STRONG CONVERGENCE THEOREMS FOR ACCRETIVE OPERATORS IN BANACH SPACES

XIAOLONG QIN*, SHIN MIN KANG** AND MEIJUAN SHANG***
*Department of Mathematics and the RINS
Gyeongsang National University
Chinju 660-701, Korea
E-mail: ljjhqxl@yahoo.com.cn
** Department of Mathematics and the RINS
Gyeongsang National University
Chinju 660-701, Korea
E-mail: smkang@nongae.gsnu.ac.kr
*** Department of Mathematics Shijiazhuang University, Shijiazhuang 050035, China
E-mail: meijuanshang@yahoo.com.cn

Abstract

In this paper, we introduce a composite iteration scheme for approximating a zero point of accretive operators in the framework of uniformly smooth Banach spaces and reflexive Banach spaces which have a weakly continuous duality mapping, respectively. Our results improve and extend the corresponding results announced by many others. Key Words and Phrases: Nonexpansive mapping, sunny and nonexpansive retraction, accretive operator.

2000 Mathematics Subject Classification: $47 \mathrm{H} 09,47 \mathrm{H} 10$.

1. Introduction and Preliminaries

Let E be a real Banach space. Recall that a (possibly multivalued) operator A with domain $D(A)$ and range $R(A)$ in E is accretive, if for each $x_{i} \in D(A)$ and $y_{i} \in A x_{i}(i=1,2)$, there exists a $j\left(x_{2}-x_{1}\right) \in J\left(x_{2}-x_{1}\right)$ such that

$$
\left\langle y_{2}-y_{1}, j\left(x_{2}-x_{1}\right)\right\rangle \geq 0,
$$

where J is the duality map from E to the dual space E^{*} give by

$$
J(x)=\left\{x^{*} \in E^{*}:\left\langle x, x^{*}\right\rangle=\left\|x^{2}\right\|=\left\|x^{*}\right\|^{2}\right\}, \quad x \in E .
$$

Let C be a nonempty closed convex subset of E, and $T: C \rightarrow C$ a mapping. Recall that T is nonexpansive if

$$
\|T x-T y\| \leq\|x-y\|, \quad \text { for all } x, y \in C
$$

A point $x \in C$ is a fixed point of T provided $T x=x$. Denote by $F(T)$ the set of fixed points of T; that is, $F(T)=\{x \in C: T x=x\}$. An accretive operator A is m-accretive if $R(I+r A)=E$ for each $r>0$. Throughout this article we always assume that A is m-accretive and has a zero (i.e., the inclusion $0 \in A(z)$ is solvable). The set of zeros of A is denoted by F. Hence,

$$
F=\{z \in D(A): 0 \in A(z)\}=A^{-1}(0)
$$

For each $r>0$, we denote by J_{r} the resolvent of A, i.e., $J_{r}=(I+r A)^{-1}$. Note that if A is m-accretive, then $J_{r}: E \rightarrow E$ is nonexpansive and $F\left(J_{r}\right)=F$ for all $r>0$. We also denote by A_{r} the Yosida approximation of A, i.e., $A_{r}=\frac{1}{r}\left(I-J_{r}\right)$. It is known that J_{r} is a nonexpansive mapping from X to $C:=\overline{D(A)}$ which will be assumed convex. One classical way to study nonexpansive mappings is to use contractions to approximate a fixed point of nonexpansive mappings ([2], [9]). More precisely, take $t \in(0,1)$ and define a contraction $T_{t}: C \rightarrow C$ by

$$
\begin{equation*}
T_{t} x=t u+(1-t) T x, \quad x \in C \tag{1.1}
\end{equation*}
$$

where $u \in C$ is a fixed point. Banach's Contraction Mapping Principle guarantees that T_{t} has a unique fixed point x_{t} in C. It is unclear, in general, what is the behavior of x_{t} as $t \rightarrow 0$, even if T has a fixed point. However, in the case of T having a fixed point, Browder [2] proved that if X is a Hilbert space, then x_{t} converges strongly to a fixed point of T that is nearest to u. Reich [9] extended Browder's result to the setting of Banach spaces and proved that if X is a uniformly smooth Banach space, then x_{t} converges strongly to a fixed point of T and the limit defines the (unique) sunny nonexpansive retraction from C onto $F(T)$.

Recently, Kim and Xu [6] studied the sequence generated by the algorithm

$$
\begin{equation*}
x_{0} \in C, \quad x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right) J_{r_{n}} x_{n}, \quad n \geq 0 \tag{1.2}
\end{equation*}
$$

and proved strongly convergence of scheme (1.2) in the framework of uniformly smooth Banach spaces and reflexive Banach spaces which have a weak continuous duality map, respectively.

Inspired and motivated by the iterative scheme (1.2) given by Kim and Xu [6], this paper introduces the following iterative algorithm

$$
\left\{\begin{array}{l}
y_{n}^{m-1}=\beta_{n}^{m-1} x_{n}+\left(1-\beta_{n}^{m-1}\right) J_{r_{n}} x_{n} \tag{1.3}\\
\quad \vdots \\
y_{n}^{1}=\beta_{n}^{1} x_{n}+\left(1-\beta_{n}^{1}\right) J_{r_{n}} y_{n}^{1} \\
x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right) y_{n}^{1}, \quad n \geq 0
\end{array}\right.
$$

where $J_{r_{n}}$ is the resolvent of m-accretive operator A and $u \in C$ is an arbitrary (but fixed) element in C and sequences $\left\{\alpha_{n}\right\}$ in (0,1), $\left\{\beta_{n}^{i}\right\}, i=1,2, \ldots, m-1$ in $[0,1]$. Under certain appropriate assumptions on the sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n}^{i}\right\}$ and $\left\{r_{n}\right\}$, that $\left\{x_{n}\right\}$ defined by the above iteration scheme converges to a zero point of A is proved.

It is our purpose in this paper to introduce this composite iteration scheme for approximating a zero point of accretive operators in the framework of uniformly smooth Banach spaces and the reflexive Banach spaces which have a weak continuous duality map, respectively. We establish the strong convergence of the composite iteration scheme $\left\{x_{n}\right\}$ defined by (1.3). The results improve and extend results of Kim and $\mathrm{Xu}[6]$ and some others.

