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1. Definitions

In what follows we shall work in the space Rn and we shall denote by:
B(a, r) = {x ∈ Rn : d(x, a) < r} - the open ball,
d - the Euclidean distance.

Definition 1.1. Let ϕ1, ϕ2 be nonnegative functions defined in a neighborhood of
0 ∈ Rn,without the origin. We say that ϕ1and ϕ2 are equivalent when x → 0, and we
denote by ϕ1 ∼ ϕ2, if there exists two numbers r > 0, Q > 0 such that:

(1)
1
Q

ϕ1(x) ≤ ϕ2(x) ≤ Qϕ1(x), (∀)x : |x| < r

An analogous definition can be given when x → ∞; in this case, ϕ1 ∼ ϕ2 means that
the inequalities (1) have place in all the space.

Remark 1.1. The relation ”∼ ” is an equivalence relation.

Definition 1.2. A continuous function h(r) defined on [0, r0) , (r0 > 0), nondecreas-
ing and such that lim

r→0
h(r) = 0 is called a measure function.

Definition 1.3. Let E ⊂ Rn be a bounded set, δ > 0 and h a measure function. The
Hausdorff h - measure of E, denoted by Hh(E), is the number

Hh(E) = lim
δ→0

inf
∑

i

h(ρi)

inf being considered over all coverings of E with a countable number of spheres of radii
ρi ≤ δ.
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Remark 1.2. The Hausdorff h - measure is a capacity.

Definition 1.4. Let consider the function f : D(⊂ Rn) → R . f is called a δ−class
Lipschitz function if:

(2) |f(x + α)− f(x)| ≤ M |α|δ , x ∈ D, α ∈ Rn, x + α ∈ D,M > 0

Definition 1.5. Let consider E ⊂ Rn and h - a measure function. E has a positive
inferior h -density in a point a ∈ E , denoted by Dh(a),if

lim
r→0

Hh(E _ B(a, r))
h(2r)

> 0

2. Lemmas

Lemma 2.1. If h = h(r) is a measure function which satisfies:

(3) h(2r) ≤ Qh(r), 0 ≤ r ≤ 1/2, Q > 0

and E ⊂ Rn is a Cantor set, then:

(4)
1
Q

lim
j→∞

2njh(lj) ≤ Hh(E) ≤ Q lim
j→∞

2njh(lj),

where Q is a constant which doesn’t depend on E.

For details, see [AM ].

Lemma 2.2. The Borelian set E ⊂ Rn has a positive inferior h -density in every
point x ∈ E if:

i. 0 < Hh(E) < ∞,
ii. h(2r) ≤ Qh(r), (∀)0 < r < r0 (r0 small enough), Q ∈ [1, 2n] ,
iii. E is a Cantor set: E = ∞

_
k=1

Ek,where Ek contains 2nk n-dimensional intervals

with the lengths lk and

(5) 2lk+1 < lk, c1 < 2nkh(lk) < c2, c1, c2 ∈ R.

For details, see [W ] .
In what follows, we denote by Bα,p(E) the Bessel capacity of a set E ⊂ Rn.

Lemma 2.3. If h is a measure function such that:
∫ R

0

[
rα−nph(r)

] 1
p−1

dr

r
= +∞,

E is a Borel set, which has a positive inferior h - density in every point x ∈ E and
0 < Hh(E) < +∞, then Bα,p(E).
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3. Results

We could divide the following results in two parts:
i. theorems related to the values of the Hausdorff h -measure of some sets;
ii. theorems concerning the relations between different types of capacities.
The first class contains the following three theorems and the second class, the last

two.

Theorem 3.1. Let consider a set of contractions {ψj}j=1,...,m on Rn, with the con-
traction ratios rj < 1 and s the number determined by:

∑m
j=1 rs

j = 1. If E is the
residual set of the Apollonian packing and h a measure function such that:

(6) h(t) ∼ ts,

then: 0 < Hh(E) < +∞.

Theorem 3.2. If s ≥ log 3
log(1+2·3−1/2)

, E is the residual set of the Apollonian packing
and h is any measure function that satisfies (6), then there exist Q > 0 such that:
Hh(E) < (2 · 3−1/2)sQ.

For details, see [B3].

Theorem 3.3. Let consider: f : [0, 1] −→ R - a δ−class Lipschitz function, Γ, its
graph and h - a measure function which satisfies (6).

If (δ ∈ [0, 1] and p ≥ 2) or (δ > 1 and p ≥ 1) then: Hh(Γ) < +∞.

For details, see [B4].

Theorem 3.4. If n, p ∈ N∗, p 6= 1, 0 < α < +∞, 0 < w ≤ n, αp ≤ n, then:
1. There exist a compact set E ⊂ Rn and
i. a measure function h, such that:
Hh(E) > 0 ⇒ Bα,p(E) > 0, ifαp > w;
ii. a measure function h, such that:
Hh(E) < +∞⇒ Bα,p(E) = 0, if αp ≤ w.
2. There exist a compact set E ⊂ Rn and
i. a measure function h, such that:
Hh(E) > 0 ⇒ Bα,p(E) > 0, if αp ≥ w;
ii. a measure function h, such that:
Hh(E) < +∞⇒ Bα,p(E) = 0, if αp < w.

