FUNCTIONAL-DIFFERENTIAL EQUATIONS THAT APPEAR IN PRICE THEORY

ALEXANDRINA-ALINA TARŢA

Babeş-Bolyai University
Str. Kogălniceanu nr. 1
Cluj-Napoca

Abstract. Sufficient conditions are obtained for all positive solutions of:

$$
\frac{d x(t)}{d t}=[f(x(t))-g(x(t-\tau))] x(t)
$$

to converges as $t \rightarrow \infty$ to a positive equilibrium solution.
Keywords: coincidence point, equilibrium solution.
AMS Subject Classification: 54 H 25 .

1. Introduction

In considering the dynamics of price, productions and consumption commodity, Bélair and Mackey [2] have studied the model

$$
p^{\prime}(t)=p(t) f\left(p_{d}, p_{s}\right)
$$

where $p(t)$ is the function which means the price of commodity at the moment t, and p_{d}, p_{s} are the demand price respectively the supply price of this commodity.

Our purpose here is to study the following model:

$$
\begin{equation*}
x^{\prime}(t)=[f(x(t))-g(x(t-\tau))] x(t), \quad t \in R_{+} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
x(t)=\varphi(t), \quad t \in[-\tau, 0] \tag{2}
\end{equation*}
$$

where $\tau>0, f, g \in C\left(R_{+}, R_{+}\right)$and $\varphi \in C\left([-\tau, 0], R_{+}^{*}\right)$.

2. Coincidence points and equilibrium solutions

We consider the equation (1), where f and $g \in C\left(R_{+}, R_{+}\right)$. Let E be the set of equilibrium solutions of (1) and $E_{+}=\{r \in E \mid r>0\}$. We also denote:

$$
\begin{aligned}
& C(f, g):=\left\{t \in R_{+} \mid f(t)=g(t)\right\} \\
& C_{+}(f, g):=\{t \in C(f, g) \mid t>0\}
\end{aligned}
$$

We remark that:

$$
E_{+}=C_{+}(f, g)
$$

We need the following well-known result:
Lemma. (Goebel's theorem) Suppose that:
(i) there exists $a \in] 0,1[$ such that:

$$
|f(x)-f(y)| \leq a|g(x)-g(y)| \text { for all } x, y \in R_{+}
$$

(ii) g is bijective.

Then

$$
E_{+}=\left\{r^{*}\right\}
$$

For more information see [1], [8].

3. A model in case of naive consumer

We consider the problem (1)+(2). The next result establishes sufficient conditions for every positive solution of equation (1) to oscillate about r^{*}.

We have:
Theorem 1. $f, g \in C\left(R_{+}, R_{+}\right)$and $\varphi \in C\left([-\tau, 0], R_{+}^{*}\right)$.
We suppose that:
(i) there exists $a \in] 0,1[$ such that

$$
|f(x)-f(y)| \leq a|g(x)-g(y)| \text { for all } x, y \in R_{+}
$$

(ii) g is bijective
(iii) f is strictly decreasing
(iv) g is strictly increasing
(v) there exists f^{\prime} and g^{\prime} and $\left|f^{\prime}\right|$ is bounded
(vi) $\tau(f(0)+g(M)) \leq 1$ and $\sum_{n=0}^{\infty} f(n \tau)$ converges.

Then
(a) the equation (1) has a unique positive equilibrium solution, r^{*}
(b) if x^{*} is a solution of the problem (1)+(2) then there exists $m, M \in R_{+}$, $0<m<M$, such that $m \leq x^{*}(t) \leq M$ for all $t \in R_{+}$
(c) there exists a unique solution $x^{*}(t)$ of the problem (1) + (2)
(d) if x^{*} is r^{*}-nonoscillatory, then

$$
\lim _{t \rightarrow \infty} x(t)=r^{*}
$$

Proof. (a) follows from Lemma.
(b) We shall first show $x(t)$ is bounded from above. For the sake of contradiction, suppose this is not the case. Then there exists $T \in(0,1]$, and a sequence $t_{j} \rightarrow T$ such that $x\left(t_{j}\right) \rightarrow \infty$ and $x^{\prime}\left(t_{j}\right) \geq 0$. The contradiction will come from the consideration of following two cases:
(1a) Suppose

