APPLICATIONS OF AN EQUIVALENCE RELATION AT THE DETERMINATION OF SOME RELATIONS BETWEEN CAPACITIES AND OF THEIRS VALUES

ALINA BĂRBULESCU
"Ovidius" University of Constanta, Department of Mathematics
Bd. Mamaia 124, 8700 - Constanta, Romania
E-mail: abarbulescu@univ-ovidius.ro

Abstract

In this paper we shall present some application of an equivalence relation defined on R^{n}. This relation is important because it leads to a simplification of many proofs in which intervene relations between different types of capacities. Keywords: Hausdorff measure, Bessel capacity, equivalence. AMS Subject Classification: 28A78

1. Definitions

In what follows we shall work in the space R^{n} and we shall denote by: $B(a, r)=\left\{x \in R^{n}: d(x, a)<r\right\}$ - the open ball, d - the Euclidean distance.

Definition 1.1. Let φ_{1}, φ_{2} be nonnegative functions defined in a neighborhood of $0 \in R^{n}$, without the origin. We say that φ_{1} and φ_{2} are equivalent when $x \rightarrow 0$, and we denote by $\varphi_{1} \sim \varphi_{2}$, if there exists two numbers $r>0, Q>0$ such that:

$$
\begin{equation*}
\frac{1}{Q} \varphi_{1}(x) \leq \varphi_{2}(x) \leq Q \varphi_{1}(x),(\forall) x:|x|<r \tag{1}
\end{equation*}
$$

An analogous definition can be given when $x \rightarrow \infty$; in this case, $\varphi_{1} \sim \varphi_{2}$ means that the inequalities (1) have place in all the space.

Remark 1.1. The relation " \sim " is an equivalence relation.
Definition 1.2. A continuous function $h(r)$ defined on $\left[0, r_{0}\right),\left(r_{0}>0\right)$, nondecreasing and such that $\lim _{r \rightarrow 0} h(r)=0$ is called a measure function.
Definition 1.3. Let $E \subset R^{n}$ be a bounded set, $\delta>0$ and h a measure function. The Hausdorff h - measure of E, denoted by $H_{h}(E)$, is the number

$$
H_{h}(E)=\lim _{\delta \rightarrow 0} \inf \sum_{i} h\left(\rho_{i}\right)
$$

inf being considered over all coverings of E with a countable number of spheres of radii $\rho_{i} \leq \delta$.

Remark 1.2. The Hausdorff h - measure is a capacity.
Definition 1.4. Let consider the function $f: D\left(\subset R^{n}\right) \rightarrow \bar{R} . f$ is called a δ-class Lipschitz function if:

$$
\begin{equation*}
|f(x+\alpha)-f(x)| \leq M|\alpha|^{\delta}, x \in D, \alpha \in R^{n}, x+\alpha \in D, M>0 \tag{2}
\end{equation*}
$$

Definition 1.5. Let consider $E \subset R^{n}$ and h - a measure function. E has a positive inferior h-density in a point $a \in E$, denoted by $D_{h}(a)$, if

$$
\varliminf_{r \rightarrow 0} \frac{H_{h}(E \frown B(a, r))}{h(2 r)}>0
$$

2. LEMMAS

Lemma 2.1. If $h=h(r)$ is a measure function which satisfies:

$$
\begin{equation*}
h(2 r) \leq Q h(r), 0 \leq r \leq 1 / 2, Q>0 \tag{3}
\end{equation*}
$$

and $E \subset R^{n}$ is a Cantor set, then:

$$
\begin{equation*}
\frac{1}{Q} \varliminf_{j \rightarrow \infty} 2^{n j} h\left(l_{j}\right) \leq H_{h}(E) \leq Q \varliminf_{j \rightarrow \infty} 2^{n j} h\left(l_{j}\right) \tag{4}
\end{equation*}
$$

where Q is a constant which doesn't depend on E.
For details, see $[A M]$.
Lemma 2.2. The Borelian set $E \subset R^{n}$ has a positive inferior h-density in every point $x \in E$ if:
i. $0<H_{h}(E)<\infty$,
ii. $h(2 r) \leq Q h(r),(\forall) 0<r<r_{0}\left(r_{0}\right.$ small enough $), Q \in\left[1,2^{n}\right]$,
iii. E is a Cantor set: $E=\underset{k=1}{\infty} E_{k}$, where E_{k} contains $\mathscr{2}^{n k} n$-dimensional intervals with the lengths l_{k} and

$$
\begin{equation*}
2 l_{k+1}<l_{k}, c_{1}<2^{n k} h\left(l_{k}\right)<c_{2}, c_{1}, c_{2} \in R . \tag{5}
\end{equation*}
$$