For details, see [AM ] , [B1] , [B2] .

In the paper [C], was denoted:

logm

1
rm

= log ◦ log ◦... ◦ log︸ ︷︷ ︸
m times

1
rm

and introduced the function:

(7) hαp,p−1,m,β(r) = rn−αp
m−1∏

k=1

(
logk

1
r

)1−p (
logm

1
r

)−β

,



206 ALINA BĂRBULESCU

m, p ∈ N∗, αp ≤ n, 0 < β ≤ p− 1, 0 < r < rm, logm
1

rm
> 1.

Theorem 3.5. There is a compact set E ⊂ Rn, which satisfies the following property:
if 0 < Hhαp,p−1,m,β

(E) < +∞,m, p ∈ N∗, αp ≤ n, 0 < β ≤ p− 1, then Bα,p(E) = 0.

Proof. We consider E a Cantor set which satisfies the hypothesis of lemma 2 and
h, the function introduced in (7). The interval lengths are chosen to satisfy:

(8) c1 < 2nkhαp,p−1,m,β(lk) < c2, c1, c2 > 0.

First,we prove that hαp,p−1,m,β satisfies the hypothesis of the lemma 1, that is, there
exist Q > 0, such that:

(9) hαp,p−1,m,β(2r) ≤ Qhαp,p−1,m,β(r), 0 < r ≤ 1/2.

(9) is equivalent with:
(10)

(2r)αp−n
m−1∏

k=1

(
logk

1
2r

)1−p (
logm

1
2r

)−β

≤ Qrαp−n
m−1∏

k=1

(
logk

1
r

)1−p (
logm

1
r

)−β

We look for Q ∈ [1, 2n] of the form:

(11) Q = Qβ
m

m−1∏

k=1

Qp−1
k , Qk > 1, k = 1, ..., m.

Now, (10) can be written:
(10’)

2αp−n
m−1∏

k=1

(
logk

1
2r

)1−p (
logm

1
2r

)−β

≤ Qβ
m

m−1∏

k=1

[
Qp−1

k

(
logk

1
r

)1−p (
logm

1
r

)−β
]

If Q ∈ [1, 2n] and αp ≤ n,to have (10’) is sufficient to prove:

(12) logk

1
2r

≤ Qk logk

1
r
, Qk > 1, k = 1, ...,m

We prove this assertion. To do this, we suppose that (12) take place and 0 < β ≤ p−1.
Thus: { (

logk
1
2r

)1−p ≤ Qp−1
k

(
logk

1
r

)1−p
, k = 1, ..., m− 1(

logm
1
2r

)−β ≤ Qβ
k

(
logk

1
r

)−β ⇒

m−1∏

k=1

(
logk

1
2r

)1−p (
logm

1
2r

)−β

≤ Qβ
m

m−1∏

k=1

[
Qp−1

k

(
logk

1
r

)1−p (
logm

1
r

)−β
]

and 2αp−n ≤ 1 because αp ≤ n.
From the last two relations, it results (10’).
Now, we shall prove that for r > 0,small enough, that following relation is true:

(13) log
1
r
∼ log

1
2r

Indeed,

lim
r→0

log 1
r

log 1
2r

= lim
r→0

log r

log r + log 2
= 1
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Then, there exist Q1 > 0 such that:
1

Q1
log

1
2r

≤ log
1
r
≤ Q1 log

1
2r

But, the function f(r) = log 1
r , 0 < r < r0 is decreasing and thus:

log
1
2r

≤ log
1
r

From the two previous relations it results that Q1 must be greater or equal with zero.
Now, we use the induction to prove (12).
For k = 1, the relation was proved. We suppose that it is true for k − 1 (k ∈

N∗ − {1}) and we prove it for k, i.e.:

logk

1
r
∼ logk

1
2r

for r > 0, small enough.

lim
n→0

logk
1
r

logk
1
2r

= lim
r→0

[
logk−1

1
r

]′
logk−1

1
r

· logk−1
1
2r[

logk−1
1
2r

]′ = lim
r→0

k−1∏

j=1

logj

1
r

k−1∏

j=1

logj

1
2r

This limit is a finite one, because the fraction terms are comparable.
The proof of (12) is complete.
The hypothesis of lemma 2 are satisfied. Then, E has a inferior positive h -density

in every point x.
Using (8) and lemma 1, it results that 0 < Hhαp,p−1,m,β

(E) < +∞.

∫ r0

0

[
rαp−nhαp,p−1,m,β(r)

] 1
p−1

dr

r
=

∫ r0

0

[
m−1∏

k=1

(
logk

1
r

)−1 (
logm

1
r

)− β
p−1

]
dr

r
= ∞,

for r0 small enough.
From lemma 3, we obtain: Bα,p(E) = 0.¤
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