We need the following definitions and lemmas for the proof of our main results.

The norm of E is said to be Gâteaux differentiable (and E is said to be smooth) if

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t} \tag{1.4}
\end{equation*}
$$

exists for each x, y in its unit sphere $U=\{x \in E:\|x\|=1\}$. It is said to be uniformly Fréchet differentiable (and E is said to be uniformly smooth) if the limit in (1.4) is attained uniformly for $(x, y) \in U \times U$.

Lemma 1.1. A Banach space E is uniformly smooth if and only if the duality map J is the single-valued and norm-to-norm uniformly continuous on bounded sets of E.

Lemma 1.2. (The resolvent Identity [1]) For $\lambda>0$ and $\mu>0$ and $x \in E$,

$$
J_{\lambda} x=J_{\mu}\left(\frac{\mu}{\lambda} x+\left(1-\frac{\mu}{\lambda}\right) J_{\lambda} x\right)
$$

Recall that if C and D are nonempty subsets of a Banach space E such that C is nonempty closed convex and $D \subset C$, then a map $Q: C \rightarrow D$ is sunny $([5],[8])$ provided $Q(x+t(x-Q(x)))=Q(x)$ for all $x \in C$ and $t \geq 0$ whenever $x+t(x-Q(x)) \in C$. A sunny nonexpansive retraction is a sunny retraction, which is also nonexpansive. Sunny nonexpansive retractions play an important role in our argument. They are characterized as follows [4, 5, 8]: if E is a smooth Banach space, then $Q: C \rightarrow D$ is a sunny nonexpansive retraction if and only if there holds the inequality

$$
\langle x-Q x, J(y-Q x)\rangle \leq 0 \text { for all } x \in C \text { and } y \in D
$$

Reich [9] showed that if E is uniformly smooth and if D is the fixed point set of a nonexpansive mapping from C into itself, then there is a sunny nonexpansive retraction from C onto D and it can be constructed as follows.

Lemma 1.3. (Reich [9]) Let E be a uniformly smooth Banach space and let $T: C \rightarrow C$ be a nonexpansive mapping with a fixed point. For each fixed $u \in C$ and $t \in(0,1)$, the unique fixed point $x_{t} \in C$ of the contraction $C \ni x \mapsto t u+(1-t) t x$ converges strongly as $t \rightarrow 0$ to a fixed point of T. Define $Q: C \rightarrow F(T)$ by $Q u=s-\lim _{t \rightarrow 0} x_{t}$. Then Q is the unique sunny nonexpansive retract from C onto $F(T)$; that is, Q satisfies the property

$$
\begin{equation*}
\langle u-Q u, J(z-Q u)\rangle \leq 0, \quad u \in C, z \in F(T) \tag{1.5}
\end{equation*}
$$

Recall that a gauge is a continuous strictly increasing function $\varphi:[0, \infty) \rightarrow$ $[0, \infty)$ such that $\varphi(0)=0$ and $\varphi(t) \rightarrow \infty$ as $t \rightarrow \infty$. Associated to a gauge φ is the duality map $J_{\varphi}: E \rightarrow E^{*}$ defined by

$$
J_{\varphi}(x)=\left\{x^{*} \in E^{*}:\left\langle x, x^{*}\right\rangle=\|x\| \varphi(\|x\|),\left\|x^{*}\right\|=\varphi(\|x\|)\right\}, x \in E
$$

Following Browder [3], we say that a Banach space E has a weakly continuous duality map if there exists a gauge φ for which the duality map J_{φ} is singlevalued and weak-to-weak* sequentially continuous (i.e., if $\left\{x_{n}\right\}$ is a sequence in E weakly convergent to a point x, then the sequence $J_{\varphi}\left(x_{n}\right)$ converges weak ${ }^{*}$ ly to J_{φ}). It is known that l^{p} has a weakly continuous duality map for all $1<p<\infty$. Set

$$
\Phi(t)=\int_{0}^{t} \varphi(\tau) d_{\tau}, \quad t \geq 0
$$

Then

$$
J_{\varphi}(x)=\partial \Phi(\|x\|), \quad x \in E
$$

where ∂ denotes the sub-differential in the sense of convex analysis, The first first part of the next lemma is an immediate consequence of the sub-differential inequality an the proof of the second part can be found in [7]

Lemma 1.4. Assume that E has a weakly continuous duality map J_{φ} with gauge φ.
(i) For all $x, y \in E$, there holds the inequality

$$
\Phi(\|x+y\|) \leq \Phi(\|x\|)+\left\langle y, J_{\varphi}(x+y)\right\rangle
$$

(ii) Assume a sequence x_{n} in X is weakly convergent to a point x. The there holds the identity
$\limsup \lim _{n \rightarrow \infty} \Phi\left(\left\|x_{n}-y\right\|\right)=\lim \sup \lim _{n \rightarrow \infty} \Phi\left(\left\|x_{n}-x\right\|\right)+\Phi(\|y-x\|), x, y \in E$.
Notation: " \rightharpoonup stands for weak convergence and $" \rightarrow$ " for strong convergence.
Lemma 1.5. [12] Let X be a reflexive Banach space and has a weakly continuous duality map $J_{\varphi}(x)$ with gauge φ. Let C be closed convex subset of X and let $T: C \rightarrow C$ be a nonexpansive mapping. Fix $u \in C$ and $t \in(0,1)$. Let $x_{t} \in C$ be the unique solution in C to Eq.(1.1). Then T has a fixed point if and only if x_{t} remains bounded as $t \rightarrow 0^{+}$, and in this case, x_{t} converges as $t \rightarrow 0^{+}$strongly to a fixed point of T.

Under the condition of Lemma 1.5, we define a map $Q: C \rightarrow F(T)$ by

$$
Q(u):=\lim _{t \rightarrow 0} x_{t}, \quad u \in C
$$

from [12 Theorem 3.2] we know Q is the sunny nonexpansive retraction from C onto $F(T)$.

Lemma 1.6. In a Banach space E, there holds the inequality

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, j(x+y)\rangle, \quad x, y \in E
$$

where $j(x+y) \in J(x+y)$.