For details, see $[W]$.
In what follows, we denote by $B_{\alpha, p}(E)$ the Bessel capacity of a set $E \subset R^{n}$.
Lemma 2.3. If h is a measure function such that:

$$
\int_{0}^{R}\left[r^{\alpha-n p} h(r)\right]^{\frac{1}{p-1}} \frac{d r}{r}=+\infty
$$

E is a Borel set, which has a positive inferior h - density in every point $x \in E$ and $0<H_{h}(E)<+\infty$, then $B_{\alpha, p}(E)$.

3. Results

We could divide the following results in two parts:
i. theorems related to the values of the Hausdorff h -measure of some sets;
ii. theorems concerning the relations between different types of capacities.

The first class contains the following three theorems and the second class, the last two.

Theorem 3.1. Let consider a set of contractions $\left\{\psi_{j}\right\}_{j=1, \ldots, m}$ on R^{n}, with the contraction ratios $r_{j}<1$ and s the number determined by: $\sum_{j=1}^{m} r_{j}^{s}=1$. If E is the residual set of the Apollonian packing and h a measure function such that:

$$
\begin{equation*}
h(t) \sim t^{s} \tag{6}
\end{equation*}
$$

then: $0<H_{h}(E)<+\infty$.
Theorem 3.2. If $s \geq \frac{\log 3}{\log \left(1+2 \cdot 3^{-1 / 2}\right)}$, E is the residual set of the Apollonian packing and h is any measure function that satisfies (6), then there exist $Q>0$ such that: $H_{h}(E)<\left(2 \cdot 3^{-1 / 2}\right)^{s} Q$.

For details, see [B3].
Theorem 3.3. Let consider: $f:[0,1] \longrightarrow \bar{R}-a \delta$-class Lipschitz function, Γ, its graph and h - a measure function which satisfies (6).

If $(\delta \in[0,1]$ and $p \geq 2)$ or $(\delta>1$ and $p \geq 1)$ then: $H_{h}(\Gamma)<+\infty$.
For details, see [B4].
Theorem 3.4. If $n, p \in N^{*}, p \neq 1,0<\alpha<+\infty, 0<w \leq n, \alpha p \leq n$, then:

1. There exist a compact set $E \subset R^{n}$ and
i. a measure function h, such that:
$H_{h}(E)>0 \Rightarrow B_{\alpha, p}(E)>0$, if $\alpha p>w ;$
ii. a measure function h, such that:
$H_{h}(E)<+\infty \Rightarrow B_{\alpha, p}(E)=0$, if $\alpha p \leq w$.
2. There exist a compact set $E \subset R^{n}$ and
i. a measure function h, such that:
$H_{h}(E)>0 \Rightarrow B_{\alpha, p}(E)>0$, if $\alpha p \geq w ;$
ii. a measure function h, such that:
$H_{h}(E)<+\infty \Rightarrow B_{\alpha, p}(E)=0$, if $\alpha p<w$.
For details, see $[A M],[B 1],[B 2]$.
In the paper $[C]$, was denoted:

$$
\log _{m} \frac{1}{r_{m}}=\underbrace{\log \circ \log \circ \ldots \circ \log }_{m \text { times }} \frac{1}{r_{m}}
$$

and introduced the function:

$$
\begin{equation*}
h_{\alpha p, p-1, m, \beta}(r)=r^{n-\alpha p} \prod_{k=1}^{m-1}\left(\log _{k} \frac{1}{r}\right)^{1-p}\left(\log _{m} \frac{1}{r}\right)^{-\beta} \tag{7}
\end{equation*}
$$

$m, p \in N^{*}, \alpha p \leq n, 0<\beta \leq p-1,0<r<r_{m}, \log _{m} \frac{1}{r_{m}}>1$.
Theorem 3.5. There is a compact set $E \subset R^{n}$, which satisfies the following property: if $0<H_{h_{\alpha p, p-1, m, \beta}}(E)<+\infty, m, p \in N^{*}, \alpha p \leq n, 0<\beta \leq p-1$, then $B_{\alpha, p}(E)=0$.

