Seminar on Fixed Point Theory Cluj-Napoca, Volume 3, 2002, 203-208 http://www.math.ubbcluj.ro/~nodeacj/journal.htm

APPLICATIONS OF AN EQUIVALENCE RELATION AT THE DETERMINATION OF SOME RELATIONS BETWEEN CAPACITIES AND OF THEIRS VALUES

ALINA BĂRBULESCU

"Ovidius" University of Constanta, Department of Mathematics Bd. Mamaia 124, 8700 - Constanta, Romania E-mail: abarbulescu@univ-ovidius.ro

Abstract. In this paper we shall present some application of an equivalence relation defined on \mathbb{R}^n . This relation is important because it leads to a simplification of many proofs in which intervene relations between different types of capacities.

 ${\bf Keywords:} \ {\rm Hausdorff} \ {\rm measure, \ Bessel \ capacity, \ equivalence.}$

AMS Subject Classification: 28A78

1. Definitions

In what follows we shall work in the space R^n and we shall denote by: $B(a,r) = \{x \in R^n : d(x,a) < r\}$ - the open ball, d - the Euclidean distance.

Definition 1.1. Let φ_1, φ_2 be nonnegative functions defined in a neighborhood of $0 \in \mathbb{R}^n$, without the origin. We say that φ_1 and φ_2 are equivalent when $x \to 0$, and we denote by $\varphi_1 \sim \varphi_2$, if there exists two numbers r > 0, Q > 0 such that:

(1)
$$\frac{1}{Q}\varphi_1(x) \le \varphi_2(x) \le Q\varphi_1(x), (\forall)x : |x| < r$$

An analogous definition can be given when $x \to \infty$; in this case, $\varphi_1 \sim \varphi_2$ means that the inequalities (1) have place in all the space.

Remark 1.1. The relation " \sim " is an equivalence relation.

Definition 1.2. A continuous function h(r) defined on $[0, r_0)$, $(r_0 > 0)$, nondecreasing and such that $\lim_{r \to 0} h(r) = 0$ is called a measure function.

Definition 1.3. Let $E \subset \mathbb{R}^n$ be a bounded set, $\delta > 0$ and h a measure function. The Hausdorff h - measure of E, denoted by $H_h(E)$, is the number

$$H_h(E) = \lim_{\delta \to 0} \inf \sum_i h(\rho_i)$$

inf being considered over all coverings of E with a countable number of spheres of radii $\rho_i \leq \delta$.

Remark 1.2. The Hausdorff h - measure is a capacity.

Definition 1.4. Let consider the function $f : D(\subset \mathbb{R}^n) \to \overline{\mathbb{R}}$. f is called a δ -class Lipschitz function if:

(2)
$$|f(x+\alpha) - f(x)| \le M |\alpha|^{\delta}, x \in D, \alpha \in \mathbb{R}^n, x+\alpha \in D, M > 0$$

Definition 1.5. Let consider $E \subset \mathbb{R}^n$ and h - a measure function. E has a positive inferior h -density in a point $a \in E$, denoted by $D_h(a)$, if

$$\lim_{r\to 0}\frac{H_h(E\frown B(a,r))}{h(2r)}>0$$

2. Lemmas

Lemma 2.1. If h = h(r) is a measure function which satisfies:

(3) $h(2r) \le Qh(r), 0 \le r \le 1/2, Q > 0$

and $E \subset \mathbb{R}^n$ is a Cantor set, then:

(4)
$$\frac{1}{Q} \lim_{j \to \infty} 2^{nj} h(l_j) \le H_h(E) \le Q \lim_{j \to \infty} 2^{nj} h(l_j),$$

where Q is a constant which doesn't depend on E.

For details, see [AM].

