Seminar on Fixed Point Theory Cluj-Napoca, Volume 3, 2002, 381-388 http://www.math.ubbcluj.ro/~nodeacj/journal.htm

THE GOURSAT-IONESCU PROBLEM FOR HYPERBOLIC INCLUSIONS WITH MODIFIED ARGUMENT

GEORGETA TEODORU

Department of Mathematics, Technical University "Gh. Asachi" Iaşi, 11 Carol I Blvd, Ro-6600, Iaşi 6, ROMANIA E-mail: teodoru@math.tuiasi.ro

Abstract. In this paper we consider the Goursat- Ionescu Problem defined in Straburzyński's sense, for hyperbolic inclusions with modified argument. An existence theorem for a local solution of this problem is proved and some properties of the set of its solutions are established. **Keywords:** multifunction, hyperbolic inclusion, upper-semicontinuity, initial values, absolutely con-

tinuous in Carathéodory's sense function.

AMS Subject Classification: 35L15, 35R70.

1. INTRODUCTION

Goursat's Problem defined by E. Goursat [11] for a quasilinear hyperbolic equation consists in determining one of its solutions, provided that the values of the solution on two curve arcs having a common point, which may be taken as the origin of the system of coordinates, are known [4].

In his PhD Thesis (1927) [13], D.V. Ionescu studied – for the first time in the mathematical literature – boundary value problems of Darboux, Cauchy, Picard and Goursat types for second order partial differential equations with modified argument.

More recently, a series of authors studied the same problems for second order hyperbolic equations of various forms.

In this paper, we consider Goursat-Ionescu Problem in Straburzyński's sense [18], for a hyperbolic inclusion with modified argument.

Let a, b, a', b', a_0, b_0 be positive numbers with $0 < a_0 \leq a', 0 < b_0 \leq b'$ and $y = g(x) : [0, a] \to \mathbb{R}, x = h(y) : [0, b] \to \mathbb{R}$ be nondecreasing functions of class C^1 such that $g(0) = h(0) = 0, 0 \leq g(x) \leq b, 0 \leq h(y) \leq a$. We denote:

$$P = [-a', a] \times [-b', b], \quad \Delta = [0, a] \times [0, b], \quad \Delta_0 = [0, x_0] \times [0, y_0] \subseteq \Delta,$$

$$\begin{split} D &= \{(s,t)/h(t) < s \leq a, \ g(s) < t \leq b\}, \ P_0 = [-a_0, x_0] \times [-b_0, y_0] \subseteq P, \\ D_{xy} &= \{(s,t)/h(t) < s \leq x, \ g(s) < t \leq y\} \end{split}$$

for $(x, y) \in \Delta$, G = P - D, $G_0 = P_0 - D_{x_0 y_0}$, $G_0 \subseteq G$.

Let $\varphi : P \to \mathbb{R}^n$ be an absolutely continuous function in Carathéodory's sense, $\varphi \in C^*(P; \mathbb{R}^n)$ [1,§565 - §570].

We consider Goursat-Ionescu Problem for the hyperbolic inclusion with modified argument of the form

(1.1)
$$\frac{\partial^2 z(x,y)}{\partial x \partial y} \in F(x,y,z(\alpha(x,y),\beta(x,y))), \ (x,y) \in \overline{D},$$

(1.2)
$$z(x,y) = \varphi(x,y), \quad (x,y) \in G,$$

where $F: \Delta \times \Omega \to 2^{\mathbb{R}^n}$ is a multifunction with compact, convex and non-empty values, $\Omega \subset \mathbb{R}^n$ is an open subset, $\alpha \in C(\Delta; [0, a]), \beta \in C(\Delta; [0, b]).$

Under suitable assumptions, we prove an existence theorem for a local solution of this problem, and that the set of solutions is compact in Banach space $C(P_0; \mathbb{R}^n)$, $P_0 = [-a_0, x_0] \times [-b_0, y_0] \subseteq P$; moreover, as a function of the initial values, this set defines an upper- semicontinuous multifunction.

This study was suggested by papers which deal with the Goursat Problem [7]. [18], with Goursat-Ionescu Problem for univalued hyperbolic equations [8], [9] and [19].

2. Preliminaries

The definitions and Theorem 2.1 in this section are taken from [1], [2], [3], [5]-[7], [14]-[17].

Definition 2.1. Let X and Y be two non-empty sets. A multifunction $\Phi: X \to 2^Y$ is a function from X into the family of all non-empty subsets of Y.

To each $x \in X$, a subset $\Phi(x)$ of Y is associated by the multifunction Φ . The set $\bigcup \Phi(x)$ is the range of Φ .

