Fixed Point Theory, Volume 9, No. 1, 2008, 243-258 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

STRONG CONVERGENCE THEOREMS FOR ACCRETIVE OPERATORS IN BANACH SPACES

XIAOLONG QIN*, SHIN MIN KANG** AND MEIJUAN SHANG***

*Department of Mathematics and the RINS Gyeongsang National University Chinju 660-701, Korea E-mail: ljjhqxl@yahoo.com.cn

**Department of Mathematics and the RINS Gyeongsang National University Chinju 660-701, Korea E-mail: smkang@nongae.gsnu.ac.kr

***Department of Mathematics Shijiazhuang University, Shijiazhuang 050035, China E-mail: meijuanshang@yahoo.com.cn

Abstract. In this paper, we introduce a composite iteration scheme for approximating a zero point of accretive operators in the framework of uniformly smooth Banach spaces and reflexive Banach spaces which have a weakly continuous duality mapping, respectively. Our results improve and extend the corresponding results announced by many others.

Key Words and Phrases: Nonexpansive mapping, sunny and nonexpansive retraction, accretive operator.

2000 Mathematics Subject Classification: 47H09, 47H10.

1. INTRODUCTION AND PRELIMINARIES

Let *E* be a real Banach space. Recall that a (possibly multivalued) operator *A* with domain D(A) and range R(A) in *E* is accretive, if for each $x_i \in D(A)$ and $y_i \in Ax_i (i = 1, 2)$, there exists a $j(x_2 - x_1) \in J(x_2 - x_1)$ such that

$$\langle y_2 - y_1, j(x_2 - x_1) \rangle \ge 0,$$

where J is the duality map from E to the dual space E^* give by

$$J(x) = \{x^* \in E^* : \langle x, x^* \rangle = \|x^2\| = \|x^*\|^2\}, \ x \in E.$$

Let C be a nonempty closed convex subset of E, and $T: C \to C$ a mapping. Recall that T is nonexpansive if

$$||Tx - Ty|| \le ||x - y||, \quad \text{for all } x, y \in C.$$

A point $x \in C$ is a fixed point of T provided Tx = x. Denote by F(T) the set of fixed points of T; that is, $F(T) = \{x \in C : Tx = x\}$. An accretive operator A is *m*-accretive if R(I + rA) = E for each r > 0. Throughout this article we always assume that A is *m*-accretive and has a zero (i.e., the inclusion $0 \in A(z)$ is solvable). The set of zeros of A is denoted by F. Hence,

$$F = \{z \in D(A) : 0 \in A(z)\} = A^{-1}(0)$$

For each r > 0, we denote by J_r the resolvent of A, i.e., $J_r = (I + rA)^{-1}$. Note that if A is *m*-accretive, then $J_r : E \to E$ is nonexpansive and $F(J_r) = F$ for all r > 0. We also denote by A_r the Yosida approximation of A, i.e., $A_r = \frac{1}{r}(I - J_r)$. It is known that J_r is a nonexpansive mapping from Xto $C := \overline{D(A)}$ which will be assumed convex. One classical way to study nonexpansive mappings is to use contractions to approximate a fixed point of nonexpansive mappings ([2], [9]). More precisely, take $t \in (0, 1)$ and define a contraction $T_t : C \to C$ by

(1.1)
$$T_t x = tu + (1-t)Tx, \quad x \in C,$$

where $u \in C$ is a fixed point. Banach's Contraction Mapping Principle guarantees that T_t has a unique fixed point x_t in C. It is unclear, in general, what is the behavior of x_t as $t \to 0$, even if T has a fixed point. However, in the case of T having a fixed point, Browder [2] proved that if X is a Hilbert space, then x_t converges strongly to a fixed point of T that is nearest to u. Reich [9] extended Browder's result to the setting of Banach spaces and proved that if X is a uniformly smooth Banach space, then x_t converges strongly to a fixed point of T and the limit defines the (unique) sunny nonexpansive retraction from C onto F(T).

Recently, Kim and Xu [6] studied the sequence generated by the algorithm

(1.2)
$$x_0 \in C, \quad x_{n+1} = \alpha_n u + (1 - \alpha_n) J_{r_n} x_n, \quad n \ge 0,$$

and proved strongly convergence of scheme (1.2) in the framework of uniformly smooth Banach spaces and reflexive Banach spaces which have a weak continuous duality map, respectively.

Inspired and motivated by the iterative scheme (1.2) given by Kim and Xu [6], this paper introduces the following iterative algorithm

(1.3)
$$\begin{cases} y_n^{m-1} = \beta_n^{m-1} x_n + (1 - \beta_n^{m-1}) J_{r_n} x_n, \\ \vdots \\ y_n^1 = \beta_n^1 x_n + (1 - \beta_n^1) J_{r_n} y_n^1, \\ x_{n+1} = \alpha_n u + (1 - \alpha_n) y_n^1, \quad n \ge 0, \end{cases}$$

where J_{r_n} is the resolvent of *m*-accretive operator *A* and $u \in C$ is an arbitrary (but fixed) element in *C* and sequences $\{\alpha_n\}$ in (0,1), $\{\beta_n^i\}$, $i = 1, 2, \ldots, m-1$ in [0,1]. Under certain appropriate assumptions on the sequences $\{\alpha_n\}$, $\{\beta_n^i\}$ and $\{r_n\}$, that $\{x_n\}$ defined by the above iteration scheme converges to a zero point of *A* is proved.

