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Abstract. In this paper, we introduce a composite iteration scheme for approximating a

zero point of accretive operators in the framework of uniformly smooth Banach spaces and

reflexive Banach spaces which have a weakly continuous duality mapping, respectively. Our

results improve and extend the corresponding results announced by many others.

Key Words and Phrases: Nonexpansive mapping, sunny and nonexpansive retraction,

accretive operator.
2000 Mathematics Subject Classification: 47H09, 47H10.

1. INTRODUCTION AND PRELIMINARIES

Let E be a real Banach space. Recall that a (possibly multivalued) operator
A with domain D(A) and range R(A) in E is accretive, if for each z; € D(A)

and y; € Az;(i = 1,2), there exists a j(zo — x1) € J(x2 — 1) such that
(Y2 — y1,j(z2 — 1)) > 0,
where J is the duality map from F to the dual space E* give by
J(z) = {z" € B": (x,27) = ||2°|| = [2"|*}, =€ E.
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Let C be a nonempty closed convex subset of F/, and T': C — C a mapping.
Recall that T' is nonexpansive if

[Tz —Ty|| < [lz —yl, forallz,yeC.

A point z € C' is a fixed point of T' provided Tx = z. Denote by F(T') the set
of fixed points of T'; that is, F/(T') = {x € C : Tx = x}. An accretive operator
A is m-accretive if R(I +rA) = E for each » > 0. Throughout this article
we always assume that A is m-accretive and has a zero (i.e., the inclusion
0 € A(z) is solvable). The set of zeros of A is denoted by F'. Hence,

F={z2e€D(A):0€ A(z)} = A7Y(0).

For each > 0, we denote by .J,. the resolvent of A, i.e., J, = (I4+rA)~!. Note
that if A is m-accretive, then J, : E — E is nonexpansive and F(J,) = F
for all » > 0. We also denote by A, the Yosida approximation of A, i.e.,
A, = %(I — Jy). It is known that J,. is a nonexpansive mapping from X
to C =
nonexpansive mappings is to use contractions to approximate a fixed point of

D(A) which will be assumed convex. One classical way to study

nonexpansive mappings ([2], [9]). More precisely, take ¢ € (0,1) and define a
contraction T} : C — C by

(1.1) Tix=tu+(1-t)Tz, zeC,

where v € C' is a fixed point. Banach’s Contraction Mapping Principle guar-
antees that 7; has a unique fixed point x; in C'. It is unclear, in general, what
is the behavior of x; as t — 0, even if T has a fixed point. However, in the
case of T having a fixed point, Browder [2] proved that if X is a Hilbert space,
then z; converges strongly to a fixed point of 7" that is nearest to u. Reich [9]
extended Browder’s result to the setting of Banach spaces and proved that if
X is a uniformly smooth Banach space, then x; converges strongly to a fixed
point of 7" and the limit defines the (unique) sunny nonexpansive retraction
from C onto F(T).

Recently, Kim and Xu [6] studied the sequence generated by the algorithm

(1.2) x0 €C, Tpt1 =apu+ (1 —ay)dy,xn, n >0,

and proved strongly convergence of scheme (1.2) in the framework of uni-
formly smooth Banach spaces and reflexive Banach spaces which have a weak
continuous duality map, respectively.
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Inspired and motivated by the iterative scheme (1.2) given by Kim and Xu
[6], this paper introduces the following iterative algorithm

yn =00 e + (L= B ) S, o,

(1.3) '
y711 = ﬁ%-rn + (1 - ﬁ%)Jrny}w

Tpt1 = apu+ (1 — ozn)y,ll, n >0,

where J,,, is the resolvent of m-accretive operator A and v € C'is an arbitrary
(but fixed) element in C' and sequences {a,,} in (0,1), {8:},i=1,2, ..., m—1
in [0,1]. Under certain appropriate assumptions on the sequences {a,} , {3%}
and {r,}, that {z,} defined by the above iteration scheme converges to a zero
point of A is proved.

