn
)Jrnxn).

If rn−1 ≤ rn, which in turn implies that
(2.8)

‖Jrnxn − Jrn−1xn−1‖ ≤ ‖rn−1

rn
xn + (1− rn−1

rn
)Jrnxn − xn−1‖

≤ ‖rn−1

rn
(xn − xn−1) + (1− rn−1

rn
)(Jrnxn − xn−1)‖

≤ ‖xn − xn−1‖+ (
rn − rn−1

rn
)‖Jrnxn − xn−1‖

≤ ‖xn − xn−1‖+ (
rn − rn−1

ε
)‖Jrnxn − xn−1‖.

Substitute (2.8) into (2.7) yields that

(2.9)

‖ym−1
n − ym−1

n−1 ‖

≤ (1− βm−1
n )(‖xn − xn−1‖+ (

rn − rn−1

ε
)‖Jrnxn − xn−1‖)

+ βm−1
n ‖xn − xn−1‖+ |βm−1

n − βm−1
n−1 |‖xn−1 − Jrn−1xn−1‖

≤ ‖xn − xn−1‖+ M1(|rn − rn−1|+ |βm−1
n − βm−1

n−1 |),

where M1 is an appropriate constant such that

M1 > max{‖Jrnxn − xn−1‖
ε

, ‖xn−1 − Jrn−1xn−1‖}.

Similarly, From (1.3) we obtainym−2
n = βm−2

n xn + (1− βm−2
n )Jrnym−1

n ,

ym−2
n−1 = βm−2

n−1 xn−1 + (1− βm−2
n−1 )Jrn−1y

m−1
n−1 .
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It follows that

ym−2
n − ym−2

n−1 = (1− βm−2
n )(Jrnym−1

n − Jrn−1y
m−1
n−1 ) + βm−2

n (xn − xn−1)

+ (βm−2
n − βm−2

n−1 )(xn−1 − Jrn−1y
m−1
n−1 ),

which yields that

(2.10)

‖ym−2
n − ym−2

n−1 ‖

≤ (1− βm−2
n )‖Jrnym−1

n − Jrn−1y
m−1
n−1 ‖+ βm−2

n ‖xn − xn−1‖

+ |βm−2
n − βm−2

n−1 |‖xn−1 − Jrn−1y
m−1
n−1 ‖.

Similar to (2.8), we can get
(2.11)

‖Jrnym−1
n − Jrn−1y

m−1
n−1 ‖ ≤ ‖ym−1

n − ym−1
n−1 ‖+ (

rn − rn−1

ε
)‖Jrnym−1

n − ym−1
n−1 ‖.

Combine (2.9) with (2.11) yields that

(2.12)

‖Jrnym−1
n − Jrn−1y

m−1
n−1 ‖

≤ ‖xn − xn−1‖+ M1(|rn − rn−1|+ |βm−1
n − βm−1

n−1 |)

+ (
rn − rn−1

ε
)‖Jrnym−1

n − ym−1
n−1 ‖.

Substituting (2.12) into (2.10), we obtain
(2.13)

‖ym−2
n − ym−2

n−1 ‖

≤ (1− βm−2
n )(‖xn − xn−1‖+ M1(|rn − rn−1|+ |βm−1

n − βm−1
n−1 |)

+ (
rn − rn−1

ε
)‖Jrnym−1

n − ym−1
n−1 ‖) + βm−2

n ‖xn − xn−1‖

+ |βm−2
n − βm−2

n−1 |‖xn−1 − Jrn−1y
m−1
n−1 ‖

≤ ‖xn − xn−1‖+ M2(2|rn − rn−1|+ |βm−1
n − βm−1

n−1 |+ |βm−2
n − βm−2

n−1 |),

where M2 is an appropriate constant such that

M2 > max{
‖Jrnym−1

n − ym−1
n−1 ‖

ε
, ‖xn−1 − Jrn−1y

m−1
n−1 ‖, M1}.