It is our purpose in this paper to introduce this composite iteration scheme for approximating a zero point of accretive operators in the framework of uniformly smooth Banach spaces and the reflexive Banach spaces which have a weak continuous duality map, respectively. We establish the strong convergence of the composite iteration scheme $\{x_n\}$ defined by (1.3). The results improve and extend results of Kim and Xu [6] and some others.

We need the following definitions and lemmas for the proof of our main results.

The norm of E is said to be Gâteaux differentiable (and E is said to be smooth) if

(1.4)
$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t}$$

exists for each x, y in its unit sphere $U = \{x \in E : ||x|| = 1\}$. It is said to be uniformly Fréchet differentiable (and E is said to be uniformly smooth) if the limit in (1.4) is attained uniformly for $(x, y) \in U \times U$.

Lemma 1.1. A Banach space E is uniformly smooth if and only if the duality map J is the single-valued and norm-to-norm uniformly continuous on bounded sets of E.

Lemma 1.2. (The resolvent Identity [1]) For $\lambda > 0$ and $\mu > 0$ and $x \in E$,

$$J_{\lambda}x = J_{\mu}(\frac{\mu}{\lambda}x + (1 - \frac{\mu}{\lambda})J_{\lambda}x).$$

Recall that if C and D are nonempty subsets of a Banach space E such that C is nonempty closed convex and $D \subset C$, then a map $Q : C \to D$ is $\operatorname{sunny}([5], [8])$ provided Q(x + t(x - Q(x))) = Q(x) for all $x \in C$ and $t \geq 0$ whenever $x + t(x - Q(x)) \in C$. A sunny nonexpansive retraction is a sunny retraction, which is also nonexpansive. Sunny nonexpansive retractions play an important role in our argument. They are characterized as follows [4, 5, 8]: if E is a smooth Banach space, then $Q : C \to D$ is a sunny nonexpansive retraction if and only if there holds the inequality

$$\langle x - Qx, J(y - Qx) \rangle \leq 0$$
 for all $x \in C$ and $y \in D$.

Reich [9] showed that if E is uniformly smooth and if D is the fixed point set of a nonexpansive mapping from C into itself, then there is a sunny nonexpansive retraction from C onto D and it can be constructed as follows.

Lemma 1.3. (Reich [9]) Let E be a uniformly smooth Banach space and let $T : C \to C$ be a nonexpansive mapping with a fixed point. For each fixed $u \in C$ and $t \in (0,1)$, the unique fixed point $x_t \in C$ of the contraction $C \ni x \mapsto tu + (1-t)tx$ converges strongly as $t \to 0$ to a fixed point of T. Define $Q : C \to F(T)$ by $Qu = s - \lim_{t\to 0} x_t$. Then Q is the unique sunny nonexpansive retract from C onto F(T); that is, Q satisfies the property

(1.5)
$$\langle u - Qu, J(z - Qu) \rangle \le 0, \quad u \in C, z \in F(T).$$

Recall that a gauge is a continuous strictly increasing function $\varphi : [0, \infty) \to [0, \infty)$ such that $\varphi(0) = 0$ and $\varphi(t) \to \infty$ as $t \to \infty$. Associated to a gauge φ is the duality map $J_{\varphi} : E \to E^*$ defined by

$$J_{\varphi}(x) = \{x^* \in E^* : \langle x, x^* \rangle = \|x\|\varphi(\|x\|), \|x^*\| = \varphi(\|x\|)\}, \ x \in E.$$

Following Browder [3], we say that a Banach space E has a weakly continuous duality map if there exists a gauge φ for which the duality map J_{φ} is singlevalued and weak-to-weak^{*} sequentially continuous (i.e., if $\{x_n\}$ is a sequence in E weakly convergent to a point x, then the sequence $J_{\varphi}(x_n)$ converges weak^{*}ly to J_{φ}). It is known that l^p has a weakly continuous duality map for all 1 . Set

$$\Phi(t) = \int_0^t \varphi(\tau) d_\tau, \quad t \ge 0.$$

Then

$$J_{\varphi}(x) = \partial \Phi(\|x\|), \quad x \in E,$$

where ∂ denotes the sub-differential in the sense of convex analysis, The first first part of the next lemma is an immediate consequence of the sub-differential inequality and the proof of the second part can be found in [7]

Lemma 1.4. Assume that E has a weakly continuous duality map J_{φ} with gauge φ .

(i) For all $x, y \in E$, there holds the inequality

$$\Phi(\|x+y\|) \le \Phi(\|x\|) + \langle y, J_{\varphi}(x+y) \rangle$$

(ii) Assume a sequence x_n in X is weakly convergent to a point x. The there holds the identity

 $\limsup_{n \to \infty} \Phi(\|x_n - y\|) = \limsup_{n \to \infty} \Phi(\|x_n - x\|) + \Phi(\|y - x\|), \ x, y \in E.$

Notation: " \rightarrow " stands for weak convergence and " \rightarrow " for strong convergence.