Lemma 1.7. ($\mathrm{Xu}[10],[11])$ Let $\left\{\alpha_{n}\right\}$ be a sequence of nonnegative real numbers satisfying the condition

$$
\alpha_{n+1} \leq\left(1-\gamma_{n}\right) \alpha_{n}+\gamma_{n} \sigma_{n}, \quad n \geq 0
$$

where $\left\{\gamma_{n}\right\}_{n=0}^{\infty} \subset(0,1)$ and $\left\{\sigma_{n}\right\}_{n=0}^{\infty}$ such that
(i) $\lim _{n \rightarrow \infty} \gamma_{n}=0$ and $\sum_{n=0}^{\infty} \gamma_{n}=\infty$,
(ii) either $\lim \sup _{n \rightarrow \infty} \sigma_{n} \leq 0$ or $\sum_{n=0}^{\infty}\left|\gamma_{n} \sigma_{n}\right|<\infty$.

Then $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ converges to zero.

2. Main ReSults

Theorem 2.1. Assume that E is a uniformly smooth Banach space and A is an m-accretive operator in E. Given a point $u \in C$, the initial guess $x_{0} \in C$ is chosen arbitrarily and given sequences $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ in $(0,1)\left\{\beta_{n}^{i}\right\}_{n=0}^{\infty}$, $i=1,2, \ldots, m-1$ in $[0,1]$, the following conditions are satisfied
(i) $\sum_{n=0}^{\infty} \alpha_{n}=\infty, \lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=0}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$;
(ii) $r_{n} \geq \epsilon, \forall n \geq 0$ and $\beta_{n}^{1}+\left(1+\beta_{n}^{1}\right) \sum_{k=2}^{m-1} \prod_{i=2}^{k}\left(1-\beta_{n}^{i}\right)<a<$ 1 , for some $a \in(0,1)$;
(iii) $\sum_{n=0}^{\infty}\left|\beta_{n+1}^{i}-\beta_{n}^{i}\right|<\infty$, for $i=1, \cdots, m-1$ and $\sum_{n=0}^{\infty}\left|r_{n}-r_{n-1}\right|<\infty$. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be the composite process defined by

$$
\left\{\begin{array}{l}
y_{n}^{m-1}=\beta_{n}^{m-1} x_{n}+\left(1-\beta_{n}^{m-1}\right) J_{r_{n}} x_{n} \\
\vdots \\
y_{n}^{1}=\beta_{n}^{1} x_{n}+\left(1-\beta_{n}^{1}\right) J_{r_{n}} y_{n}^{1} \\
x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right) y_{n}^{1}, \quad n \geq 0
\end{array}\right.
$$

Then $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges strongly to a zero point of A.
Proof. First we observe that $\left\{x_{n}\right\}_{n=0}^{\infty}$ is bounded. Indeed, taking a fixed point p of T, we have

$$
\begin{equation*}
\left\|y_{n}^{m-1}-p\right\| \leq \beta_{n}^{m-1}\left\|x_{n}-p\right\|+\left(1-\beta_{n}^{m-1}\right)\left\|J_{r_{n}} x_{n}-p\right\| \leq\left\|x_{n}-p\right\| \tag{2.1}
\end{equation*}
$$

It follows from (1.3) and (2.1) that

$$
\begin{align*}
\left\|y_{n}^{m-2}-p\right\| & \leq \beta_{n}^{m-2}\left\|x_{n}-p\right\|+\left(1-\beta_{n}^{m-2}\right)\left\|J_{r_{n}} y_{n}^{m-1}-p\right\| \\
& \leq \beta_{n}^{m-2}\left\|x_{n}-p\right\|+\left(1-\beta_{n}^{m-2}\right)\left\|y_{n}^{m-1}-p\right\| \\
& \leq \beta_{n}^{m-2}\left\|x_{n}-p\right\|+\left(1-\beta_{n}^{m-2}\right)\left\|x_{n}-p\right\| \tag{2.2}\\
& \leq\left\|x_{n}-p\right\|
\end{align*}
$$

In a similar way, we obtain

$$
\begin{align*}
\left\|y_{n}^{i}-p\right\| & \leq \beta_{n}^{i}\left\|x_{n}-p\right\|+\left(1-\beta_{n}^{i}\right)\left\|J_{r_{n}} y_{n}^{i+1}-p\right\| \\
& \leq \beta_{n}^{i}\left\|x_{n}-p\right\|+\left(1-\beta_{n}^{i}\right)\left\|y_{n}^{i+1}-p\right\| \tag{2.3}\\
& \leq \beta_{n}^{i}\left\|x_{n}-p\right\|+\left(1-\beta_{n}^{i}\right)\left\|x_{n}-p\right\| \\
& \leq\left\|x_{n}-p\right\|, \quad \text { for } i=1, \cdots, m-2
\end{align*}
$$

Therefore, we have

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| & =\left\|\alpha_{n}(u-p)+\left(1-\alpha_{n}\right)\left(y_{n}^{1}-p\right)\right\| \\
& \leq \alpha_{n}\|u-p\|+\left(1-\alpha_{n}\right)\left\|y_{n}^{1}-p\right\| \| \\
& \leq \alpha_{n}\|u-p\|+\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\| \| \\
& \leq \max \left\{\|u-p\|,\left\|x_{n}-p\right\|\right\}
\end{aligned}
$$

Now, an induction yields

$$
\begin{equation*}
\left\|x_{n}-p\right\| \leq \max \left\{\|u-p\|, \quad\left\|x_{0}-p\right\|\right\}, \quad n \geq 0 \tag{2.4}
\end{equation*}
$$

This implies that $\left\{x_{n}\right\}$ is bounded, so are $\left\{y_{n}^{i}\right\}, \quad i=1, \ldots, m-1$. It follows from (1.3) and condition (i) that

$$
\begin{equation*}
\left\|x_{n+1}-y_{n}^{1}\right\| \leq \alpha_{n}\left\|u-y_{n}^{1}\right\| \rightarrow 0, \quad \text { as } n \rightarrow 0 \tag{2.5}
\end{equation*}
$$