It is our purpose in this paper to introduce this composite iteration scheme
for approximating a zero point of accretive operators in the framework of uni-
formly smooth Banach spaces and the reflexive Banach spaces which have a
weak continuous duality map, respectively. We establish the strong conver-
gence of the composite iteration scheme {z,} defined by (1.3). The results
improve and extend results of Kim and Xu [6] and some others.

We need the following definitions and lemmas for the proof of our main
results.

The norm of E is said to be Gateaux differentiable (and F is said to be
smooth) if
w et iyl |

t—0 t
exists for each z,y in its unit sphere U = {x € E : ||z|| = 1}. It is said to be
uniformly Fréchet differentiable (and E is said to be uniformly smooth ) if the
limit in (1.4) is attained uniformly for (z,y) € U x U.

Lemma 1.1. A Banach space E is uniformly smooth if and only if the duality
map J is the single-valued and norm-to-norm uniformly continuous on bounded
sets of E.

Lemma 1.2. (The resolvent Identity [1]) For A >0 and >0 and x € E,

Iz = Ju(gx +(1- %)Jm.
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Recall that if C' and D are nonempty subsets of a Banach space E such
that C' is nonempty closed convex and D C C, then a map ) : C' — D is
sunny([5], [8]) provided Q(z + t(z — Q(z))) = Q(z) for all z € C and t > 0
whenever x + t(x — Q(x)) € C. A sunny nonexpansive retraction is a sunny
retraction, which is also nonexpansive. Sunny nonexpansive retractions play
an important role in our argument. They are characterized as follows [4, 5,
8]: if E is a smooth Banach space, then @ : C'— D is a sunny nonexpansive
retraction if and only if there holds the inequality

(x —Qx,J(y—Qx)) <0 forall z€C and y e D.

Reich [9] showed that if E is uniformly smooth and if D is the fixed point set of
a nonexpansive mapping from C' into itself, then there is a sunny nonexpansive

retraction from C onto D and it can be constructed as follows.

Lemma 1.3. (Reich [9]) Let E be a uniformly smooth Banach space and
let T : C — C be a nonexpansive mapping with a fixed point. For each
fired w € C and t € (0,1), the unique fized point x; € C of the contraction
C >z tu+ (1 —t)tx converges strongly as t — 0 to a fized point of T.
Define Q : C — F(T) by Qu = s — limy_gx¢. Then Q is the unique sunny
nonexpansive retract from C onto F(T'); that is, Q satisfies the property

(1.5) (u—Qu,J(z—Qu)) <0, ueC,ze F(T).

Recall that a gauge is a continuous strictly increasing function ¢ : [0, 00) —
[0,00) such that ¢(0) = 0 and ¢(t) — oo as t — oo. Associated to a gauge ¢
is the duality map J, : E — E* defined by

Jo(x) = {a" € E": (z,27) = |lzlle(llz])), =" = #(llz])}, = € E.

Following Browder [3], we say that a Banach space F has a weakly continuous
duality map if there exists a gauge ¢ for which the duality map J, is single-
valued and weak-to-weak® sequentially continuous (i.e., if {x,} is a sequence
in E weakly convergent to a point x, then the sequence J,(x,) converges
weak*ly to J,). It is known that [? has a weakly continuous duality map for
all 1 < p < oo. Set

d(1) :/0 o(r)d,, t>0.
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Then
Jo(@) = 00(|]). =€ E,
where 0 denotes the sub-differential in the sense of convex analysis, The first

first part of the next lemma is an immediate consequence of the sub-differential
inequality an the proof of the second part can be found in [7]

Lemma 1.4. Assume that E has a weakly continuous duality map J, with
gauge @.
(i) For all x,y € E, there holds the inequality

O(flz +yl)) < @(llz]]) + {y, Jo(x +y))-

(ii) Assume a sequence x, in X is weakly convergent to a point x. The
there holds the identity

limsup lim ®(||z, — y||) = limsup lim ®(||z, — z||) + ®(||ly — z||), =,y € E.
n—oo n—oo
Notation: 7 — ” stands for weak convergence and ” — ” for strong conver-

gence.