Lemma 1.5. [12] Let X be a reflexive Banach space and has a weakly continuous duality map $J_{\varphi}(x)$ with gauge φ . Let C be closed convex subset of X and let $T: C \to C$ be a nonexpansive mapping. Fix $u \in C$ and $t \in (0,1)$. Let $x_t \in C$ be the unique solution in C to Eq.(1.1). Then T has a fixed point if and only if x_t remains bounded as $t \to 0^+$, and in this case, x_t converges as $t \to 0^+$ strongly to a fixed point of T.

Under the condition of Lemma 1.5, we define a map $Q: C \to F(T)$ by

$$Q(u) := \lim_{t \to 0} x_t, \quad u \in C.$$

from [12 Theorem 3.2] we know Q is the sunny nonexpansive retraction from C onto F(T).

Lemma 1.6. In a Banach space E, there holds the inequality

$$||x+y||^2 \le ||x||^2 + 2\langle y, j(x+y) \rangle, \quad x, y \in E,$$

where $j(x+y) \in J(x+y)$.

Lemma 1.7. (Xu [10], [11]) Let $\{\alpha_n\}$ be a sequence of nonnegative real numbers satisfying the condition

$$\alpha_{n+1} \le (1 - \gamma_n)\alpha_n + \gamma_n \sigma_n, \quad n \ge 0,$$

where $\{\gamma_n\}_{n=0}^{\infty} \subset (0,1)$ and $\{\sigma_n\}_{n=0}^{\infty}$ such that

- (i) $\lim_{n\to\infty} \gamma_n = 0$ and $\sum_{n=0}^{\infty} \gamma_n = \infty$,
- (ii) either $\limsup_{n\to\infty} \sigma_n \leq 0$ or $\sum_{n=0}^{\infty} |\gamma_n \sigma_n| < \infty$.

Then $\{\alpha_n\}_{n=0}^{\infty}$ converges to zero.

2. Main results

Theorem 2.1. Assume that E is a uniformly smooth Banach space and A is an m-accretive operator in E. Given a point $u \in C$, the initial guess $x_0 \in C$ is chosen arbitrarily and given sequences $\{\alpha_n\}_{n=0}^{\infty}$ in (0,1) $\{\beta_n^i\}_{n=0}^{\infty}$, i = 1, 2, ..., m-1 in [0, 1], the following conditions are satisfied

- (i) $\sum_{n=0}^{\infty} \alpha_n = \infty$, $\lim_{n \to \infty} \alpha_n = 0$ and $\sum_{n=0}^{\infty} |\alpha_{n+1} \alpha_n| < \infty$;
- (ii) $r_n \ge \epsilon$, $\forall n \ge 0$ and $\beta_n^1 + (1 + \beta_n^1) \sum_{k=2}^{m-1} \prod_{i=2}^k (1 \beta_n^i) < a < 1$, for some $a \in (0, 1)$;
- (iii) $\sum_{n=0}^{\infty} |\beta_{n+1}^i \beta_n^i| < \infty$, for $i = 1, \cdots, m-1$ and $\sum_{n=0}^{\infty} |r_n r_{n-1}| < \infty$.

Let $\{x_n\}_{n=1}^{\infty}$ be the composite process defined by

$$\begin{cases} y_n^{m-1} = \beta_n^{m-1} x_n + (1 - \beta_n^{m-1}) J_{r_n} x_n, \\ \vdots \\ y_n^1 = \beta_n^1 x_n + (1 - \beta_n^1) J_{r_n} y_n^1, \\ x_{n+1} = \alpha_n u + (1 - \alpha_n) y_n^1, \quad n \ge 0. \end{cases}$$

Then $\{x_n\}_{n=1}^{\infty}$ converges strongly to a zero point of A.

Proof. First we observe that $\{x_n\}_{n=0}^{\infty}$ is bounded. Indeed, taking a fixed point p of T, we have

(2.1)
$$||y_n^{m-1} - p|| \le \beta_n^{m-1} ||x_n - p|| + (1 - \beta_n^{m-1}) ||J_{r_n} x_n - p|| \le ||x_n - p||$$

It follows from (1.3) and (2.1) that

(2.2)
$$\begin{aligned} \|y_n^{m-2} - p\| &\leq \beta_n^{m-2} \|x_n - p\| + (1 - \beta_n^{m-2}) \|J_{r_n} y_n^{m-1} - p\| \\ &\leq \beta_n^{m-2} \|x_n - p\| + (1 - \beta_n^{m-2}) \|y_n^{m-1} - p\| \\ &\leq \beta_n^{m-2} \|x_n - p\| + (1 - \beta_n^{m-2}) \|x_n - p\| \\ &\leq \|x_n - p\| \end{aligned}$$

In a similar way, we obtain

(2.3)
$$\begin{aligned} \|y_n^i - p\| &\leq \beta_n^i \|x_n - p\| + (1 - \beta_n^i) \|J_{r_n} y_n^{i+1} - p\| \\ &\leq \beta_n^i \|x_n - p\| + (1 - \beta_n^i) \|y_n^{i+1} - p\| \\ &\leq \beta_n^i \|x_n - p\| + (1 - \beta_n^i) \|x_n - p\| \\ &\leq \|x_n - p\|, \quad \text{for } i = 1, \cdots, m - 2. \end{aligned}$$