 $x {\in} X$

Definition 2.2. Let us consider $\Phi : X \to 2^Y$. a) If $A \subset X$, the *image* of A by Φ is $\Phi(A) = \bigcup \Phi(x)$;

b) If $B \subset Y$, the counterimage of B by Φ is $\Phi^{-}(B) = \{x \in X | \Phi(x) \cap B \neq \emptyset\}$;

c) The graph of Φ , denoted graph Φ is the set

$$graph\Phi = \{(x, y) \in X \times Y | y \in \Phi(x)\}.$$

Definition 2.3. Let now take $\Phi: X \to 2^X$. An element $x \in X$ with the property $x \in \Phi(x)$ is called a *fixed point* of the multifunction Φ .

Definition 2.4. A univalued function $\varphi : X \to Y$ is said to be a *selection* of $\Phi: X \to 2^Y$ if $\varphi(x) \in \Phi(x)$ for all $x \in X$.

Definition 2.5. Let X and Y be two topological spaces. The multifunction $\Phi: X \to 2^Y$ is upper-semicontinuous if, for any closed subset $B \subset Y$, $\Phi^-(B)$ is closed in X.

Definition 2.6. If (X, \mathcal{F}) is a measurable space and Y is a topological space, the multifunction $\Phi: X \to 2^Y$ is measurable if $\Phi^-(B) \in \mathcal{F}$ for every closed subset $B \subset Y$, \mathcal{F} being the σ -algebra of the measurable sets of X, i.e. $\Phi^{-}(B)$ is measurable.

Theorem 2.1. [17]. Let X and Y be two compact metric spaces and $\Phi: X \to 2^Y$ a multifunction with the property that $\Phi(x)$ is a closed subset of Y for any $x \in X$.

The following assertions are equivalent:

(i) the multifunction Φ is upper-semicontinuous;

(ii) the graph of Φ is a closed subset of $X \times Y$;

(iii) any would be the sequences $(x_n)_{n \in \mathbb{N}}$, $(y_n)_{n \in \mathbb{N}}$, from $x_n \to x$, $y_n \in \Phi(x_n)$, $y_n \to y$ it follows $y \in \Phi(x)$.

Definition 2.7. [5]-[6]. The function $u : \Delta \to \mathbb{R}^n$ is absolutely continuous in Carathéodory's sense [1, §565 - §570] iff u(x, y) is continuous on Δ , absolutely continuous in x (for any y), absolutely continuous in y (for any x), $u_x(x, y)$ is (possibly after a suitable definition on a two-dimensional set of zero measure) absolutely continuous in y (for any x) and u_{xy} is Lebesgue-integrable on Δ .

We denote the class of absolutely continuous functions in Carathéodory's sense by $C^*(\Delta; \mathbb{R}^n)$ [5]-[6].

3. Results

In a similar way as in [2] and [19], we define the notion of a *local solution* for the Goursat-Ionescu Problem (1.1)+(1.2) and we prove an existence theorem for a local solution of this problem, together with some properties of the set of solutions, namely that this is a compact subset in Banach space $C(\Delta_0; \mathbb{R}^n)$ and, as a function of initial values, it defines an upper-semicontinuous multifunction.

Let the following hypotheses be satisfied:

 (H_0) The curves $C_1 : y = g(x), 0 \le x \le a$, and $C_2 : x = h(y), 0 \le y \le b$ are defined by nondecreasing functions of class C^1 such that $g(0) = h(0), 0 \le g(x) \le b, 0 \le h(y) \le a$.

 (H_1) $F: \Delta \times \Omega \to 2^{\mathbb{R}^n}$ is a multifunction with compact, convex, non-empty values in \mathbb{R}^n , $\Omega \subset \mathbb{R}^n$ is an open subset, $\Delta = [0, a] \times [0, b] \subset \mathbb{R}^2$.

(*H*₂) For any $(x, y) \in \Delta$, the mapping $z \to F(x, y, z)$ is upper-semicontinuous on Ω ; (*H*₃) For any $z \in \Omega$ the mapping $(x, y) \to F(x, y, z)$ is Lebesgue measurable on Δ ; (*H*₄) $\alpha \in C(\Delta; [0, a])$ and $\beta \in C(\Delta; [0, b])$;

 (H_5) There exists a function $k: \Delta \to \mathbb{R}_+, k \in \mathcal{L}^1(\Delta; \mathbb{R}_+)$ such that

 $\|\zeta\| \le k(x,y)$ for $\forall \zeta \in F(x,y,z), \ \forall (x,y) \in \Delta, \ \forall z \in \Omega;$

 (H_6) There exists a convex, compact set $M \subset \Omega$ and a point $(x_0, y_0) \in]0, a] \times]0, b]$, such that

$$\int_0^{x_0} \int_0^{y_0} k(s,t) ds \ dt \le d(M,C_\Omega),$$

where $d(M, C_{\Omega})$ is the distance from M to $C_{\Omega} = \mathbb{R}^n - \Omega$; (H_7) The function $\varphi : P \to \mathbb{R}^n$ is absolutely continuous in Carathéodory's sense, $\varphi \in C^*(P; \mathbb{R}^n)$.