$$
\liminf _{j \rightarrow \infty} x\left(t_{j}-\tau\right)>0
$$

Then there exists $k>0$ such that $x\left(t_{j}-\tau\right) \geq k$ for large j. This implies that

$$
g\left(x\left(t_{j}-\tau\right)\right) \geq g(k)
$$

and $f\left(x\left(t_{j}\right)\right)$ is bounded. It follows from eq. (1) with t replaced by t_{j} that:

$$
\lim _{j \rightarrow \infty} x^{\prime}\left(t_{j}\right)=-\infty
$$

This is impossible because $x^{\prime}\left(t_{j}-\tau\right) \geq 0$.
(1b) Suppose

$$
\liminf _{j \rightarrow \infty} x\left(t_{j}-\tau\right)=0
$$

By passing to a sequence, if necessary, we may assume

$$
\begin{equation*}
\lim _{j \rightarrow \infty} x\left(t_{j}-\tau\right)=0 \tag{3}
\end{equation*}
$$

Note that because $\varphi(t)>0$ for $t \in[-\tau, 0]$, it follows by (3) that $T>\tau$. Integrate eq. (1) from $t_{j}-\tau$ to obtain
$x\left(t_{j}\right)-x\left(t_{j}-\tau\right)=\int_{t_{j}-\tau}^{t_{j}} f(x(t)) x(t) d t-\int_{t_{j}-\tau}^{t_{j}} g(x(t-\tau)) x(t) d t \leq \int_{t_{j}-\tau}^{t_{j}} f(x(t)) x(t) d t$

$$
\begin{equation*}
x\left(t_{j}\right) \leq x\left(t_{j}-\tau\right)+\int_{t_{j}-\tau}^{t_{j}} f(x(t)) x(t) d t \tag{4}
\end{equation*}
$$

An application of Gronwall's lemma to (4) leads to:

$$
x\left(t_{j}\right) \leq x\left(t_{j}-\tau\right) \exp \int_{t_{j}-\tau}^{t_{j}} f(x(t)) d t
$$

This is impossible because

$$
\lim _{j \rightarrow \infty} x\left(t_{j}\right)=\infty
$$

Next we claim

$$
\liminf _{t \rightarrow \infty} x(t) \neq 0
$$

Suppose that is not the case. Then, there exists a sequence $t_{j} \rightarrow \infty$ such that

$$
x\left(t_{j}\right) \rightarrow 0 \text { and } x^{\prime}\left(t_{j}\right) \leq 0
$$

It follows from eq. (1) that

$$
g\left(x\left(t_{j}-\tau\right)\right) \geq f\left(x\left(t_{j}\right)\right) \rightarrow f(0) \text { as } j \rightarrow \infty
$$

and so there exists $k>0$ such that $x\left(t_{j}-\tau\right) \geq k$ for all large j. By integrating eq. (1) from $t_{j}-\tau$ to t_{j}, we obtain:

$$
\begin{equation*}
\ln \frac{x\left(t_{j}\right)}{x\left(t_{j}-\tau\right)}=\int_{t_{j}-\tau}^{t_{j}}[f(x(t))-g(x(t-\tau))] d t \tag{5}
\end{equation*}
$$

This is impossible because

$$
\lim _{j \rightarrow \infty} \ln \frac{x\left(t_{j}\right)}{x\left(t_{j}-\tau\right)}=-\infty
$$

while the right hand side of eq. (5) is bounded.
(c) An application of method of steps to equation (1) leads to:

$$
A(x)(t)= \begin{cases}\varphi(t), & t \in[-\tau, 0] \\ \varphi(0)+\int_{0}^{t}[f(x(s))-g(\varphi(s-\tau))] x(s) d s, & t \in[0, \tau] \\ A: B(\widetilde{\varphi}(t) ; M) \rightarrow C\left([-\tau, \tau], R_{+}\right)\end{cases}
$$

where

$$
\begin{gathered}
\widetilde{\varphi}(t)= \begin{cases}\varphi(t), & t \in[-\tau, 0] \\
\varphi(0), & t \in[0, \tau]\end{cases} \\
M=\max _{[-\tau, 0]} \varphi(t) \exp \left(\tau \sum_{n-0}^{\infty} f(n \tau)\right)
\end{gathered}
$$