Proof. We consider E a Cantor set which satisfies the hypothesis of lemma 2 and h, the function introduced in (7). The interval lengths are chosen to satisfy:

$$
\begin{equation*}
c_{1}<2^{n k} h_{\alpha p, p-1, m, \beta}\left(l_{k}\right)<c_{2}, c_{1}, c_{2}>0 . \tag{8}
\end{equation*}
$$

First, we prove that $h_{\alpha p, p-1, m, \beta}$ satisfies the hypothesis of the lemma 1, that is, there exist $Q>0$, such that:

$$
\begin{equation*}
h_{\alpha p, p-1, m, \beta}(2 r) \leq Q h_{\alpha p, p-1, m, \beta}(r), 0<r \leq 1 / 2 . \tag{9}
\end{equation*}
$$

(9) is equivalent with:
(10)

$$
(2 r)^{\alpha p-n} \prod_{k=1}^{m-1}\left(\log _{k} \frac{1}{2 r}\right)^{1-p}\left(\log _{m} \frac{1}{2 r}\right)^{-\beta} \leq Q r^{\alpha p-n} \prod_{k=1}^{m-1}\left(\log _{k} \frac{1}{r}\right)^{1-p}\left(\log _{m} \frac{1}{r}\right)^{-\beta}
$$

We look for $Q \in\left[1,2^{n}\right]$ of the form:

$$
\begin{equation*}
Q=Q_{m}^{\beta} \prod_{k=1}^{m-1} Q_{k}^{p-1}, Q_{k}>1, k=1, \ldots, m \tag{11}
\end{equation*}
$$

Now, (10) can be written:
(10')
$2^{\alpha p-n} \prod_{k=1}^{m-1}\left(\log _{k} \frac{1}{2 r}\right)^{1-p}\left(\log _{m} \frac{1}{2 r}\right)^{-\beta} \leq Q_{m}^{\beta} \prod_{k=1}^{m-1}\left[Q_{k}^{p-1}\left(\log _{k} \frac{1}{r}\right)^{1-p}\left(\log _{m} \frac{1}{r}\right)^{-\beta}\right]$
If $Q \in\left[1,2^{n}\right]$ and $\alpha p \leq n$,to have (10^{\prime}) is sufficient to prove:

$$
\begin{equation*}
\log _{k} \frac{1}{2 r} \leq Q_{k} \log _{k} \frac{1}{r}, Q_{k}>1, k=1, \ldots, m \tag{12}
\end{equation*}
$$

We prove this assertion. To do this, we suppose that (12) take place and $0<\beta \leq p-1$. Thus:

$$
\begin{gathered}
\left\{\begin{aligned}
\left(\log _{k} \frac{1}{2 r}\right)^{1-p} \leq Q_{k}^{p-1} & \left(\log _{k} \frac{1}{r}\right)^{1-p}, k=1, \ldots, m-1 \Rightarrow \\
\left(\log _{m} \frac{1}{2 r}\right)^{-\beta} & \leq Q_{k}^{\beta}\left(\log _{k} \frac{1}{r}\right)^{-\beta}
\end{aligned} \Rightarrow\right. \\
\prod_{k=1}^{m-1}\left(\log _{k} \frac{1}{2 r}\right)^{1-p}\left(\log _{m} \frac{1}{2 r}\right)^{-\beta} \leq Q_{m}^{\beta} \prod_{k=1}^{m-1}\left[Q_{k}^{p-1}\left(\log _{k} \frac{1}{r}\right)^{1-p}\left(\log _{m} \frac{1}{r}\right)^{-\beta}\right]
\end{gathered}
$$

and $2^{\alpha p-n} \leq 1$ because $\alpha p \leq n$.
From the last two relations, it results (10^{\prime}).
Now, we shall prove that for $r>0$,small enough, that following relation is true:

$$
\begin{equation*}
\log \frac{1}{r} \sim \log \frac{1}{2 r} \tag{13}
\end{equation*}
$$