 (H_8) The values of function $\lambda : \Delta \to \mathbb{R}^n$, defined by

(3.1)
$$\lambda(x,y) = \varphi(0,0) + \int_0^x \varphi'_x(s,g(s))ds + \int_0^y \varphi'_y(h(t),t)dt,$$

belong to the set M for $(x, y) \in \Delta_0 = [0, x_0] \times [0, y_0] \subset \Delta$.

Remark. It follows that the function λ defined by (3.1) is absolutely continuous in Carathéodory's sense [1, §565 - §570], $\lambda \in C^*(\Delta; \mathbb{R}^n)$, due to hypotheses (H_7) , $\varphi \in C^*(P; \mathbb{R}^n)$ and the integral is absolutely continuous.

Definition 3.1. The *Goursat-Ionescu Problem* for the hyperbolic inclusion with modified argument (1.1) means to determine a *solution* of this inclusion which satisfies the initial conditions (1.2).

Definition 3.2. It is defined a *local solution* of the Goursat-Ionescu Problem (1.1)+(1.2) as a function $Z: P_0 \to \Omega, P_0 = [-a_0, x_0] \times [-b_0, y_0]$, with $0 < a_0 \leq a'$ and $0 < b_0 \leq b'$, which is absolutely continuous in Carathéodory's sense [1], $Z \in$ $C^*(D_0; \mathbb{R}^n)$ and satisfies (1.1) a.e. for $(x, y) \in \overline{D}_{x_0, y_0}$ and also conditions (1.2) for $(x,y) \in G_0 = P_0 - D_{x_0 y_0} \subseteq G.$

Theorem 3.1. Let the hypotheses $(H_0) - (H_8)$ be satisfied. Then:

(i) there exists at least a local solution Z of the Goursat-Ionescu Problem (1.1)+(1.2); (ii) the set S_{λ} of local solutions Z is compact in the Banach space $C(P_0; \mathbb{R}^n)$;

(iii) the multifunction $\lambda \to S_{\lambda}$ is upper-semicontinuous on $C^*(\Delta_0; \mathbb{R}^n)$ taking values in $C(\Delta_0; \mathbb{R}^n)$.

Proof. (i) Let $C^*(P_0; \mathbb{R}^n)$ be the set of absolutely continuous functions in Carathéodory's sense defined on P_0 with values in \mathbb{R}^n [1]. We denote by \mathcal{Z}_M the set of functions $Z: P_0 \to \mathbb{R}^n, Z \in C^*(P_0; \mathbb{R}^n)$, which satisfy the inequality

(3.2)
$$\|\frac{\partial^2 Z(x,y)}{\partial x \partial y}\| \le k(x,y), \text{ a.e. for } (x,y) \in \overline{D}_{x_0 y_0},$$

and also conditions (1.2) for $(x,y) \in G_0 = P_0 - D_{x_0y_0}$. The notation \mathcal{Z}_M is suitable because, by hypothesis $(H_8), \lambda(x,y) \in M$ for $(x,y) \in \Delta_0$. We remark that the absolute continuity in Carathéodory's sense of Z assures the existence of the derivative $\frac{\partial^2 Z(x,y)}{\partial x^2}$ a.e. for $(x,y) \in P_0$ [1, §565 - §570].

 $\partial x \partial y$

We have $\mathcal{Z}_M \subset C^*(P_0; \mathbb{R}^n)$. Then, by hypothesis (H_6) and inequality (3.2), for any $Z \in \mathcal{Z}_M$, it follows that $Z(x, y) \in \Omega$.