Next, we claim that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \tag{2.6}
\end{equation*}
$$

In order to prove (2.6), we consider

$$
\left\{\begin{array}{l}
y_{n}^{m-1}=\beta_{n}^{m-1} x_{n}+\left(1-\beta_{n}^{m-1}\right) J_{r_{n}} x_{n} \\
y_{n-1}^{m-1}=\beta_{n-1}^{m-1} x_{n-1}+\left(1-\beta_{n-1}^{m-1}\right) J_{r_{n-1}} x_{n-1}
\end{array}\right.
$$

It follows that

$$
\begin{aligned}
y_{n}^{m-1}-y_{n-1}^{m-1}= & \left(1-\beta_{n}^{m-1}\right)\left(J_{r_{n}} x_{n}-J_{r_{n-1}} x_{n-1}\right)+\beta_{n}^{m-1}\left(x_{n}-x_{n-1}\right) \\
& +\left(\beta_{n}^{m-1}-\beta_{n-1}^{m-1}\right)\left(x_{n-1}-J_{r_{n-1}} x_{n-1}\right)
\end{aligned}
$$

It follows that

$$
\begin{align*}
\left\|y_{n}^{m-1}-y_{n-1}^{m-1}\right\| \leq & \left(1-\beta_{n}^{m-1}\right)\left\|J_{r_{n}} x_{n}-J_{r_{n-1}} x_{n-1}\right\|+\beta_{n}^{m-1}\left\|x_{n}-x_{n-1}\right\| \tag{2.7}\\
& +\left|\beta_{n}^{m-1}-\beta_{n-1}^{m-1}\right|\left\|x_{n-1}-J_{r_{n-1}} x_{n-1}\right\|
\end{align*}
$$

From Lemma 1.2, the resolvent identity implies that

$$
J_{r_{n}} x_{n}=J_{r_{n-1}}\left(\frac{r_{n-1}}{r_{n}} x_{n}+\left(1-\frac{r_{n-1}}{r_{n}}\right) J_{r_{n}} x_{n}\right)
$$

If $r_{n-1} \leq r_{n}$, which in turn implies that

$$
\begin{align*}
\left\|J_{r_{n}} x_{n}-J_{r_{n-1}} x_{n-1}\right\| & \leq\left\|\frac{r_{n-1}}{r_{n}} x_{n}+\left(1-\frac{r_{n-1}}{r_{n}}\right) J_{r_{n}} x_{n}-x_{n-1}\right\| \tag{2.8}\\
& \leq\left\|\frac{r_{n-1}}{r_{n}}\left(x_{n}-x_{n-1}\right)+\left(1-\frac{r_{n-1}}{r_{n}}\right)\left(J_{r_{n}} x_{n}-x_{n-1}\right)\right\| \\
& \leq\left\|x_{n}-x_{n-1}\right\|+\left(\frac{r_{n}-r_{n-1}}{r_{n}}\right)\left\|J_{r_{n}} x_{n}-x_{n-1}\right\| \\
& \leq\left\|x_{n}-x_{n-1}\right\|+\left(\frac{r_{n}-r_{n-1}}{\epsilon}\right)\left\|J_{r_{n}} x_{n}-x_{n-1}\right\|
\end{align*}
$$

Substitute (2.8) into (2.7) yields that

$$
\begin{align*}
& \left\|y_{n}^{m-1}-y_{n-1}^{m-1}\right\| \\
& \leq\left(1-\beta_{n}^{m-1}\right)\left(\left\|x_{n}-x_{n-1}\right\|+\left(\frac{r_{n}-r_{n-1}}{\epsilon}\right)\left\|J_{r_{n}} x_{n}-x_{n-1}\right\|\right) \tag{2.9}\\
& \quad+\beta_{n}^{m-1}\left\|x_{n}-x_{n-1}\right\|+\left|\beta_{n}^{m-1}-\beta_{n-1}^{m-1}\right|\left\|x_{n-1}-J_{r_{n-1}} x_{n-1}\right\| \\
& \leq\left\|x_{n}-x_{n-1}\right\|+M_{1}\left(\left|r_{n}-r_{n-1}\right|+\left|\beta_{n}^{m-1}-\beta_{n-1}^{m-1}\right|\right)
\end{align*}
$$

where M_{1} is an appropriate constant such that

$$
M_{1}>\max \left\{\frac{\left\|J_{r_{n}} x_{n}-x_{n-1}\right\|}{\epsilon},\left\|x_{n-1}-J_{r_{n-1}} x_{n-1}\right\|\right\}
$$

Similarly, From (1.3) we obtain

$$
\left\{\begin{array}{l}
y_{n}^{m-2}=\beta_{n}^{m-2} x_{n}+\left(1-\beta_{n}^{m-2}\right) J_{r_{n}} y_{n}^{m-1} \\
y_{n-1}^{m-2}=\beta_{n-1}^{m-2} x_{n-1}+\left(1-\beta_{n-1}^{m-2}\right) J_{r_{n-1}} y_{n-1}^{m-1}
\end{array}\right.
$$

It follows that

$$
\begin{aligned}
y_{n}^{m-2}-y_{n-1}^{m-2}= & \left(1-\beta_{n}^{m-2}\right)\left(J_{r_{n}} y_{n}^{m-1}-J_{r_{n-1}} y_{n-1}^{m-1}\right)+\beta_{n}^{m-2}\left(x_{n}-x_{n-1}\right) \\
& +\left(\beta_{n}^{m-2}-\beta_{n-1}^{m-2}\right)\left(x_{n-1}-J_{r_{n-1}} y_{n-1}^{m-1}\right)
\end{aligned}
$$

which yields that

$$
\begin{align*}
& \left\|y_{n}^{m-2}-y_{n-1}^{m-2}\right\| \\
& \leq\left(1-\beta_{n}^{m-2}\right)\left\|J_{r_{n}} y_{n}^{m-1}-J_{r_{n-1}} y_{n-1}^{m-1}\right\|+\beta_{n}^{m-2}\left\|x_{n}-x_{n-1}\right\| \tag{2.10}\\
& \quad+\left|\beta_{n}^{m-2}-\beta_{n-1}^{m-2}\right|\left\|x_{n-1}-J_{r_{n-1}} y_{n-1}^{m-1}\right\| .
\end{align*}
$$