Therefore, we have

$$||x_{n+1} - p|| = ||\alpha_n(u - p) + (1 - \alpha_n)(y_n^1 - p)||$$

$$\leq \alpha_n ||u - p|| + (1 - \alpha_n)||y_n^1 - p||||$$

$$\leq \alpha_n ||u - p|| + (1 - \alpha_n)||x_n - p||||$$

$$\leq \max\{||u - p||, ||x_n - p||\}.$$

Now, an induction yields

(2.4)
$$||x_n - p|| \le \max\{||u - p||, ||x_0 - p||\}, n \ge 0.$$

This implies that $\{x_n\}$ is bounded, so are $\{y_n^i\}$, $i = 1, \ldots, m-1$. It follows from (1.3) and condition (i) that

(2.5)
$$||x_{n+1} - y_n^1|| \le \alpha_n ||u - y_n^1|| \to 0$$
, as $n \to 0$.

Next, we claim that

(2.6)
$$\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0.$$

In order to prove (2.6), we consider

$$\begin{cases} y_n^{m-1} = \beta_n^{m-1} x_n + (1 - \beta_n^{m-1}) J_{r_n} x_n, \\ y_{n-1}^{m-1} = \beta_{n-1}^{m-1} x_{n-1} + (1 - \beta_{n-1}^{m-1}) J_{r_{n-1}} x_{n-1}. \end{cases}$$

It follows that

$$y_n^{m-1} - y_{n-1}^{m-1} = (1 - \beta_n^{m-1})(J_{r_n}x_n - J_{r_{n-1}}x_{n-1}) + \beta_n^{m-1}(x_n - x_{n-1}) + (\beta_n^{m-1} - \beta_{n-1}^{m-1})(x_{n-1} - J_{r_{n-1}}x_{n-1}).$$

It follows that

$$\begin{aligned} (2.7) \\ \|y_n^{m-1} - y_{n-1}^{m-1}\| &\leq (1 - \beta_n^{m-1}) \|J_{r_n} x_n - J_{r_{n-1}} x_{n-1}\| + \beta_n^{m-1} \|x_n - x_{n-1}\| \\ &+ |\beta_n^{m-1} - \beta_{n-1}^{m-1}| \|x_{n-1} - J_{r_{n-1}} x_{n-1}\|. \end{aligned}$$

From Lemma 1.2, the resolvent identity implies that

$$J_{r_n} x_n = J_{r_{n-1}} \left(\frac{r_{n-1}}{r_n} x_n + \left(1 - \frac{r_{n-1}}{r_n} \right) J_{r_n} x_n \right).$$

If $r_{n-1} \leq r_n$, which in turn implies that (2.8)

$$\begin{aligned} \|J_{r_n}x_n - J_{r_{n-1}}x_{n-1}\| &\leq \|\frac{r_{n-1}}{r_n}x_n + (1 - \frac{r_{n-1}}{r_n})J_{r_n}x_n - x_{n-1}\| \\ &\leq \|\frac{r_{n-1}}{r_n}(x_n - x_{n-1}) + (1 - \frac{r_{n-1}}{r_n})(J_{r_n}x_n - x_{n-1})\| \\ &\leq \|x_n - x_{n-1}\| + (\frac{r_n - r_{n-1}}{r_n})\|J_{r_n}x_n - x_{n-1}\| \\ &\leq \|x_n - x_{n-1}\| + (\frac{r_n - r_{n-1}}{\epsilon})\|J_{r_n}x_n - x_{n-1}\|. \end{aligned}$$

Substitute (2.8) into (2.7) yields that

(2.9)
$$\begin{aligned} \|y_n^{m-1} - y_{n-1}^{m-1}\| \\ &\leq (1 - \beta_n^{m-1})(\|x_n - x_{n-1}\| + (\frac{r_n - r_{n-1}}{\epsilon})\|J_{r_n}x_n - x_{n-1}\|) \\ &+ \beta_n^{m-1}\|x_n - x_{n-1}\| + |\beta_n^{m-1} - \beta_{n-1}^{m-1}|\|x_{n-1} - J_{r_{n-1}}x_{n-1}\| \\ &\leq \|x_n - x_{n-1}\| + M_1(|r_n - r_{n-1}| + |\beta_n^{m-1} - \beta_{n-1}^{m-1}|), \end{aligned}$$

where M_1 is an appropriate constant such that

$$M_1 > \max\{\frac{\|J_{r_n}x_n - x_{n-1}\|}{\epsilon}, \|x_{n-1} - J_{r_{n-1}}x_{n-1}\|\}.$$

Similarly, From (1.3) we obtain

$$\begin{cases} y_n^{m-2} = \beta_n^{m-2} x_n + (1 - \beta_n^{m-2}) J_{r_n} y_n^{m-1}, \\ y_{n-1}^{m-2} = \beta_{n-1}^{m-2} x_{n-1} + (1 - \beta_{n-1}^{m-2}) J_{r_{n-1}} y_{n-1}^{m-1}. \end{cases}$$