In this fashion, it is easy to get that
(2.14)

‖ym−i
n − ym−i

n−1 ‖ ≤ ‖xn − xn−1‖+ Mi(
i∑

j=1

|βm−j
n − βm−j

n−1 |+ i|rn − rn−1|),
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where Mi is an appropriate constant such that

Mi > max{
‖Jrny

m−(i−1)
n − y

m−(m−i)
n−1 ‖

ε
, ‖xn−1 − Jrn−1y

m−(i−1)
n−1 ‖, Mi−1}

for all 2 ≤ i ≤ (m− 1). Therefore, one can easily see that

(2.15) ‖y1
n − y1

n−1‖ ≤ ‖xn − xn−1‖

+Mm−1(
m−1∑
j=1

|βm−j
n − βm−j

n−1 |+ (m− 1)|rn − rn−1|),

On the other hand, observe that

xn+1 = αnu + (1− αn)y1
n, xn = αn−1u + (1− αn−1)y1

n−1.

It follows that

(2.16) xn+1 − xn = (1− αn)(y1
n − y1

n−1) + (αn − αn−1)(u− y1
n−1).

It follows from (2.15) that
(2.17)
‖xn+1 − xn‖

≤ (1− αn)‖y1
n − y1

n−1‖+ |αn − αn−1|‖u− y1
n−1‖

≤ (1− αn)(‖xn − xn−1‖+ Mm−1(
m−1∑
j=1

|βm−j
n − βm−j

n−1 |+ (m− 1)|rn − rn−1|))

+ |αn − αn−1|‖u− y1
n−1‖

≤ (1− αn)‖xn − xn−1‖

+ M(|αn − αn−1|+
m−1∑
j=1

|βm−j
n − βm−j

n−1 |+ (m− 1)|rn − rn−1|),

where M is an appropriate constant such that

M ≥ max{‖u− y1
n−1‖, Mm−1}

for all n. Similarly we can prove (2.12) if rn−1 ≥ rn, by assumptions(i)-(iii),
we have that

lim
n→∞

αn = 0,

∞∑
n=1

αn = ∞,
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and
∞∑

n=1

(|αn − αn−1|+
m−1∑
j=1

|βm−j
n − βm−j

n−1 |+ (m− 1)|rn − rn−1|) < ∞.

Hence, Lemma 5 is applicable to (2.17) and we obtain

(2.18) ‖xn+1 − xn‖ → 0, as n →∞

On the other hand, from (1.3) we have

‖y1
n − Jrnxn‖ ≤ ‖y1

n − Jrny2
n‖+ ‖Jrny2

n − Jrnxn‖

≤ β1
n‖xn − Jrny2

n‖+ |y2
n − xn‖

≤ β1
n‖xn − Jrnxn‖+ β1

n‖Jrnxn − Jrny2
n‖+ |y2

n − xn‖

≤ β1
n‖xn − Jrnxn‖+ β1

n‖xn − y2
n‖+ |y2

n − xn‖

≤ β1
n‖xn − Jrnxn‖+ (1 + β1

n)‖xn − y2
n‖

≤ β1
n‖xn − Jrnxn‖+ (1 + β1

n)(1− β2
n)‖xn − Jrny3

n‖
...

≤ (β1
n + (1 + β1

n)
m−1∑
k=2

k∏
i=2

(1− βi
n))‖xn − Jrnxn‖.

It follows that

(2.19)

‖Jrnxn − xn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − y1
n‖+ ‖y1

n − Jrnxn‖

≤ ‖xn − xn+1‖+ ‖xn+1 − y1
n‖

+ (β1
n + (1 + β1

n)
m−1∑
k=2

k∏
i=2

(1− βi
n))‖xn − Jrnxn‖.

From condition (ii), (2.5) and (2.18) we obtain

(2.20) lim
n→∞

‖Jrnxn − xn‖ = 0.