Similar to (2.8), we can get

$$
\begin{equation*}
\left\|J_{r_{n}} y_{n}^{m-1}-J_{r_{n-1}} y_{n-1}^{m-1}\right\| \leq\left\|y_{n}^{m-1}-y_{n-1}^{m-1}\right\|+\left(\frac{r_{n}-r_{n-1}}{\epsilon}\right)\left\|J_{r_{n}} y_{n}^{m-1}-y_{n-1}^{m-1}\right\| \tag{2.11}
\end{equation*}
$$

Combine (2.9) with (2.11) yields that

$$
\begin{align*}
& \left\|J_{r_{n}} y_{n}^{m-1}-J_{r_{n-1}} y_{n-1}^{m-1}\right\| \\
& \leq\left\|x_{n}-x_{n-1}\right\|+M_{1}\left(\left|r_{n}-r_{n-1}\right|+\left|\beta_{n}^{m-1}-\beta_{n-1}^{m-1}\right|\right) \tag{2.12}\\
& \quad+\left(\frac{r_{n}-r_{n-1}}{\epsilon}\right)\left\|J_{r_{n}} y_{n}^{m-1}-y_{n-1}^{m-1}\right\|
\end{align*}
$$

Substituting (2.12) into (2.10), we obtain

$$
\left.\begin{align*}
& \left\|y_{n}^{m-2}-y_{n-1}^{m-2}\right\| \tag{2.13}\\
& \leq\left(1-\beta_{n}^{m-2}\right)\left(\left\|x_{n}-x_{n-1}\right\|+M_{1}\left(\left|r_{n}-r_{n-1}\right|+\left|\beta_{n}^{m-1}-\beta_{n-1}^{m-1}\right|\right)\right. \\
& \left.\quad+\left(\frac{r_{n}-r_{n-1}}{\epsilon}\right)\left\|J_{r_{n}} y_{n}^{m-1}-y_{n-1}^{m-1}\right\|\right)+\beta_{n}^{m-2}\left\|x_{n}-x_{n-1}\right\| \\
& \quad+\left|\beta_{n}^{m-2}-\beta_{n-1}^{m-2}\right|\left\|x_{n-1}-J_{r_{n-1}} y_{n-1}^{m-1}\right\| \\
& \leq
\end{align*} \right\rvert\, x_{n}-x_{n-1} \|+M_{2}\left(2\left|r_{n}-r_{n-1}\right|+\left|\beta_{n}^{m-1}-\beta_{n-1}^{m-1}\right|+\left|\beta_{n}^{m-2}-\beta_{n-1}^{m-2}\right|\right), ~ l
$$

where M_{2} is an appropriate constant such that

$$
M_{2}>\max \left\{\frac{\left\|J_{r_{n}} y_{n}^{m-1}-y_{n-1}^{m-1}\right\|}{\epsilon},\left\|x_{n-1}-J_{r_{n-1}} y_{n-1}^{m-1}\right\|, M_{1}\right\}
$$

In this fashion, it is easy to get that

$$
\begin{equation*}
\left\|y_{n}^{m-i}-y_{n-1}^{m-i}\right\| \leq\left\|x_{n}-x_{n-1}\right\|+M_{i}\left(\sum_{j=1}^{i}\left|\beta_{n}^{m-j}-\beta_{n-1}^{m-j}\right|+i\left|r_{n}-r_{n-1}\right|\right) \tag{2.14}
\end{equation*}
$$

where M_{i} is an appropriate constant such that

$$
M_{i}>\max \left\{\frac{\left\|J_{r_{n}} y_{n}^{m-(i-1)}-y_{n-1}^{m-(m-i)}\right\|}{\epsilon},\left\|x_{n-1}-J_{r_{n-1}} y_{n-1}^{m-(i-1)}\right\|, M_{i-1}\right\}
$$

for all $2 \leq i \leq(m-1)$. Therefore, one can easily see that

$$
\begin{gather*}
\left\|y_{n}^{1}-y_{n-1}^{1}\right\| \leq\left\|x_{n}-x_{n-1}\right\| \tag{2.15}\\
+M_{m-1}\left(\sum_{j=1}^{m-1}\left|\beta_{n}^{m-j}-\beta_{n-1}^{m-j}\right|+(m-1)\left|r_{n}-r_{n-1}\right|\right)
\end{gather*}
$$

On the other hand, observe that

$$
x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right) y_{n}^{1}, \quad x_{n}=\alpha_{n-1} u+\left(1-\alpha_{n-1}\right) y_{n-1}^{1}
$$

It follows that

$$
\begin{equation*}
x_{n+1}-x_{n}=\left(1-\alpha_{n}\right)\left(y_{n}^{1}-y_{n-1}^{1}\right)+\left(\alpha_{n}-\alpha_{n-1}\right)\left(u-y_{n-1}^{1}\right) \tag{2.16}
\end{equation*}
$$

It follows from (2.15) that

$$
\begin{align*}
& \left\|x_{n+1}-x_{n}\right\| \tag{2.17}\\
& \leq\left(1-\alpha_{n}\right)\left\|y_{n}^{1}-y_{n-1}^{1}\right\|+\left|\alpha_{n}-\alpha_{n-1}\right|\left\|u-y_{n-1}^{1}\right\| \\
& \leq\left(1-\alpha_{n}\right)\left(\left\|x_{n}-x_{n-1}\right\|+M_{m-1}\left(\sum_{j=1}^{m-1}\left|\beta_{n}^{m-j}-\beta_{n-1}^{m-j}\right|+(m-1)\left|r_{n}-r_{n-1}\right|\right)\right) \\
& \quad+\left|\alpha_{n}-\alpha_{n-1}\right|\left\|u-y_{n-1}^{1}\right\| \\
& \leq \\
& \quad\left(1-\alpha_{n}\right)\left\|x_{n}-x_{n-1}\right\| \\
& \quad+M\left(\left|\alpha_{n}-\alpha_{n-1}\right|+\sum_{j=1}^{m-1}\left|\beta_{n}^{m-j}-\beta_{n-1}^{m-j}\right|+(m-1)\left|r_{n}-r_{n-1}\right|\right)
\end{align*}
$$

where M is an appropriate constant such that

$$
M \geq \max \left\{\left\|u-y_{n-1}^{1}\right\|, M_{m-1}\right\}
$$

for all n. Similarly we can prove (2.12) if $r_{n-1} \geq r_{n}$, by assumptions(i)-(iii), we have that

$$
\lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty
$$

and

$$
\sum_{n=1}^{\infty}\left(\left|\alpha_{n}-\alpha_{n-1}\right|+\sum_{j=1}^{m-1}\left|\beta_{n}^{m-j}-\beta_{n-1}^{m-j}\right|+(m-1)\left|r_{n}-r_{n-1}\right|\right)<\infty
$$