Lemma 2.2. The Borelian set $E \subset \mathbb{R}^n$ has a positive inferior h -density in every point $x \in E$ if:

i. $0 < H_h(E) < \infty$, ii. $h(2r) \le Qh(r), (\forall) 0 < r < r_0 (r_0 \text{ small enough}), Q \in [1, 2^n]$, iii. E is a Cantor set: $E = \bigotimes_{k=1}^{\infty} E_k$, where E_k contains 2^{nk} n-dimensional intervals with the lengths l_k and

(5)
$$2l_{k+1} < l_k, \ c_1 < 2^{nk}h(l_k) < c_2, \ c_1, \ c_2 \in R$$

For details, see [W].

In what follows, we denote by $B_{\alpha,p}(E)$ the Bessel capacity of a set $E \subset \mathbb{R}^n$.

Lemma 2.3. If h is a measure function such that:

$$\int_0^R \left[r^{\alpha - np} h(r) \right]^{\frac{1}{p-1}} \frac{dr}{r} = +\infty,$$

E is a Borel set, which has a positive inferior h - density in every point $x \in E$ and $0 < H_h(E) < +\infty$, then $B_{\alpha,p}(E)$.

3. Results

We could divide the following results in two parts:

i. theorems related to the values of the Hausdorff h -measure of some sets;

ii. theorems concerning the relations between different types of capacities.

The first class contains the following three theorems and the second class, the last two.

Theorem 3.1. Let consider a set of contractions $\{\psi_j\}_{j=1,...,m}$ on \mathbb{R}^n , with the contraction ratios $r_j < 1$ and s the number determined by: $\sum_{j=1}^m r_j^s = 1$. If E is the residual set of the Apollonian packing and h a measure function such that:

$$h(t) \sim t^s,$$

then: $0 < H_h(E) < +\infty$.

(6)

Theorem 3.2. If $s \ge \frac{\log 3}{\log(1+2\cdot3^{-1/2})}$, E is the residual set of the Apollonian packing and h is any measure function that satisfies (6), then there exist Q > 0 such that: $H_h(E) < (2 \cdot 3^{-1/2})^s Q.$

For details, see [B3].

Theorem 3.3. Let consider: $f : [0,1] \longrightarrow \overline{R}$ - a δ -class Lipschitz function, Γ , its graph and h - a measure function which satisfies (6).

If $(\delta \in [0,1] \text{ and } p \geq 2)$ or $(\delta > 1 \text{ and } p \geq 1)$ then: $H_h(\Gamma) < +\infty$.

For details, see [B4].

Theorem 3.4. If $n, p \in N^*, p \neq 1, 0 < \alpha < +\infty, 0 < w \leq n, \alpha p \leq n$, then: 1. There exist a compact set $E \subset R^n$ and i. a measure function h, such that: $H_h(E) > 0 \Rightarrow B_{\alpha,p}(E) > 0, if \alpha p > w;$ ii. a measure function h, such that: $H_h(E) < +\infty \Rightarrow B_{\alpha,p}(E) = 0, if \alpha p \leq w.$ 2. There exist a compact set $E \subset R^n$ and i. a measure function h, such that: $H_h(E) > 0 \Rightarrow B_{\alpha,p}(E) > 0, if \alpha p \geq w;$ ii. a measure function h, such that: $H_h(E) < +\infty \Rightarrow B_{\alpha,p}(E) = 0, if \alpha p \geq w;$ ii. a measure function h, such that: $H_h(E) < +\infty \Rightarrow B_{\alpha,p}(E) = 0, if \alpha p < w.$ For details, see [AM], [B1], [B2].