Take a fixed number r such that ε > r > 0, from Lemma 1.2 we obtain

(2.21)

‖Jrnxn − Jrxn‖ = ‖Jr(
r

rn
xn + (1− r

rn
)Jrnxn)− Jrxn‖

≤ (1− r

rn
)‖xn − Jrnxn‖

≤ ‖xn − Jrnxn‖.
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Therefore, we have

(2.22)

‖xn − Jrxn‖ ≤ ‖xn − Jrnxn‖+ ‖Jrnxn − Jrxn‖

≤ ‖Jrnxn − xn‖+ ‖Jrnxn − xn‖

≤ 2‖Jrnxn − xn‖.

Hence, we obtain

lim
n→∞

‖xn − Jrxn‖ = 0.

Since in a uniformly smooth Banach space, the sunny nonexpansive retract Q

from E onto the fixed point set F (Jr)(= F = A−1(0)) of Jr is unique, it must
be obtained from Lemma 1.3. Namely,

Qu = s− lim
t→0

zt, u ∈ E,

where t ∈ (0, 1) and zt solves the fixed point equation

zt = tu + (1− t)Jrzt.

Next, we claim that

(2.23) lim sup
n→∞

〈u−Q(u), J(xn −Q(u))〉 ≤ 0.

Thus we have

‖zt − xn‖ = ‖(1− t)(Jrzt − xn) + t(u− xn)‖.

It follows from Lemma 1.6 that

(2.24)

‖zt − xn‖2 ≤ (1− t)2‖Jrzt − xn‖2 + 2t〈u− xn, J(zt − xn)〉

≤ (1− 2t + t2)‖zt − xn‖2 + fn(t)

+ 2t〈u− zt, J(zt − xn)〉+ 2t‖zt − xn‖2,

where

(2.25) fn(t) = (2‖zt − xn‖+ ‖xn − Jrxn‖)‖xn − Jrxn‖ → 0, as n → 0.

It follows that

(2.26) 〈zt − u, J(zt − xn)〉 ≤ t

2
‖zt − xn‖2 +

1
2t

fn(t).

Letting n →∞ in (2.26) and noting (2.25), we obtain

(2.27) lim sup
n→∞

〈zt − u, J(zt − xn)〉 ≤ t

2
M,
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where M > 0 is an appropriate constant such that M ≥ ‖zt − xn‖2 for all
t ∈ (0, 1) and n ≥ 1. Letting t → 0 and from (2.27), we have

lim sup
t→0

lim sup
n→∞

〈zt − u, J(zt − xn)〉 ≤ 0.

So, for any ε > 0, there exists a positive number δ1 such that, for t ∈ (0, δ1)
we get

(2.28) lim sup
n→∞

〈zt − u, J(zt − xn)〉 ≤ ε

2
.

On the other hand, since zt → q as t → 0, from Lemma 1.1, there exists δ2 > 0
such that, for t ∈ (0, δ2) we have

|〈u− q, J(xn − q)〉 − 〈zt − u, J(zt − xn)〉|

≤ |〈u− q, J(xn − q)〉 − 〈u− q, J(xn − zt)〉|

+ |〈u− q, J(xn − zt)〉 − 〈zt − u, J(zt − xn)〉|

≤ |〈u− q, J(xn − q)− J(xn − zt)〉|+ |〈zt − q, J(xn − zt)〉|

≤ ‖u− q‖‖J(xn − q)− J(xn − zt)‖+ ‖zt − q‖‖xn − zt‖ <
ε

2
.

Choosing δ = min{δ1, δ2},∀t ∈ (0, δ), we have

〈u−Q(u), J(xn −Q(u))〉 ≤ 〈zt − u, J(zt − xn)〉+
ε

2
.

That is,

lim sup
n→∞

〈u−Q(u), J(xn −Q(u))〉 ≤ lim sup
n→∞

〈zt − u, J(zt − xn)〉+
ε

2
.

It follows from (2.28) that

lim sup
n→∞

〈u−Q(u), J(xn −Q(u))〉 ≤ ε.

Since ε is chosen arbitrarily, we have

(2.29) lim sup
n→∞

〈u−Q(u), J(xn −Q(u))〉 ≤ 0.