Lemma 1.5. [12] Let X be a reflexive Banach space and has a weakly con-
tinuous duality map J,(x) with gauge p. Let C be closed convex subset of X
and let T : C — C be a nonexpansive mapping. Fiz v € C and t € (0,1). Let
x¢ € C be the unique solution in C to Fq.(1.1). Then T has a fized point if
and only if x; remains bounded as t — 0T, and in this case, x; converges as
t — 0% strongly to a fized point of T.

Under the condition of Lemma 1.5, we define a map @ : C' — F(T') by

Qu) := 2ltim%:nt, ueC.

from [12 Theorem 3.2] we know @ is the sunny nonexpansive retraction from
C onto F(T).

Lemma 1.6. In a Banach space E, there holds the inequality
|z +yll* < llz|* + 2(y, j(z +v)), =,y€E,

where j(z +y) € J(z +y).
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Lemma 1.7. (Xu [10], [11]) Let {a,} be a sequence of nonnegative real num-

bers satisfying the condition
i1 < (1= y)am +Ynon, n >0,

where {7} o C (0,1) and {0} such that

(1) limp—oo v =0 and 307 o n = 00,
(i) either limsup,, . on <0 or Y07 o |ymon| < 0.

Then {on }o2, converges to zero.

2. MAIN RESULTS

Theorem 2.1. Assume that E is a uniformly smooth Banach space and A
is an m-accretive operator in E. Given a point uw € C , the initial guess
zo € C is chosen arbitrarily and given sequences {ay, }o2 o in (0,1) {8},
i=1,2,...,m—11n [0, 1], the following conditions are satisfied
(i) Yorlgan =00, limy oo an =0 and > 2 |any1 — | < 00;
k .
(i) rn > € Yn > 0and B+ (1 + BHSPI[[(-8) < a <
i=2
1, for some a € (0,1);
(iii) Y02, |ﬁfl+1—ﬁ%\ < oo, fori=1,--- ,m—1and ) 7 |rp—rn_1| < c0.

Let {x,}7°, be the composite process defined by
yn =00 a4+ (L= B ) I @,
yrlz = ﬁ,,lll‘n + (1 - ﬂylz)Jrnyylm
Tpi1 = apu+ (1 —ap)yt, n>0.

Then {x,}5°, converges strongly to a zero point of A.

Proof. First we observe that {x,}°° is bounded. Indeed, taking a fixed
point p of T', we have

1)y ™ = pll < B Hlam =l + (1= B D Jruan = pll < llzn = pll-
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It follows from (1.3) and (2.1) that

=2 = pll < By 2l — pll + (1= B )Ty~ = pl
< B2l — pll + (1= 877y~ = ol
< B Pllzn — pll + (1= 8772 |z — pll

< |lzn —pl

(2.2)

In a similar way, we obtain

vl = pll < Billzn — pll + (1 = BN Jryi™ — pl]
< Bz — pll + (1 = B)lyi™ — pl|
< Billzn —pll + (1 = BY)|lzn — pll

<l|lzn—p|, fori=1,---, m—2.

(2.3)

Therefore, we have

[Znt1 = pll = llom(u = p) + (1 = @) (g, — D)l
< anllu = pll + (1 = )|y, —
< apllu —pll + (1 — an)l[zn — pll||
< max{||lu — pl|, [zn — pl|}-

Now, an induction yields

(2.4) [z — pll < max{[lu—pl, lzo—pll}, n=0.

This implies that {z,} is bounded, so are {g¢}, i=1,...,m—1. It follows
from (1.3) and condition (i) that

(2.5) |41 = Yall < anllu =yl = 0, asn —0.
Next, we claim that
(2.6) lim ||xp41 — zn|| = 0.
n—oo
In order to prove (2.6), we consider

y7rln—1 = B:zn_lxn + (1 - gl_l)Jrnxna

gt = B o+ (1= B0 ) T Tt
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It follows that
rT_l - y;n—_ll =(1- ﬁyT_l)(Jrnxn — I 1 Tp-1) + 577;”_1(3% — ZTn-1)
+ (ﬁ:lnil - 67?—_11)($n—1 = Jry 1 Tn—1).