In the paper [C], was denoted:

$$\log_m \frac{1}{r_m} = \underbrace{\log \circ \log \circ \dots \circ \log}_{m \text{ times}} \frac{1}{r_m}$$

and introduced the function:

(7)
$$h_{\alpha p, p-1, m, \beta}(r) = r^{n-\alpha p} \prod_{k=1}^{m-1} \left(\log_k \frac{1}{r} \right)^{1-p} \left(\log_m \frac{1}{r} \right)^{-\beta},$$

 $m,p \in N^*, \alpha p \leq n, 0 < \beta \leq p-1, 0 < r < r_m, \log_m \frac{1}{r_m} > 1.$

Theorem 3.5. There is a compact set $E \subset \mathbb{R}^n$, which satisfies the following property: if $0 < H_{h_{\alpha p, p-1, m, \beta}}(E) < +\infty, m, p \in \mathbb{N}^*, \alpha p \le n, 0 < \beta \le p-1$, then $B_{\alpha, p}(E) = 0$.

Proof. We consider E a Cantor set which satisfies the hypothesis of lemma 2 and h, the function introduced in (7). The interval lengths are chosen to satisfy:

(8)
$$c_1 < 2^{nk} h_{\alpha p, p-1, m, \beta}(l_k) < c_2, c_1, c_2 > 0.$$

First, we prove that $h_{\alpha p, p-1, m, \beta}$ satisfies the hypothesis of the lemma 1, that is, there exist Q > 0, such that:

(9)
$$h_{\alpha p, p-1, m, \beta}(2r) \le Qh_{\alpha p, p-1, m, \beta}(r), 0 < r \le 1/2.$$

(9) is equivalent with:

(10)

$$(2r)^{\alpha p-n} \prod_{k=1}^{m-1} \left(\log_k \frac{1}{2r} \right)^{1-p} \left(\log_m \frac{1}{2r} \right)^{-\beta} \le Qr^{\alpha p-n} \prod_{k=1}^{m-1} \left(\log_k \frac{1}{r} \right)^{1-p} \left(\log_m \frac{1}{r} \right)^{-\beta}$$

We look for $Q \in [1, 2^n]$ of the form:

(11)
$$Q = Q_m^{\beta} \prod_{k=1}^{m-1} Q_k^{p-1}, Q_k > 1, k = 1, ..., m.$$

Now, (10) can be written: (10')

$$2^{\alpha p - n} \prod_{k=1}^{m-1} \left(\log_k \frac{1}{2r} \right)^{1-p} \left(\log_m \frac{1}{2r} \right)^{-\beta} \le Q_m^\beta \prod_{k=1}^{m-1} \left[Q_k^{p-1} \left(\log_k \frac{1}{r} \right)^{1-p} \left(\log_m \frac{1}{r} \right)^{-\beta} \right]$$

If $Q \in [1, 2^n]$ and $\alpha p \leq n$, to have (10') is sufficient to prove:

(12)
$$\log_k \frac{1}{2r} \leq Q_k \log_k \frac{1}{r}, Q_k > 1, k = 1, ..., m$$

We prove this assertion. To do this, we suppose that (12) take place and $0 < \beta \le p-1$. Thus:

$$\begin{cases} \left(\log_{k}\frac{1}{2r}\right)^{1-p} \leq Q_{k}^{p-1} \left(\log_{k}\frac{1}{r}\right)^{1-p}, k = 1, ..., m-1\\ \left(\log_{m}\frac{1}{2r}\right)^{-\beta} \leq Q_{k}^{\beta} \left(\log_{k}\frac{1}{r}\right)^{-\beta} \end{cases} \Rightarrow \\ \prod_{k=1}^{m-1} \left(\log_{k}\frac{1}{2r}\right)^{1-p} \left(\log_{m}\frac{1}{2r}\right)^{-\beta} \leq Q_{m}^{\beta} \prod_{k=1}^{m-1} \left[Q_{k}^{p-1} \left(\log_{k}\frac{1}{r}\right)^{1-p} \left(\log_{m}\frac{1}{r}\right)^{-\beta}\right] \\ \text{and } 2^{\alpha p-n} \leq 1 \text{ because } \alpha p \leq n. \end{cases}$$

From the last two relations, it results (10').