It follows that

$$y_n^{m-2} - y_{n-1}^{m-2} = (1 - \beta_n^{m-2})(J_{r_n}y_n^{m-1} - J_{r_{n-1}}y_{n-1}^{m-1}) + \beta_n^{m-2}(x_n - x_{n-1}) + (\beta_n^{m-2} - \beta_{n-1}^{m-2})(x_{n-1} - J_{r_{n-1}}y_{n-1}^{m-1}),$$

which yields that

(2.10)
$$\begin{aligned} \|y_n^{m-2} - y_{n-1}^{m-2}\| \\ &\leq (1 - \beta_n^{m-2}) \|J_{r_n} y_n^{m-1} - J_{r_{n-1}} y_{n-1}^{m-1}\| + \beta_n^{m-2} \|x_n - x_{n-1}\| \\ &+ \|\beta_n^{m-2} - \beta_{n-1}^{m-2}\| \|x_{n-1} - J_{r_{n-1}} y_{n-1}^{m-1}\|. \end{aligned}$$

Similar to (2.8), we can get

$$(2.11) \\ \|J_{r_n}y_n^{m-1} - J_{r_{n-1}}y_{n-1}^{m-1}\| \le \|y_n^{m-1} - y_{n-1}^{m-1}\| + (\frac{r_n - r_{n-1}}{\epsilon})\|J_{r_n}y_n^{m-1} - y_{n-1}^{m-1}\|.$$

Combine (2.9) with (2.11) yields that

(2.12)
$$\begin{aligned} \|J_{r_n}y_n^{m-1} - J_{r_{n-1}}y_{n-1}^{m-1}\| \\ &\leq \|x_n - x_{n-1}\| + M_1(|r_n - r_{n-1}| + |\beta_n^{m-1} - \beta_{n-1}^{m-1}|) \\ &+ (\frac{r_n - r_{n-1}}{\epsilon})\|J_{r_n}y_n^{m-1} - y_{n-1}^{m-1}\|. \end{aligned}$$

Substituting (2.12) into (2.10), we obtain

$$\begin{aligned} &(2.13) \\ &\|y_n^{m-2} - y_{n-1}^{m-2}\| \\ &\leq (1 - \beta_n^{m-2})(\|x_n - x_{n-1}\| + M_1(|r_n - r_{n-1}| + |\beta_n^{m-1} - \beta_{n-1}^{m-1}|) \\ &\quad + (\frac{r_n - r_{n-1}}{\epsilon})\|J_{r_n}y_n^{m-1} - y_{n-1}^{m-1}\|) + \beta_n^{m-2}\|x_n - x_{n-1}\| \\ &\quad + |\beta_n^{m-2} - \beta_{n-1}^{m-2}|\|x_{n-1} - J_{r_{n-1}}y_{n-1}^{m-1}\| \\ &\leq \|x_n - x_{n-1}\| + M_2(2|r_n - r_{n-1}| + |\beta_n^{m-1} - \beta_{n-1}^{m-1}| + |\beta_n^{m-2} - \beta_{n-1}^{m-2}|), \end{aligned}$$

where M_2 is an appropriate constant such that

$$M_{2} > \max\{\frac{\|J_{r_{n}}y_{n}^{m-1} - y_{n-1}^{m-1}\|}{\epsilon}, \|x_{n-1} - J_{r_{n-1}}y_{n-1}^{m-1}\|, M_{1}\}.$$

In this fashion, it is easy to get that (2.14)

$$\|y_n^{m-i} - y_{n-1}^{m-i}\| \le \|x_n - x_{n-1}\| + M_i(\sum_{j=1}^i |\beta_n^{m-j} - \beta_{n-1}^{m-j}| + i|r_n - r_{n-1}|),$$

where M_i is an appropriate constant such that

$$M_{i} > \max\{\frac{\|J_{r_{n}}y_{n}^{m-(i-1)} - y_{n-1}^{m-(m-i)}\|}{\epsilon}, \|x_{n-1} - J_{r_{n-1}}y_{n-1}^{m-(i-1)}\|, M_{i-1}\}$$

for all $2 \le i \le (m-1)$. Therefore, one can easily see that

(2.15)
$$||y_n^1 - y_{n-1}^1|| \le ||x_n - x_{n-1}||$$

$$+M_{m-1}\left(\sum_{j=1}^{m-1}|\beta_n^{m-j}-\beta_{n-1}^{m-j}|+(m-1)|r_n-r_{n-1}|\right),$$

On the other hand, observe that

$$x_{n+1} = \alpha_n u + (1 - \alpha_n) y_n^1, \quad x_n = \alpha_{n-1} u + (1 - \alpha_{n-1}) y_{n-1}^1.$$

It follows that

(2.16)
$$x_{n+1} - x_n = (1 - \alpha_n)(y_n^1 - y_{n-1}^1) + (\alpha_n - \alpha_{n-1})(u - y_{n-1}^1).$$