Finally, we show that xn → Q(u) strongly and this concludes the proof. Ob-
serve that

‖xn+1 −Q(u)‖2 = ‖(1− αn)(yn −Q(u)) + αn(u−Q(u))‖2

≤ (1− αn)2‖yn −Q(u)‖2 + 2αn〈u−Q(u), J(xn+1 −Q(u))〉

≤ (1− αn)‖xn −Q(u)‖2 + 2αn〈u−Q(u), J(xn+1 −Q(u))〉.
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Now we apply Lemma 1.7 and use (2.29) to see that ‖xn − Q(u)‖ → 0 as
n →∞.

Theorem 2.2. Suppose that E is reflexive and has a weakly continuous duality
map Jϕ with gauge ϕ. Suppose that A is an m-accretive operator in X such
that C = D(A) is convex, {xn}∞n=0 {αn}∞n=0 and {βi

n}∞n=0, i = 1, 2, . . . , m−1
are as Theorem 2.1. Then {xn}∞n=1 converges strongly to a zero point of A.

Proof. We only include the differences. From Theorem 2.1 we obtain

‖xn+1 − Jrnxn‖

= ‖xn+1 − y1
n‖+ ‖y1

n − Jrnxn‖

≤ αn‖u− yn‖+ (β1
n + (1 + β1

n)
m−1∑
k=2

k∏
i=2

(1− βi
n))‖xn − Jrnxn‖.

That is,

(2.30) lim
n→∞

‖xn+1 − Jrnxn‖ = 0.

We next prove that

(2.31) lim sup
n→∞

〈u−Q(u), Jϕ(xn −Q(u)〉 ≤ 0.

By Lemma 1.5, we have the sunny nonexpansive retraction Q : C → F (T ).
Take a subsequence {xnk

} of {xn} such that

(2.32) lim sup
n→∞

〈u−Q(u), Jϕ(xn −Q(u)〉 = lim
k→∞

〈u−Q(u), Jϕ(xnk
−Q(u)〉.

Since X is reflexive, we may further assume that xnk
⇀ x̃. Moreover, since

‖xn+1 − Jrn‖ → 0,

we obtain

Jrnk−1xnk−1 ⇀ x̃.

Taking the limit as k →∞ in the relation

[Jrnk−1xnk−1, Arnk−1xnk−1] ∈ A,

we get [x̃, 0] ∈ A. That is, x̃ ∈ F. Hence by (2.32) and (1.5) we have

lim sup
n→∞

〈u−Q(u), Jϕ(xn −Q(u))〉 = 〈u−Q(u), Jϕ(x̃−Q(u))〉 ≤ 0.
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That is (2.31) holds. Finally to prove that xn → p. It follows from (2.2) and
(2.3) that

(2.33)

Φ(‖y1
n − p‖) = Φ(‖β1

n(xn − p) + (1− β1
n)(Jrny2

n − p)‖)

≤ Φ(‖βn‖xn − p‖+ (1− βn)‖Jrny2
n − p‖)

≤ Φ(‖xn − p‖).

Therefore, from (2.33) we obtain

Φ(‖xn+1 − p‖) = Φ(‖αn(u− p) + (1− αn)(y1
n − p)‖)

≤ Φ((1− αn)‖y1
n − p‖) + αn〈u− p, Jϕ(xn+1 − p)〉

≤ (1− αn)Φ(‖y1
n − p‖) + αn〈u− p, Jϕ(xn+1 − p)〉

≤ (1− αn)Φ(‖xn − p‖) + αn〈u− p, Jϕ(xn+1 − p)〉.

An application of Lemma 1.3 yields that Φ(‖xn−p‖) → 0; that is ‖xn−p‖ → 0
as n →∞. This completes the proof.

Remark 2.3. Theorem 2.1 and Theorem 2.2 improve Kim and Xu [6] and
Xu [12] as a special case. We note that our theorems in this paper carry over
trivially to the so-called viscosity approximation methods.
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