Now, we shall prove that for r > 0, small enough, that following relation is true:

(13)
$$\log \frac{1}{r} \sim \log \frac{1}{2r}$$

Indeed,

$$\lim_{r \to 0} \frac{\log \frac{1}{r}}{\log \frac{1}{2r}} = \lim_{r \to 0} \frac{\log r}{\log r + \log 2} = 1$$

Then, there exist $Q_1 > 0$ such that:

$$\frac{1}{Q_1}\log\frac{1}{2r} \le \log\frac{1}{r} \le Q_1\log\frac{1}{2r}$$

But, the function $f(r) = \log \frac{1}{r}$, $0 < r < r_0$ is decreasing and thus:

$$\log \frac{1}{2r} \le \log \frac{1}{r}$$

From the two previous relations it results that Q_1 must be greater or equal with zero. Now, we use the induction to prove (12).

For k = 1, the relation was proved. We suppose that it is true for k - 1 ($k \in N^* - \{1\}$) and we prove it for k, i.e.:

$$\log_k \frac{1}{r} \sim \log_k \frac{1}{2r}$$

for r > 0, small enough.

$$\lim_{n \to 0} \frac{\log_k \frac{1}{r}}{\log_k \frac{1}{2r}} = \lim_{r \to 0} \frac{\left[\log_{k-1} \frac{1}{r}\right]'}{\log_{k-1} \frac{1}{r}} \cdot \frac{\log_{k-1} \frac{1}{2r}}{\left[\log_{k-1} \frac{1}{2r}\right]'} = \lim_{r \to 0} \frac{\prod_{j=1}^{k-1} \log_j \frac{1}{r}}{\prod_{j=1}^{k-1} \log_j \frac{1}{2r}}$$

This limit is a finite one, because the fraction terms are comparable.

The proof of (12) is complete.

The hypothesis of lemma 2 are satisfied. Then, E has a inferior positive h -density in every point x.

Using (8) and lemma 1, it results that $0 < H_{h_{\alpha p, p-1, m, \beta}}(E) < +\infty$.

$$\int_{0}^{r_{0}} \left[r^{\alpha p-n} h_{\alpha p, p-1, m, \beta}(r) \right]^{\frac{1}{p-1}} \frac{dr}{r} = \int_{0}^{r_{0}} \left[\prod_{k=1}^{m-1} \left(\log_{k} \frac{1}{r} \right)^{-1} \left(\log_{m} \frac{1}{r} \right)^{-\frac{\beta}{p-1}} \right] \frac{dr}{r} = \infty$$

for r_0 small enough.

From lemma 3, we obtain: $B_{\alpha,p}(E) = 0.\square$

References

- [A] D. Adam, Traces of potential.II. Indiana Univ. Math. J., 22,1973, 907 919
- [AM] D. Adams, N. Meyers, Bessel potentials. Inclusion relations among classes of exceptional sets II. Indiana Univ. Math. J., 22,1973, 873 -905
- $[\mathrm{B1}]~$ A. Barbulescu, P modulus~and~p capacity, PhD. Thesis, Iasi, 1997
- [B2] A. Barbulescu, About some relations between capacities and Hausdorff h measure. Proceedings of The Communication Session of the University "P. Maior", Tg. Mures, 2000, tome 7, 13 - 20 (in Romanian)
- [B3] A. Barbulescu, About the positivity of the Hausdorff h measure. The Bulletin for Applied and Computing Math., XCIV, Budapest, 2001, 117 -124
- [B4] A. Barbulescu, About the Hausdorff measure of a set. Proceedings of the International Conference on Complex Analysis and Related Topics, Brasov, 2001 (to appear)
- [C] P. Caraman, Relations between capacities, h measure Hausdorff and p -modules. Mathematica, Tome 7, N1, 1978, 13 -49

ALINA BĂRBULESCU

[W] H. Wallin, Metrical characterisation of conformal capacity zero. Preprint, Univ of Umea, Dept. of Math., S - 90187, Umea, Nr.5, 1974, 1 -17