Indeed, integrating $\frac{\partial^2 Z(x,y)}{\partial x \partial y}$ on \overline{D}_{xy} we obtain

$$Z(x,y) = \varphi(0,0) + \int_0^x \varphi'_x(s,g(s))ds + \int_0^y \varphi'_y(h(t),t)dt + \iint_{\overline{D}_{xy}} \frac{\partial^2 Z(s,t)}{\partial s \partial t}ds \ dt =$$
$$= \lambda(x,y) + \iint_{\overline{D}_{xy}} \frac{\partial^2 Z(s,t)}{\partial s \partial t}ds \ dt.$$

Using hypothesis (H_6) , inequality (3.2) and (3.3) it results

$$(3.4) \|Z(x,y) - \lambda(x,y)\| = \| \iint_{\overline{D}_{xy}} \frac{\partial^2 Z(s,t)}{\partial s \partial t} ds \, dt \| \le \iint_{\overline{D}_{xy}} \| \frac{\partial^2 Z(s,t)}{\partial s \partial t} \| ds \, dt \le \\ \| \iint_{\overline{D}_{xy}} k(s,t) ds \, dt \le \int_0^{x_0} \int_0^{y_0} k(s,t) ds \, dt \le d(M,C_\Omega).$$

From the hypothesis (H_8) , $\lambda(x, y) \in M$ for $(x, y) \in \Delta_0 = [0, x_0] \times [0, y_0]$ and we have

(3.5)
$$d(Z(x,y),\lambda(x,y)) = ||Z(x,y) - \lambda(x,y)|| \le d(M,C_{\Omega}),$$

which shows that $Z(x, y) \in \Omega$ for $(x, y) \in \Delta_0$.

The set of functions \mathcal{Z}_M is *convex* and *compact* in $C(P_0; \mathbb{R}^n)$. The convexity follows by the definition of this set, and its compactness from the Arzelà-Ascoli Theorem, using hypotheses (H_0) , (H_6) , (H_7) , (H_8) .

We denote by \mathcal{G} the set of the triples $(\lambda, Z, U) \in C^*(\Delta_0; \mathbb{R}^n) \times \mathcal{Z}_M \times \mathcal{Z}_M$ with the property that Z and U satisfy the membership relation

(3.6)
$$\frac{\partial^2 U(x,y)}{\partial x \partial y} \in F(x,y,Z(\alpha(x,y),\beta(x,y))), \text{ a.e. for } (x,y) \in \overline{D}_{x_0y_0}.$$

We prove that, for each $\lambda \in C^*(\Delta_0; \mathbb{R}^n)$ with $\lambda(x, y) \in M$ for $(x, y) \in \Delta_0$, the set of those pairs (Z, U) such that $(\lambda, Z, U) \in \mathcal{G}$ is non-empty and the set \mathcal{G} is closed.

Indeed, let us take $Z \in \mathcal{Z}_M$. From Theorem 1 [2], there exists a μ -measurable (under the μ -Lebesgue measure) multifunction $\Gamma : \Delta_0 \to 2^{\mathbb{R}^n}$ with compact, nonempty values in \mathbb{R}^n such that

(3.7)
$$\Gamma(x,y) \subset F(x,y,Z(\alpha(x,y),\beta(x,y))), \ \forall (x,y) \in \Delta_0.$$

Then, by Theorem 2 or Theorem 3 [3], there exists a measurable selection γ of Γ , i.e. a measurable univalued function $\gamma : \Delta_0 \to \mathbb{R}^n$ with $\gamma(x, y) \in \Gamma(x, y)$ for $(x, y) \in \Delta_0$.

Let the function $U: P_0 \to \mathbb{R}^n$ be defined by

(3.8)
$$U(x,y) = \begin{cases} \lambda(x,y) - \iint_{\overline{D}_{xy}} \gamma(s,t) ds \ dt, \ (x,y) \in \overline{D}_{x_0y_0}, \\ \varphi(x,y) \quad , (x,y) \in G_0 = P_0 - D_{x_0y_0}. \end{cases}$$

Then, the set of those pairs (Z, U) such that (λ, Z, U) is non-empty because

$$(3.9) \qquad \gamma(x,y) \in \Gamma(x,y) \subset F(x,y,Z(\alpha(x,y),\beta(x,y))), \text{ a.e. for } (x,y) \in \Delta_0$$

$$\frac{\partial^2 U(x,y)}{\partial x \partial y} = \gamma(x,y) \in \Gamma(x,y) \subset F(x,y,Z(\alpha(x,y),\beta(x,y))), \text{ a.e. for } (x,y) \in \overline{D}_{x_0y_0},$$

(3.11)
$$\|\frac{\partial^2 U(x,y)}{\partial x \partial y}\| = \|\gamma(x,y)\| \le k(x,y), \ \forall (x,y) \in \overline{D}_{x_0 y_0},$$

by hypothesis (H_5) for $\zeta = \gamma(x, y)$.