It follows from (2.15) that

$$(2.17) ||x_{n+1} - x_n|| \le (1 - \alpha_n) ||y_n^1 - y_{n-1}^1|| + |\alpha_n - \alpha_{n-1}|||u - y_{n-1}^1|| \le (1 - \alpha_n) (||x_n - x_{n-1}|| + M_{m-1} (\sum_{j=1}^{m-1} |\beta_n^{m-j} - \beta_{n-1}^{m-j}| + (m-1)|r_n - r_{n-1}|)) + |\alpha_n - \alpha_{n-1}|||u - y_{n-1}^1|| \le (1 - \alpha_n) ||x_n - x_{n-1}|| + M(|\alpha_n - \alpha_{n-1}|| + \sum_{j=1}^{m-1} |\beta_n^{m-j} - \beta_{n-1}^{m-j}| + (m-1)|r_n - r_{n-1}|),$$

where M is an appropriate constant such that

$$M \ge \max\{\|u - y_{n-1}^1\|, M_{m-1}\}$$

for all *n*. Similarly we can prove (2.12) if $r_{n-1} \ge r_n$, by assumptions(i)-(iii), we have that ∞

$$\lim_{n \to \infty} \alpha_n = 0, \quad \sum_{n=1}^{\infty} \alpha_n = \infty,$$

and

$$\sum_{n=1}^{\infty} (|\alpha_n - \alpha_{n-1}| + \sum_{j=1}^{m-1} |\beta_n^{m-j} - \beta_{n-1}^{m-j}| + (m-1)|r_n - r_{n-1}|) < \infty.$$

Hence, Lemma 5 is applicable to (2.17) and we obtain

$$(2.18) ||x_{n+1} - x_n|| \to 0, \quad \text{as } n \to \infty$$

On the other hand, from (1.3) we have

$$\begin{aligned} \|y_{n}^{1} - J_{r_{n}}x_{n}\| &\leq \|y_{n}^{1} - J_{r_{n}}y_{n}^{2}\| + \|J_{r_{n}}y_{n}^{2} - J_{r_{n}}x_{n}\| \\ &\leq \beta_{n}^{1}\|x_{n} - J_{r_{n}}y_{n}^{2}\| + |y_{n}^{2} - x_{n}\| \\ &\leq \beta_{n}^{1}\|x_{n} - J_{r_{n}}x_{n}\| + \beta_{n}^{1}\|J_{r_{n}}x_{n} - J_{r_{n}}y_{n}^{2}\| + |y_{n}^{2} - x_{n}\| \\ &\leq \beta_{n}^{1}\|x_{n} - J_{r_{n}}x_{n}\| + \beta_{n}^{1}\|x_{n} - y_{n}^{2}\| + |y_{n}^{2} - x_{n}\| \\ &\leq \beta_{n}^{1}\|x_{n} - J_{r_{n}}x_{n}\| + (1 + \beta_{n}^{1})\|x_{n} - y_{n}^{2}\| \\ &\leq \beta_{n}^{1}\|x_{n} - J_{r_{n}}x_{n}\| + (1 + \beta_{n}^{1})(1 - \beta_{n}^{2})\|x_{n} - J_{r_{n}}y_{n}^{3}\| \\ &\vdots \end{aligned}$$

$$\leq (\beta_n^1 + (1 + \beta_n^1) \sum_{k=2}^{m-1} \prod_{i=2}^n (1 - \beta_n^i)) \|x_n - J_{r_n} x_n\|.$$

It follows that

(2.19)
$$\begin{aligned} \|J_{r_n}x_n - x_n\| &\leq \|x_n - x_{n+1}\| + \|x_{n+1} - y_n^1\| + \|y_n^1 - J_{r_n}x_n\| \\ &\leq \|x_n - x_{n+1}\| + \|x_{n+1} - y_n^1\| \\ &+ (\beta_n^1 + (1 + \beta_n^1) \sum_{k=2}^{m-1} \prod_{i=2}^k (1 - \beta_n^i)) \|x_n - J_{r_n}x_n\|. \end{aligned}$$

From condition (ii), (2.5) and (2.18) we obtain

(2.20)
$$\lim_{n \to \infty} \|J_{r_n} x_n - x_n\| = 0$$

Take a fixed number r such that $\epsilon > r > 0$, from Lemma 1.2 we obtain

(2.21)
$$\|J_{r_n}x_n - J_rx_n\| = \|J_r(\frac{r}{r_n}x_n + (1 - \frac{r}{r_n})J_{r_n}x_n) - J_rx_n\| \\ \leq (1 - \frac{r}{r_n})\|x_n - J_{r_n}x_n\| \\ \leq \|x_n - J_{r_n}x_n\|.$$

Therefore, we have

(2.22)
$$\begin{aligned} \|x_n - J_r x_n\| &\leq \|x_n - J_{r_n} x_n\| + \|J_{r_n} x_n - J_r x_n\| \\ &\leq \|J_{r_n} x_n - x_n\| + \|J_{r_n} x_n - x_n\| \\ &\leq 2\|J_{r_n} x_n - x_n\|. \end{aligned}$$