We show that $B(\widetilde{\varphi}(t) ; M) \in I(A)$

$$
\begin{gathered}
|A(x)(t)-\varphi(0)|=\left|\int_{0}^{t}[f(x(s))-g(\varphi(s-\tau))] x(s) d s\right| \leq \\
\leq M \int_{0}^{t}\left(f(0)+g\left(\max _{t \in[-\tau, 0]} \varphi(t)\right)\right) d s \leq M \tau\left(f(0)+g\left(\max _{t \in[-\tau, 0]} \varphi(t)\right)\right)
\end{gathered}
$$

From (vi) we have that

$$
\tau\left(f(0)+g\left(\max _{t \in[-\tau, 0]} \varphi(t)\right)\right) \leq 1
$$

Now we can consider the operator:

$$
A: B(\widetilde{\varphi}(t) ; M) \rightarrow B(\widetilde{\varphi}(t) ; M)
$$

From (v) we have that the operator A is contraction with respect to Bieletscki norm, satisfactory chosen. From Contraction Principle we have:

$$
\begin{gathered}
A(x)(t)= \begin{cases}x_{1}(t) & t \in[0, \tau] \\
x_{1}(\tau)+\int_{\tau}^{t}\left[f(x(s))-g\left(x_{1}(s-\tau)\right)\right] x(s) d s & x \in[\tau, 2 \tau]\end{cases} \\
A: B(\widehat{\varphi}(t) ; M) \rightarrow C\left([-\tau, 2 \tau], R_{+}\right) \\
\left|A(x)(t)-x_{1}(\tau)\right|=\left|\int_{\tau}^{t}\left[f(x(s))-g\left(x_{1}(s-\tau)\right)\right] x(s) d s\right| \leq \\
\leq M \tau\left(f(0)+g\left(\max _{t \in[0, \tau]} x_{1}(t)\right)\right)
\end{gathered}
$$

But

$$
\tau\left(f(0)+g\left(\max _{t \in[0, \tau]} x_{1}(t)\right)\right) \leq 1
$$

In this conditions we have that the operator:

$$
A: B(\widehat{\varphi}(t) ; M) \rightarrow M(\widehat{\varphi}(t) ; M)
$$

has a unique fixed point x_{2}.

For $t \in[(n-1) \tau, n \tau]$ we have:

$$
A(x)(t)=\left\{\begin{array}{l}
x_{n-1}(t) \quad t \in[(n-2) \tau,(n-1) \tau] \\
x_{n-1}((n-1) \tau)+\int_{(n-1) \tau}^{t}\left[f(x(s))-g\left(x_{n-1}(s-\tau)\right)\right] x(s) d s \\
t \in[(n-1) \tau, n \tau]
\end{array}\right.
$$

But

$$
\tau\left(f(0)+g\left(\max _{t \in[(n-2) \tau,(n-1) \tau]} x_{n-1}(t)\right)\right) \leq 1
$$

and we have that the operator A has a unique fixed point x_{n}.
From (v) we have that the operator A is contraction with respect to Bieletscki norm, satisfactory chosen. From the Contraction Principle we have:

$$
A: B(\breve{\varphi}(t) ; M) \rightarrow B(\breve{\varphi}(t) ; M)
$$

where

$$
\breve{\varphi}(t)= \begin{cases}\varphi(t) & t \in[-\tau, 0] \\ \varphi(0) & t \in[0, \tau] \\ \cdots & \\ x_{n-1}((n-1) \tau) & t \in[(n-1) \tau, n \tau] \\ \cdots & \end{cases}
$$

has a unique fixed point x^{*}.
(d) We rewrite (1) in the form

$$
\begin{equation*}
\frac{d y(t)}{d t}=F(y(t), y(t-\tau))-F(0,0) \tag{6}
\end{equation*}
$$