It follows that
(2.7)
||%Til - yZL__fH <(1- ﬂrrznil)HJTnxn — I T + ﬂﬂHH% — Zn—1||

+ |B21_1 - ﬁ:filHlxn—l - Jrn—lxnle-

From Lemma 1.2, the resolvent identity implies that

Tn—1 Tn—1
oo = Jpp_ (——2p + (1 — ==)J, 20).
T'n Tn
If r,_1 < r,, which in turn implies that
(2.8)
Tn—1 Tn—1
| JrnTn = Jrp_yTn—1|| < || . T+ (1 - = VIrnTn — Tp—1]|
Tn n
Tn—1 T'n—1
< = (T — Tp—1) + (1 - = )(JrpTn — Tn-1)]|
Tn Tn

Tn —Tn—1

<z — 2p-a|l +( W rp@n — Tn-1|

n

Tn —Tn-1

< llzn = 2l + W 2 — 2n1].

Substitute (2.8) into (2.7) yields that
=t =yl
m—1 Tn —Th-1
< (=8 )llen = 2pall + (=) r 20 = @n-1ll)
+ ﬁzn_l”xn — Tp-1]| + |/8:Ln_1 - ,3;”:11|||xn_1 = Jrp_ 1T

<N — zna || + Mi(Jrn — o] + 877 = 875,

(2.9)

where M, is an appropriate constant such that

| JrpTr — 1|

M1 > max{ s ||xn—1 - Jrn_lxn—ln}'

€
Similarly, From (1.3) we obtain
Y = B R (L= B

= B a1 + (1= B ey
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It follows that
Yt =y = (1= B ) Ty ™ = Jr ) + B (g — Tn1)
+ B = B (@n1 = Jr ),
which yields that
ly = =y 2l
(2.10) < (1= B Ay = Ty 3+ B2 — 2 |
+160 72 = B Pl = Jr -

Similar to (2.8), we can get

(2.11)
1™ = Ty < Myt =y () it =y
Combine (2.9) with (2.11) yields that
™" = Tyl
(2.12) < lzn — |l + Mi(|rn — roa| + 187 = ﬂﬁl_ll )
+ () |yt = gt

Substituting (2.12) into (2.10), we obtain
(2.13)
g~ = =2l
< (1= B ) (lzn = 21l + Mi(lra — 1| + 1877 = B75])

Tn — Tn—1 _ _
+ (P e = g D) + B — |

18772 = B P -1 — Tyl
< ”xn - $n—1H + M2(2|rn - 7nn—l‘ + ‘/62171 - /677?__11’ + ’,3;”72 — m—2|)7

n—1
where M, is an appropriate constant such that

€

My > max{ s w1 — Jrnfly:zn—_f”? My}

In this fashion, it is easy to get that
(2.14)

i
g™ =yl < 2w = 2o + MY 180 = By | + il — raea),
j=1
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where M; is an appropriate constant such that

[

—(i—1
M; > max{ ;1 Tn—1 — Jrn,lyzl_fz )||, M;_1}

for all 2 <1i < (m — 1). Therefore, one can easily see that

(2.15) 1y = Yn-all < llan — 2nal

m—1
M1 (Y 187 = B |+ (m = )l — ),
j=1
On the other hand, observe that

Tntl = QpU + (1 - O‘n)yqlw Tp = Qp—1U + (1 - O‘nfl)yqlm—r

It follows that

(2.16) ot = T = (1= an) (U = Y1) + (0 — 1) (u =y _1).
It follows from (2.15) that

(2.17)

|41 — zn|

< (1—an)llyp — vhall + lan — an—alllu — g4 ||
m—1

< (1 - an)(Hxn - xn—l” + Mm—l(z ’B:Lnij - ﬂ;n—_1]| + (m - 1)’7’n - Tn—lD)
j=1

+an = an-illlu = yp|
< (1 —ap)llzn — zp-1]]
m—1 ) )
+ M(lowy — an—1| + Z 180 = B [+ (m = D)|ry = rp1]),
j=1
where M is an appropriate constant such that