Hence, Lemma 5 is applicable to (2.17) and we obtain

$$
\begin{equation*}
\left\|x_{n+1}-x_{n}\right\| \rightarrow 0, \quad \text { as } n \rightarrow \infty \tag{2.18}
\end{equation*}
$$

On the other hand, from (1.3) we have

$$
\begin{aligned}
\left\|y_{n}^{1}-J_{r_{n}} x_{n}\right\| & \leq\left\|y_{n}^{1}-J_{r_{n}} y_{n}^{2}\right\|+\left\|J_{r_{n}} y_{n}^{2}-J_{r_{n}} x_{n}\right\| \\
& \leq \beta_{n}^{1}\left\|x_{n}-J_{r_{n}} y_{n}^{2}\right\|+\mid y_{n}^{2}-x_{n} \| \\
& \leq \beta_{n}^{1}\left\|x_{n}-J_{r_{n}} x_{n}\right\|+\beta_{n}^{1}\left\|J_{r_{n}} x_{n}-J_{r_{n}} y_{n}^{2}\right\|+\mid y_{n}^{2}-x_{n} \| \\
& \leq \beta_{n}^{1}\left\|x_{n}-J_{r_{n}} x_{n}\right\|+\beta_{n}^{1}\left\|x_{n}-y_{n}^{2}\right\|+\mid y_{n}^{2}-x_{n} \| \\
& \leq \beta_{n}^{1}\left\|x_{n}-J_{r_{n}} x_{n}\right\|+\left(1+\beta_{n}^{1}\right)\left\|x_{n}-y_{n}^{2}\right\| \\
& \leq \beta_{n}^{1}\left\|x_{n}-J_{r_{n}} x_{n}\right\|+\left(1+\beta_{n}^{1}\right)\left(1-\beta_{n}^{2}\right)\left\|x_{n}-J_{r_{n}} y_{n}^{3}\right\| \\
& \vdots \\
& \leq\left(\beta_{n}^{1}+\left(1+\beta_{n}^{1}\right) \sum_{k=2}^{m-1} \prod_{i=2}^{k}\left(1-\beta_{n}^{i}\right)\right)\left\|x_{n}-J_{r_{n}} x_{n}\right\| .
\end{aligned}
$$

It follows that

$$
\begin{align*}
\left\|J_{r_{n}} x_{n}-x_{n}\right\| \leq & \left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-y_{n}^{1}\right\|+\left\|y_{n}^{1}-J_{r_{n}} x_{n}\right\| \\
\leq & \left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-y_{n}^{1}\right\| \\
& +\left(\beta_{n}^{1}+\left(1+\beta_{n}^{1}\right) \sum_{k=2}^{m-1} \prod_{i=2}^{k}\left(1-\beta_{n}^{i}\right)\right)\left\|x_{n}-J_{r_{n}} x_{n}\right\| . \tag{2.19}
\end{align*}
$$

From condition (ii), (2.5) and (2.18) we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|J_{r_{n}} x_{n}-x_{n}\right\|=0 \tag{2.20}
\end{equation*}
$$

Take a fixed number r such that $\epsilon>r>0$, from Lemma 1.2 we obtain

$$
\begin{align*}
\left\|J_{r_{n}} x_{n}-J_{r} x_{n}\right\| & =\left\|J_{r}\left(\frac{r}{r_{n}} x_{n}+\left(1-\frac{r}{r_{n}}\right) J_{r_{n}} x_{n}\right)-J_{r} x_{n}\right\| \\
& \leq\left(1-\frac{r}{r_{n}}\right)\left\|x_{n}-J_{r_{n}} x_{n}\right\| \tag{2.21}\\
& \leq\left\|x_{n}-J_{r_{n}} x_{n}\right\| .
\end{align*}
$$

Therefore, we have

$$
\begin{align*}
\left\|x_{n}-J_{r} x_{n}\right\| & \leq\left\|x_{n}-J_{r_{n}} x_{n}\right\|+\left\|J_{r_{n}} x_{n}-J_{r} x_{n}\right\| \\
& \leq\left\|J_{r_{n}} x_{n}-x_{n}\right\|+\left\|J_{r_{n}} x_{n}-x_{n}\right\| \tag{2.22}\\
& \leq 2\left\|J_{r_{n}} x_{n}-x_{n}\right\| .
\end{align*}
$$

Hence, we obtain

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-J_{r} x_{n}\right\|=0
$$

Since in a uniformly smooth Banach space, the sunny nonexpansive retract Q from E onto the fixed point set $F\left(J_{r}\right)\left(=F=A^{-1}(0)\right)$ of J_{r} is unique, it must be obtained from Lemma 1.3. Namely,

$$
Q u=s-\lim _{t \rightarrow 0} z_{t}, \quad u \in E
$$

where $t \in(0,1)$ and z_{t} solves the fixed point equation

$$
z_{t}=t u+(1-t) J_{r} z_{t}
$$

Next, we claim that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle u-Q(u), J\left(x_{n}-Q(u)\right)\right\rangle \leq 0 \tag{2.23}
\end{equation*}
$$

Thus we have

$$
\left\|z_{t}-x_{n}\right\|=\left\|(1-t)\left(J_{r} z_{t}-x_{n}\right)+t\left(u-x_{n}\right)\right\|
$$