where $F(y(t), y(t-\tau))=\left[f\left(y(t)+r^{*}\right)-g\left(y(t-\tau)+r^{*}\right)\right]\left(y(t)+r^{*}\right)$ and $y(t)=x(t)-r^{*}$.
It is now sufficient to show that $y(t) \rightarrow 0$ as $t \rightarrow \infty$. An application of mean-value theorem to (6) leads to

$$
\begin{equation*}
\frac{d y(t)}{d t}=-a(t) y(t)-b(t) y(t-\tau) \tag{7}
\end{equation*}
$$

where

$$
\begin{gathered}
-a(t)=\frac{\partial F}{\partial y(t)}(u(t), v(t)) \\
-b(t)=\frac{\partial F}{\partial y(t-\tau)}(u(t), v(t))
\end{gathered}
$$

and $(u(t), v(t))$ lies on the line segment joining $(0,0)$ and $(y(t), y(t-\tau))$. It is found that

$$
\begin{gathered}
a(t)=g\left(y(t-\tau)+r^{*}\right)-f\left(y(t)+r^{*}\right)-f^{\prime}\left(y(t)+r^{*}\right)\left(y(t)+r^{*}\right) \\
b(t)=g^{\prime}\left(y(t-\tau)+r^{*}\right)\left(y(t)+r^{*}\right)
\end{gathered}
$$

Note that $a(t)$ and $b(t)$ are positive and are bounded away from zero. The existence of solutions of (7) for all $t \geq 0$ is a consequence of boundedness of $x(t)$ for all $t \geq 0$. Is nonoscillatory then $|y(t)|>0$ for $t>T$. If $y(t)>0$ for $t>T$ then we have from
(7) that $y^{\prime}(t)<0$ and so $\lim _{t \rightarrow \infty} y(t)$ exists. Since $y(t)>0$ eventually, $\lim _{t \rightarrow \infty} y(t)=l \geq 0$. We claim that $I=0$. Then there exists $t_{0}>0$ such that

$$
y(t) \geq \frac{l}{2} \text { for } t \geq t_{0}
$$

We have directly from (7) that

$$
\frac{d y(t)}{d t} \leq-a(t) \frac{l}{2}
$$

leading to

$$
y(t)-y\left(t_{0}\right) \leq-\frac{l}{2} \int_{t_{0}}^{t} a(s) d s
$$

which implies that $y(t) \rightarrow \infty$ as $t \rightarrow \infty$; but this contradicts the eventual positivity of y. Thus $\lim _{t \rightarrow \infty} y(t)=l=0$.

If $y(t)<0$ for $t>T$, the arguments are again similar. Thus the result follows from

$$
\lim _{t \rightarrow \infty} y(t)=0
$$

Remark. In the case of the model studied by A.M. Farahani and E.A. Grove [3] where $f(t)=\frac{a}{b+t^{n}}, n \in[1, \infty]$ we remark that $\sum_{n=0}^{\infty} f(n \tau)$ converges.

References

[1] M. Altman, Dilating mappings, implicit functions and fixed point theorems in finite dimensional spaces, Fund. Math. 1970, 129-141.
[2] J. Bélair, M.C. Mackey, Consumer memory and price fluctuations in commodity markets: An integrodifferential model, J. Dynamics Diff. Equations, 3, 1980, 299-325.
[3] A.M. Farahani, E.A. Grove, A simple model for price fluctuations in a single commodity market, Contemporary Mathematics, Vol.129, 1992, 97-103.
[4] K. Gopalsamy, On an equation modelling haematopoiesis, Automedica vol.15, 1993, 251-257.
[5] M.C. Mackey, Commodity price fluctuations: price dependent delays and nonlinearities as explanatory factors, Journal of Economic Theory, Vol.48, Nr.2, 1989, 497-509.
[6] A.S. Mureşan, On some models of price fluctuation in a market economy, Studia Univ. BabeşBolyai, Mathematica, XXXVIII, 2, 1993.
[7] Ioan A. Rus, Crăciun Iancu, A functional-differential model for price fluctuations in single commodity market, Studia Univ. Babeş-Bolyai, Mathematica, XXXVIII, 2, 1993.
[8] Ioan A. Rus, Some remarks on coincidence theory, Pure Math. Manuscript, Vol.9, 1990-1991, 137-148.