M > max{||u —y._;ll, Mm_1}

for all n. Similarly we can prove (2.12) if r,,_; > 75, by assumptions(i)-(iii),
we have that
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and
00 m—1 . )
> (o = an-al + 3180 = B |+ (m = Dlra — raca) < 00
n=1 7j=1

Hence, Lemma 5 is applicable to (2.17) and we obtain

(2.18) |Tnt1 — znl| = 0, asn — oo

On the other hand, from (1.3) we have

9 = Jrntnll < Nvn = Tra¥nll + 1 Jrats = Tl

< Buallen = Jr,ynll + lyn —
< Ballen = Jryaall + BallJrntn = Jr il + lyn —
< Ballzn = Jr,ull + Ballzn — yall + lyp — 2l
< Ballzn = Jr,znll + (1 + Bp)llwn — vl
< Ballen = Jr,zall + (L4 ) = B |20 = Jryn

)_l

m—1 k

< B+ @+8) > [ = B)len — Tzl

k=2 i=2
It follows that
| Jrn = Tl < |0 — Znga || + |2nsr — yall + lus — o znll

<Nwn = zppa |l + 2041 — vl
m—1 k

+ B+ A+ 8) D> T[A = B)lzn — Jry2nll.

k=2 i=2
From condition (ii), (2.5) and (2.18) we obtain

(2.19)

(2.20) lim ||Jy,xn — zn| = 0.
n—oo
Take a fixed number r such that ¢ > r > 0, from Lemma 1.2 we obtain

| Tn — Jrn| = HJT(Tan + (1 — TL)Jrnxn) — Jrn||

n
T

(221) < (0= Yt~ ol
Tn

<||zn — Jr,2nll-
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Therefore, we have
|2n — Jrn|| < |20 — Jrp@nll + | Jr, @0 — Jrn|
(2.22) S N ruwn = @nll + | Jr, @0 — 2|
< 2| Ty, 0 — xh |-
Hence, we obtain
lim ||z, — Jrxy| = 0.
n—00

Since in a uniformly smooth Banach space, the sunny nonexpansive retract @
from E onto the fixed point set F(J,.)(= F = A71(0)) of J, is unique, it must
be obtained from Lemma 1.3. Namely,

Qu:s—%i_rf%zt, u € F,
where ¢t € (0,1) and 2 solves the fixed point equation
zr=tu+ (1 —1t)Jrz.
Next, we claim that

(2.23) lim sup(u — Q(u), J(x, — Q(u))) < 0.

n—oo

Thus we have

Izt = @l = [[(1 =) (Jrze — xn) + t(u = 24)|.
It follows from Lemma 1.6 that

2 = @nll® < (1= 02 T2 — @ |* + 26{u — 2, T (20 — )
(2.24) < (1 =2t + 1))zt — 2 )® + fult)
+ 2t{u — 2, J (2 — ) + 2t|| 2 — 0%,

where
(225)  fu(t) = Qllze — zall + |0 = Jrzal)lzn — Jrznl — 0, as n— 0.
It follows that
(2.26) (a1 =, T (1= a0)) < izt = 2l + o falh).

Letting n — oo in (2.26) and noting (2.25), we obtain

t
(2.27) limsup(z; — u, J(z¢ — xy)) < §M,

n—oo
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where M > 0 is an appropriate constant such that M > ||z — z,[|? for all
t €(0,1) and n > 1. Letting ¢ — 0 and from (2.27), we have
lim sup lim sup(z: — u, J(2: — xy,)) < 0.
t—0  n—oo
So, for any € > 0, there exists a positive number §; such that, for ¢ € (0,6;)
we get

(2.28) limsup(z; — u, J(zt — ) <

n—oo

l\D\m

On the other hand, since z; — ¢q ast — 0, from Lemma 1.1, there exists d5 > 0
such that, for ¢ € (0, 2) we have

(u—gq,J(zn — @) — (2t — u, J (2 — zn))]
< u—q,J(zn —q)) — (u—q,J(xn — 2t))|
+ [(u—q,J(xn — 2¢)) — (2t —u, J (2t — xp))]|
< Ku—q,J(@n—q) = J(@n — 2))| + [(zt — ¢, T (@0 — 20))]