It follows from Lemma 1.6 that

$$
\begin{align*}
\left\|z_{t}-x_{n}\right\|^{2} \leq & (1-t)^{2}\left\|J_{r} z_{t}-x_{n}\right\|^{2}+2 t\left\langle u-x_{n}, J\left(z_{t}-x_{n}\right)\right\rangle \\
\leq & \left(1-2 t+t^{2}\right)\left\|z_{t}-x_{n}\right\|^{2}+f_{n}(t) \tag{2.24}\\
& +2 t\left\langle u-z_{t}, J\left(z_{t}-x_{n}\right)\right\rangle+2 t\left\|z_{t}-x_{n}\right\|^{2}
\end{align*}
$$

where

$$
\begin{equation*}
f_{n}(t)=\left(2\left\|z_{t}-x_{n}\right\|+\left\|x_{n}-J_{r} x_{n}\right\|\right)\left\|x_{n}-J_{r} x_{n}\right\| \rightarrow 0, \text { as } n \rightarrow 0 \tag{2.25}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\left\langle z_{t}-u, J\left(z_{t}-x_{n}\right)\right\rangle \leq \frac{t}{2}\left\|z_{t}-x_{n}\right\|^{2}+\frac{1}{2 t} f_{n}(t) \tag{2.26}
\end{equation*}
$$

Letting $n \rightarrow \infty$ in (2.26) and noting (2.25), we obtain

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle z_{t}-u, J\left(z_{t}-x_{n}\right)\right\rangle \leq \frac{t}{2} M \tag{2.27}
\end{equation*}
$$

where $M>0$ is an appropriate constant such that $M \geq\left\|z_{t}-x_{n}\right\|^{2}$ for all $t \in(0,1)$ and $n \geq 1$. Letting $t \rightarrow 0$ and from (2.27), we have

$$
\limsup _{t \rightarrow 0} \limsup _{n \rightarrow \infty}\left\langle z_{t}-u, J\left(z_{t}-x_{n}\right)\right\rangle \leq 0
$$

So, for any $\epsilon>0$, there exists a positive number δ_{1} such that, for $t \in\left(0, \delta_{1}\right)$ we get

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle z_{t}-u, J\left(z_{t}-x_{n}\right)\right\rangle \leq \frac{\epsilon}{2} \tag{2.28}
\end{equation*}
$$

On the other hand, since $z_{t} \rightarrow q$ as $t \rightarrow 0$, from Lemma 1.1, there exists $\delta_{2}>0$ such that, for $t \in\left(0, \delta_{2}\right)$ we have

$$
\begin{aligned}
& \left|\left\langle u-q, J\left(x_{n}-q\right)\right\rangle-\left\langle z_{t}-u, J\left(z_{t}-x_{n}\right)\right\rangle\right| \\
& \leq\left|\left\langle u-q, J\left(x_{n}-q\right)\right\rangle-\left\langle u-q, J\left(x_{n}-z_{t}\right)\right\rangle\right| \\
& \quad+\left|\left\langle u-q, J\left(x_{n}-z_{t}\right)\right\rangle-\left\langle z_{t}-u, J\left(z_{t}-x_{n}\right)\right\rangle\right| \\
& \leq\left|\left\langle u-q, J\left(x_{n}-q\right)-J\left(x_{n}-z_{t}\right)\right\rangle\right|+\left|\left\langle z_{t}-q, J\left(x_{n}-z_{t}\right)\right\rangle\right| \\
& \leq\|u-q\|\left\|J\left(x_{n}-q\right)-J\left(x_{n}-z_{t}\right)\right\|+\left\|z_{t}-q\right\|\left\|x_{n}-z_{t}\right\|<\frac{\epsilon}{2} .
\end{aligned}
$$

Choosing $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}, \forall t \in(0, \delta)$, we have

$$
\left\langle u-Q(u), J\left(x_{n}-Q(u)\right)\right\rangle \leq\left\langle z_{t}-u, J\left(z_{t}-x_{n}\right)\right\rangle+\frac{\epsilon}{2} .
$$

That is,

$$
\limsup _{n \rightarrow \infty}\left\langle u-Q(u), J\left(x_{n}-Q(u)\right)\right\rangle \leq \limsup _{n \rightarrow \infty}\left\langle z_{t}-u, J\left(z_{t}-x_{n}\right)\right\rangle+\frac{\epsilon}{2}
$$

It follows from (2.28) that

$$
\limsup _{n \rightarrow \infty}\left\langle u-Q(u), J\left(x_{n}-Q(u)\right)\right\rangle \leq \epsilon
$$

Since ϵ is chosen arbitrarily, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle u-Q(u), J\left(x_{n}-Q(u)\right)\right\rangle \leq 0 \tag{2.29}
\end{equation*}
$$

Finally, we show that $x_{n} \rightarrow Q(u)$ strongly and this concludes the proof. Observe that

$$
\begin{aligned}
\left\|x_{n+1}-Q(u)\right\|^{2} & =\left\|\left(1-\alpha_{n}\right)\left(y_{n}-Q(u)\right)+\alpha_{n}(u-Q(u))\right\|^{2} \\
& \leq\left(1-\alpha_{n}\right)^{2}\left\|y_{n}-Q(u)\right\|^{2}+2 \alpha_{n}\left\langle u-Q(u), J\left(x_{n+1}-Q(u)\right)\right\rangle \\
& \leq\left(1-\alpha_{n}\right)\left\|x_{n}-Q(u)\right\|^{2}+2 \alpha_{n}\left\langle u-Q(u), J\left(x_{n+1}-Q(u)\right)\right\rangle
\end{aligned}
$$

Now we apply Lemma 1.7 and use (2.29) to see that $\left\|x_{n}-Q(u)\right\| \rightarrow 0$ as $n \rightarrow \infty$.

Theorem 2.2. Suppose that E is reflexive and has a weakly continuous duality map J_{φ} with gauge φ. Suppose that A is an m-accretive operator in X such that $C=\overline{D(A)}$ is convex, $\left\{x_{n}\right\}_{n=0}^{\infty}\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ and $\left\{\beta_{n}^{i}\right\}_{n=0}^{\infty}, i=1,2, \ldots, m-1$ are as Theorem 2.1. Then $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges strongly to a zero point of A.