Hence, we obtain

 $\lim_{n \to \infty} \|x_n - J_r x_n\| = 0.$

Since in a uniformly smooth Banach space, the sunny nonexpansive retract Q from E onto the fixed point set $F(J_r)(=F=A^{-1}(0))$ of J_r is unique, it must be obtained from Lemma 1.3. Namely,

$$Qu = s - \lim_{t \to 0} z_t, \quad u \in E,$$

where $t \in (0, 1)$ and z_t solves the fixed point equation

$$z_t = tu + (1-t)J_r z_t.$$

Next, we claim that

(2.23)
$$\limsup_{n \to \infty} \langle u - Q(u), J(x_n - Q(u)) \rangle \le 0.$$

Thus we have

$$||z_t - x_n|| = ||(1 - t)(J_r z_t - x_n) + t(u - x_n)||.$$

It follows from Lemma 1.6 that

(2.24)
$$\begin{aligned} \|z_t - x_n\|^2 &\leq (1-t)^2 \|J_r z_t - x_n\|^2 + 2t \langle u - x_n, J(z_t - x_n) \rangle \\ &\leq (1-2t+t^2) \|z_t - x_n\|^2 + f_n(t) \\ &+ 2t \langle u - z_t, J(z_t - x_n) \rangle + 2t \|z_t - x_n\|^2, \end{aligned}$$

where

(2.25)
$$f_n(t) = (2||z_t - x_n|| + ||x_n - J_r x_n||)||x_n - J_r x_n|| \to 0$$
, as $n \to 0$.

It follows that

(2.26)
$$\langle z_t - u, J(z_t - x_n) \rangle \leq \frac{t}{2} ||z_t - x_n||^2 + \frac{1}{2t} f_n(t).$$

Letting $n \to \infty$ in (2.26) and noting (2.25), we obtain

(2.27)
$$\limsup_{n \to \infty} \langle z_t - u, J(z_t - x_n) \rangle \le \frac{t}{2} M,$$

where M > 0 is an appropriate constant such that $M \ge ||z_t - x_n||^2$ for all $t \in (0,1)$ and $n \ge 1$. Letting $t \to 0$ and from (2.27), we have

$$\limsup_{t \to 0} \limsup_{n \to \infty} \langle z_t - u, J(z_t - x_n) \rangle \le 0.$$

So, for any $\epsilon > 0$, there exists a positive number δ_1 such that, for $t \in (0, \delta_1)$ we get

(2.28)
$$\limsup_{n \to \infty} \langle z_t - u, J(z_t - x_n) \rangle \le \frac{\epsilon}{2}.$$

On the other hand, since $z_t \to q$ as $t \to 0$, from Lemma 1.1, there exists $\delta_2 > 0$ such that, for $t \in (0, \delta_2)$ we have

$$\begin{aligned} |\langle u - q, J(x_n - q) \rangle - \langle z_t - u, J(z_t - x_n) \rangle| \\ &\leq |\langle u - q, J(x_n - q) \rangle - \langle u - q, J(x_n - z_t) \rangle| \\ &+ |\langle u - q, J(x_n - z_t) \rangle - \langle z_t - u, J(z_t - x_n) \rangle| \\ &\leq |\langle u - q, J(x_n - q) - J(x_n - z_t) \rangle| + |\langle z_t - q, J(x_n - z_t) \rangle| \\ &\leq ||u - q|| ||J(x_n - q) - J(x_n - z_t)|| + ||z_t - q|| ||x_n - z_t|| < \frac{\epsilon}{2}. \end{aligned}$$

Choosing $\delta = \min{\{\delta_1, \delta_2\}}, \forall t \in (0, \delta)$, we have

$$\langle u - Q(u), J(x_n - Q(u)) \rangle \le \langle z_t - u, J(z_t - x_n) \rangle + \frac{\epsilon}{2}$$

That is,

$$\limsup_{n \to \infty} \langle u - Q(u), J(x_n - Q(u)) \rangle \le \limsup_{n \to \infty} \langle z_t - u, J(z_t - x_n) \rangle + \frac{\epsilon}{2}.$$

It follows from (2.28) that

$$\limsup_{n \to \infty} \langle u - Q(u), J(x_n - Q(u)) \rangle \le \epsilon.$$

Since ϵ is chosen arbitrarily, we have

(2.29)
$$\limsup_{n \to \infty} \langle u - Q(u), J(x_n - Q(u)) \rangle \le 0.$$

Finally, we show that $x_n \to Q(u)$ strongly and this concludes the proof. Observe that

$$||x_{n+1} - Q(u)||^2 = ||(1 - \alpha_n)(y_n - Q(u)) + \alpha_n(u - Q(u))||^2$$

$$\leq (1 - \alpha_n)^2 ||y_n - Q(u)||^2 + 2\alpha_n \langle u - Q(u), J(x_{n+1} - Q(u)) \rangle$$

$$\leq (1 - \alpha_n) ||x_n - Q(u)||^2 + 2\alpha_n \langle u - Q(u), J(x_{n+1} - Q(u)) \rangle.$$

Now we apply Lemma 1.7 and use (2.29) to see that $||x_n - Q(u)|| \to 0$ as $n \to \infty$.

Theorem 2.2. Suppose that E is reflexive and has a weakly continuous duality map J_{φ} with gauge φ . Suppose that A is an m-accretive operator in X such that $C = \overline{D(A)}$ is convex, $\{x_n\}_{n=0}^{\infty} \{\alpha_n\}_{n=0}^{\infty}$ and $\{\beta_n^i\}_{n=0}^{\infty}$, $i = 1, 2, \ldots, m-1$ are as Theorem 2.1. Then $\{x_n\}_{n=1}^{\infty}$ converges strongly to a zero point of A.