€
< llu=alllJ(zn = q) = J(@n = 20)ll + [l2¢ = allllzn — 2]l < 5

Choosing § = min{dy,d2},Vt € (0,9), we have
(u= Qu), Iy = Q) < (21— w, Iz — &) + 5
That is,

lirrbrisotip(u —Qu), J(z, — Qu))) < liyrln_)solip<zt —u,J(z —xp)) + %
It follows from (2.28) that
lim sup(u — Q(u), J (2, — Q(u))) < e
Since € is chosen arbitrarily, we have
(2.29) li7llnsol<1>p<u - Qu), J(xn, — Q(u))) <0.
Finally, we show that x,, — Q(u) strongly and this concludes the proof. Ob-

serve that

201 — Q(u)|®

1(1 = ) (yn — Q(w)) + an(u — Q(u))|?
I O‘n) lyn — Q(u )H2 + 20 (u — Q(u), J (Tn11 — Q(u)))

< (
< (1 —an)lzn - (u)H2 + 20 (u — Q(u), J (Tnt1 — Q(u))).
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Now we apply Lemma 1.7 and use (2.29) to see that ||z, — Q(u)|| — 0 as
n — 0.

Theorem 2.2. Suppose that E is reflexive and has a weakly continuous duality
map J, with gauge ¢. Suppose that A is an m-accretive operator in X such
that C = D(A) is convex, {xn} o {an} and {8}y, i =1, 2, ..., m—1

n=0>

are as Theorem 2.1. Then {x,}5°, converges strongly to a zero point of A.
Proof. We only include the differences. From Theorem 2.1 we obtain
[Zn41 = Jr,@al

= ||Tp41 — y}L” + ||7J7lz — I, T

m—1 k
< anllu = yall + By + 1+ 63) D T = Bi)llarn = Jr,zall-
k=2 i=2
That is,
(2.30) lim ||zp41 — I, x| = 0.
n—oo
We next prove that
(2.31) limsup(u — Q(u), Jo(z, — Q(u)) < 0.

n—oo

By Lemma 1.5, we have the sunny nonexpansive retraction @ : C — F(T).
Take a subsequence {xy, } of {z,} such that

(2.32) limsup(u — Q(u), Jo(zn — Q(u)) = lim (u — Q(u), Jyo(xn, — Q(u)).

n— oo k—o0

Since X is reflexive, we may further assume that x,, — z. Moreover, since
|Zns1 — Ir, || =0,
we obtain
Jrnkill’nk_l — 7.
Taking the limit as £ — oo in the relation
[Jrnkflxnk—la Arnk,ll'nk—l] c A,

we get [Z,0] € A. That is, ¥ € F. Hence by (2.32) and (1.5) we have

lim sup(u — Q(u), Jy(zn — Q(u))) = (u — Q(u), Jo(T — Q(u))) < 0.

n—oo



STRONG CONVERGENCE THEOREMS 257

That is (2.31) holds. Finally to prove that x, — p. It follows from (2.2) and
(2.3) that

©(|lyn — pll) = @([18n (20 — p) + (1 = Bo) (T, yn — P)II)
(2.33) < (||Ballzn = pll + (1 = Ba)llr,yz = pl)
< @([Jzn — pl))-
Therefore, from (2.33) we obtain
O(||lzn+1 = pll) = @(llan(u = p) + (1 = an)(ys —»)I)
< (1 — an)lyn = pl) + anfu = p, Jo(zp+1 = p))
< (1= an)®(llys, — pll) + anlu = p, Jp(2nt1 — p))
< (1= an)®([lzn = pll) + anlu = p, Jo(@ni1 — p))-

An application of Lemma 1.3 yields that ®(||z,, —p||) — 0; that is ||z, —p|| — 0
as n — 00. This completes the proof.

Remark 2.3. Theorem 2.1 and Theorem 2.2 improve Kim and Xu [6] and
Xu [12] as a special case. We note that our theorems in this paper carry over
trivially to the so-called viscosity approximation methods.
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