Proof. We only include the differences. From Theorem 2.1 we obtain

$$
\begin{aligned}
& \left\|x_{n+1}-J_{r_{n}} x_{n}\right\| \\
& =\left\|x_{n+1}-y_{n}^{1}\right\|+\left\|y_{n}^{1}-J_{r_{n}} x_{n}\right\| \\
& \leq \alpha_{n}\left\|u-y_{n}\right\|+\left(\beta_{n}^{1}+\left(1+\beta_{n}^{1}\right) \sum_{k=2}^{m-1} \prod_{i=2}^{k}\left(1-\beta_{n}^{i}\right)\right)\left\|x_{n}-J_{r_{n}} x_{n}\right\| .
\end{aligned}
$$

That is,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-J_{r_{n}} x_{n}\right\|=0 \tag{2.30}
\end{equation*}
$$

We next prove that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle u-Q(u), J_{\varphi}\left(x_{n}-Q(u)\right\rangle \leq 0\right. \tag{2.31}
\end{equation*}
$$

By Lemma 1.5, we have the sunny nonexpansive retraction $Q: C \rightarrow F(T)$. Take a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle u-Q(u), J_{\varphi}\left(x_{n}-Q(u)\right\rangle=\lim _{k \rightarrow \infty}\left\langle u-Q(u), J_{\varphi}\left(x_{n_{k}}-Q(u)\right\rangle\right.\right. \tag{2.32}
\end{equation*}
$$

Since X is reflexive, we may further assume that $x_{n_{k}} \rightharpoonup \widetilde{x}$. Moreover, since

$$
\left\|x_{n+1}-J_{r_{n}}\right\| \rightarrow 0
$$

we obtain

$$
J_{r_{n_{k}-1}} x_{n_{k}-1} \rightharpoonup \widetilde{x}
$$

Taking the limit as $k \rightarrow \infty$ in the relation

$$
\left[J_{r_{n_{k}-1}} x_{n_{k}-1}, A_{r_{n_{k}-1}} x_{n_{k}-1}\right] \in A
$$

we get $[\widetilde{x}, 0] \in A$. That is, $\widetilde{x} \in F$. Hence by (2.32) and (1.5) we have

$$
\limsup _{n \rightarrow \infty}\left\langle u-Q(u), J_{\varphi}\left(x_{n}-Q(u)\right)\right\rangle=\left\langle u-Q(u), J_{\varphi}(\widetilde{x}-Q(u))\right\rangle \leq 0
$$

That is (2.31) holds. Finally to prove that $x_{n} \rightarrow p$. It follows from (2.2) and (2.3) that

$$
\begin{align*}
\Phi\left(\left\|y_{n}^{1}-p\right\|\right) & =\Phi\left(\left\|\beta_{n}^{1}\left(x_{n}-p\right)+\left(1-\beta_{n}^{1}\right)\left(J_{r_{n}} y_{n}^{2}-p\right)\right\|\right) \\
& \leq \Phi\left(\left\|\beta_{n}\right\| x_{n}-p\left\|+\left(1-\beta_{n}\right)\right\| J_{r_{n}} y_{n}^{2}-p \|\right) \tag{2.33}\\
& \leq \Phi\left(\left\|x_{n}-p\right\|\right) .
\end{align*}
$$

Therefore, from (2.33) we obtain

$$
\begin{aligned}
\Phi\left(\left\|x_{n+1}-p\right\|\right) & =\Phi\left(\left\|\alpha_{n}(u-p)+\left(1-\alpha_{n}\right)\left(y_{n}^{1}-p\right)\right\|\right) \\
& \leq \Phi\left(\left(1-\alpha_{n}\right)\left\|y_{n}^{1}-p\right\|\right)+\alpha_{n}\left\langle u-p, J_{\varphi}\left(x_{n+1}-p\right)\right\rangle \\
& \leq\left(1-\alpha_{n}\right) \Phi\left(\left\|y_{n}^{1}-p\right\|\right)+\alpha_{n}\left\langle u-p, J_{\varphi}\left(x_{n+1}-p\right)\right\rangle \\
& \leq\left(1-\alpha_{n}\right) \Phi\left(\left\|x_{n}-p\right\|\right)+\alpha_{n}\left\langle u-p, J_{\varphi}\left(x_{n+1}-p\right)\right\rangle .
\end{aligned}
$$

An application of Lemma 1.3 yields that $\Phi\left(\left\|x_{n}-p\right\|\right) \rightarrow 0$; that is $\left\|x_{n}-p\right\| \rightarrow 0$ as $n \rightarrow \infty$. This completes the proof.

Remark 2.3. Theorem 2.1 and Theorem 2.2 improve Kim and $\mathrm{Xu}[6]$ and $\mathrm{Xu}[12]$ as a special case. We note that our theorems in this paper carry over trivially to the so-called viscosity approximation methods.

References

[1] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Space, Noordhoff, 1976.
[2] F.E. Browder, Fixed point theorems for noncompact mappings in Hilbert space, Proc. Natl. Acad. Sci. USA, 53(1965), 1272-1276.
[3] F.E. Browder, Convergence theorems for sequences of nonlinear operators in Banach space, Math. Z., 100(1967), 201-225.
[4] R.E. Bruck, Nonexpansive projections on subsets of Banach spaces, Pacific J. Math., 47(1973), 341-355.
[5] K. Goebel, S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York, 1984.
[6] T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations, Nonlinear Appl., 61(2005), 51-60.
[7] T.C. Lim, H.K. Xu, Fixed point theorems for asymptotically nonexpansive mappings, Nonlinear Anal., 22(1994), 1345-1355.
[8] S. Reich, Asymptotic behavior of contractions in Banach spaces, J. Math. Anal. Appl., 44(1973), 57-70.
[9] S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl., 75(1980), 287-292.
[10] H.K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66(2002), 240-256.
[11] H.K. Xu, An iterative approach to quadratic optimization, J. Optim. Theory Appl., 116(2003), 659-678.
[12] H.K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operator, J. Math. Anal. Appl., 314(2006), 631-643.

Received: June 27, 2007; Accepted: January 18, 2008.