Proof. We only include the differences. From Theorem 2.1 we obtain

$$\begin{aligned} \|x_{n+1} - J_{r_n} x_n\| \\ &= \|x_{n+1} - y_n^1\| + \|y_n^1 - J_{r_n} x_n\| \\ &\leq \alpha_n \|u - y_n\| + (\beta_n^1 + (1 + \beta_n^1) \sum_{k=2}^{m-1} \prod_{i=2}^k (1 - \beta_n^i)) \|x_n - J_{r_n} x_n\|. \end{aligned}$$

That is,

(2.30)
$$\lim_{n \to \infty} \|x_{n+1} - J_{r_n} x_n\| = 0.$$

We next prove that

(2.31)
$$\limsup_{n \to \infty} \langle u - Q(u), J_{\varphi}(x_n - Q(u)) \rangle \le 0.$$

By Lemma 1.5, we have the sunny nonexpansive retraction $Q: C \to F(T)$. Take a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that

(2.32)
$$\lim_{n \to \infty} \sup \langle u - Q(u), J_{\varphi}(x_n - Q(u)) \rangle = \lim_{k \to \infty} \langle u - Q(u), J_{\varphi}(x_{n_k} - Q(u)) \rangle.$$

Since X is reflexive, we may further assume that $x_{n_k} \rightharpoonup \tilde{x}$. Moreover, since

$$\|x_{n+1} - J_{r_n}\| \to 0,$$

we obtain

$$J_{r_{n_k-1}}x_{n_k-1} \rightharpoonup \widetilde{x}$$

Taking the limit as $k \to \infty$ in the relation

$$[J_{r_{n_k}-1}x_{n_k-1}, A_{r_{n_k}-1}x_{n_k-1}] \in A,$$

we get $[\tilde{x}, 0] \in A$. That is, $\tilde{x} \in F$. Hence by (2.32) and (1.5) we have

$$\limsup_{n \to \infty} \langle u - Q(u), J_{\varphi}(x_n - Q(u)) \rangle = \langle u - Q(u), J_{\varphi}(\tilde{x} - Q(u)) \rangle \le 0.$$

That is (2.31) holds. Finally to prove that $x_n \to p$. It follows from (2.2) and (2.3) that

(2.33)

$$\Phi(\|y_n^1 - p\|) = \Phi(\|\beta_n^1(x_n - p) + (1 - \beta_n^1)(J_{r_n}y_n^2 - p)\|) \\
\leq \Phi(\|\beta_n\|x_n - p\| + (1 - \beta_n)\|J_{r_n}y_n^2 - p\|) \\
\leq \Phi(\|x_n - p\|).$$

Therefore, from (2.33) we obtain

$$\Phi(\|x_{n+1} - p\|) = \Phi(\|\alpha_n(u - p) + (1 - \alpha_n)(y_n^1 - p)\|)$$

$$\leq \Phi((1 - \alpha_n)\|y_n^1 - p\|) + \alpha_n \langle u - p, J_{\varphi}(x_{n+1} - p) \rangle$$

$$\leq (1 - \alpha_n)\Phi(\|y_n^1 - p\|) + \alpha_n \langle u - p, J_{\varphi}(x_{n+1} - p) \rangle$$

$$\leq (1 - \alpha_n)\Phi(\|x_n - p\|) + \alpha_n \langle u - p, J_{\varphi}(x_{n+1} - p) \rangle.$$

An application of Lemma 1.3 yields that $\Phi(||x_n - p||) \to 0$; that is $||x_n - p|| \to 0$ as $n \to \infty$. This completes the proof.

Remark 2.3. Theorem 2.1 and Theorem 2.2 improve Kim and Xu [6] and Xu [12] as a special case. We note that our theorems in this paper carry over trivially to the so-called viscosity approximation methods.

References

- V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Space, Noordhoff, 1976.
- [2] F.E. Browder, Fixed point theorems for noncompact mappings in Hilbert space, Proc. Natl. Acad. Sci. USA, 53(1965), 1272-1276.
- [3] F.E. Browder, Convergence theorems for sequences of nonlinear operators in Banach space, Math. Z., 100(1967), 201-225.
- [4] R.E. Bruck, Nonexpansive projections on subsets of Banach spaces, Pacific J. Math., 47(1973), 341-355.
- [5] K. Goebel, S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York, 1984.
- [6] T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations, Nonlinear Appl., 61(2005), 51-60.
- [7] T.C. Lim, H.K. Xu, Fixed point theorems for asymptotically nonexpansive mappings, Nonlinear Anal., 22(1994), 1345-1355.
- [8] S. Reich, Asymptotic behavior of contractions in Banach spaces, J. Math. Anal. Appl., 44(1973), 57-70.
- S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl., 75(1980), 287-292.

- [10] H.K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66(2002), 240-256.
- [11] H.K. Xu, An iterative approach to quadratic optimization, J. Optim. Theory Appl., 116(2003), 659-678.
- [12] H.K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operator, J. Math. Anal. Appl., 314(2006), 631-643.

Received: June 27, 2007; Accepted: January 18, 2008.