Indeed,

$$
\lim _{r \rightarrow 0} \frac{\log \frac{1}{r}}{\log \frac{1}{2 r}}=\lim _{r \rightarrow 0} \frac{\log r}{\log r+\log 2}=1
$$

Then, there exist $Q_{1}>0$ such that:

$$
\frac{1}{Q_{1}} \log \frac{1}{2 r} \leq \log \frac{1}{r} \leq Q_{1} \log \frac{1}{2 r}
$$

But, the function $f(r)=\log \frac{1}{r}, 0<r<r_{0}$ is decreasing and thus:

$$
\log \frac{1}{2 r} \leq \log \frac{1}{r}
$$

From the two previous relations it results that Q_{1} must be greater or equal with zero.
Now, we use the induction to prove (12).
For $k=1$, the relation was proved. We suppose that it is true for $k-1(k \in$ $\left.N^{*}-\{1\}\right)$ and we prove it for k, i.e.:

$$
\log _{k} \frac{1}{r} \sim \log _{k} \frac{1}{2 r}
$$

for $r>0$, small enough.

$$
\lim _{n \rightarrow 0} \frac{\log _{k} \frac{1}{r}}{\log _{k} \frac{1}{2 r}}=\lim _{r \rightarrow 0} \frac{\left[\log _{k-1} \frac{1}{r}\right]^{\prime}}{\log _{k-1} \frac{1}{r}} \cdot \frac{\log _{k-1} \frac{1}{2 r}}{\left[\log _{k-1} \frac{1}{2 r}\right]^{\prime}}=\lim _{r \rightarrow 0} \frac{\prod_{j=1}^{k-1} \log _{j} \frac{1}{r}}{\prod_{j=1}^{k-1} \log _{j} \frac{1}{2 r}}
$$

This limit is a finite one, because the fraction terms are comparable.
The proof of (12) is complete.
The hypothesis of lemma 2 are satisfied. Then, E has a inferior positive h-density in every point x.

Using (8) and lemma 1 , it results that $0<H_{h_{\alpha p, p-1, m, \beta}}(E)<+\infty$.

$$
\int_{0}^{r_{0}}\left[r^{\alpha p-n} h_{\alpha p, p-1, m, \beta}(r)\right]^{\frac{1}{p-1}} \frac{d r}{r}=\int_{0}^{r_{0}}\left[\prod_{k=1}^{m-1}\left(\log _{k} \frac{1}{r}\right)^{-1}\left(\log _{m} \frac{1}{r}\right)^{-\frac{\beta}{p-1}}\right] \frac{d r}{r}=\infty
$$

for r_{0} small enough.
From lemma 3, we obtain: $B_{\alpha, p}(E)=0$.

References

[A] D. Adam, Traces of potential.II. Indiana Univ. Math. J., 22,1973, 907-919
[AM] D. Adams, N. Meyers, Bessel potentials. Inclusion relations among classes of exceptional sets II. Indiana Univ. Math. J., 22,1973, 873 -905
[B1] A. Barbulescu, P - modulus and p - capacity, PhD. Thesis, Iasi, 1997
[B2] A. Barbulescu, About some relations between capacities and Hausdorff h - measure. Proceedings of The Communication Session of the University "P. Maior", Tg. Mures, 2000, tome 7, 13-20 (in Romanian)
[B3] A. Barbulescu, About the positivity of the Hausdorff h - measure. The Bulletin for Applied and Computing Math., XCIV, Budapest, 2001, 117-124
[B4] A. Barbulescu, About the Hausdorff measure of a set. Proceedings of the International Conference on Complex Analysis and Related Topics, Brasov, 2001 (to appear)
[C] P. Caraman, Relations between capacities, h - measure Hausdorff and p-modules. Mathematica, Tome 7, N1, 1978, 13-49
[W] H. Wallin, Metrical characterisation of conformal capacity zero. Preprint, Univ of Umea, Dept. of Math., S - 90187, Umea, Nr.5, 1974, 1-17