For the proof that \mathcal{G} is closed, we consider a sequence of elements in \mathcal{G} , $\{(\lambda_n, Z_n, U_n)\}_{n \in \mathbb{N}}$, convergent to (λ, Z, U) in the space $C^*(\Delta_0; \mathbb{R}^n) \times C(P_0; \mathbb{R}^n) \times L^1(P_0; \mathbb{R}^n)$. We must check that $(\lambda, Z, U) \in \mathcal{G}$, what implies, by the definition of set \mathcal{G} , that conditions (1.2) and (3.10) are satisfied by Z and U.

The set $\left\{\frac{\partial^2 U_n(x,y)}{\partial x \partial y}\right\}_{n \in \mathbb{N}}$ is relatively weakly compact in $L^1(\Delta_0; \mathbb{R}^n)$ by the Dunford-Pettis Criterion [10]. It follows that $\left\{\frac{\partial^2 U_n(x,y)}{\partial x \partial y}\right\}_{n \in \mathbb{N}}$ is weakly convergent to a function $V \in L^1(\Delta_0; \mathbb{R}^n)$. For each $(x, y) \in P_0$, we have (3.12) U(x, y) =

$$\begin{cases} w - \lim_{n \to \infty} U_n(x, y) = w - \lim_{n \to \infty} \left[\lambda_n(x, y) + \iint_{\overline{D}_{xy}} \frac{\partial^2 U_n(s, t)}{\partial s \partial t} \, ds \, dt \right], \ (x, y) \in \overline{D}_{x_0 y_0} \\ \varphi(x, y), \ (x, y) \in G_0 = P_0 - D_{x_0 y_0}. \end{cases} = \begin{cases} \lambda(x, y) + \iint_{\overline{D}_x y_0} V(s, t) \, ds \, dt, \ (x, y) \in \overline{D}_{x_0 y_0}, \end{cases}$$

$$= \begin{cases} \lambda(x,y) + \iint_{\overline{D}_{xy}} V(s,t) \, ds \, dt, \ (x,y) \in \overline{D}_{x_0y_0}, \\ \\ \varphi(x,y), \ (x,y) \in G_0. \end{cases}$$

From the weak convergence $\frac{\partial^2 U_n(x,y)}{\partial x \partial y} \rightarrow V(x,y)$, $(x,y) \in \overline{D}_{x_0y_0}$, using the Corollary of Mazur's Theorem [12], it follows that there exists a sequence of convex combinations $\{W_r\}_{r \in \mathbb{N}}$ of the set $\left\{\frac{\partial^2 U_r}{\partial x \partial y}, \frac{\partial^2 U_{r+1}}{\partial x \partial y}, \ldots\right\}$, strongly convergent to V in $L^1(\Delta_0; \mathbb{R}^n)$. Then, we can extract a subsequence from the sequence $\{W_r\}_{r \in \mathbb{N}}$ which converges a.e. to $V: W_{r_i} \to V$ a.e. for $(x, y) \in \Delta_0$.

Since F(x, y, Z) is convex and compact for all $(x, y) \in \Delta$ and for all $Z \in \Omega$, we obtain from the previous results and from Lemma 2 [2] that

(3.13)
$$V(x,y) \in \bigcap_{r=1}^{\infty} conv \left(\bigcup_{n=r}^{\infty} \frac{\partial^2 U_n(x,y)}{\partial x \partial y} \right) \subset \bigcap_{r=1}^{\infty} conv \left(\bigcup_{n=r}^{\infty} F(x,y,Z_n(\alpha(x,y),\beta(x,y))) \right) \subset V(x,y) = 0$$

$$\subset F(x,y,Z(\alpha(x,y),\beta(x,y))), \text{ a.e. for } (x,y)\in\overline{D}_{x_0y_0}$$

from which it follows that \mathcal{G} is closed.

Indeed, (3.13) shows that $V(x,y) \in F(x,y,Z(\alpha(x,y),\beta(x,y)))$ a.e. for $(x,y) \in \overline{D}_{x_0y_0}$, and we obtain $\frac{\partial^2 U(x,y)}{\partial x \partial y} = V(x,y)$ from (3.12); then, using (3.6) and (3.13) we have

(3.14)
$$V(x,y) = \frac{\partial^2 U(x,y)}{\partial x \partial y} \in F(x,y,Z(\alpha(x,y),\beta(x,y))), \text{ a.e. for } (x,y) \in \overline{D}_{x_0y_0},$$

and also

(3.15)
$$U(x,y) = \varphi(x,y) \text{ for } (x,y) \in G_0 = P_0 - D_{x_0y_0};$$

hence U satisfies initial conditions (1.2) for $(x, y) \in G_0$.

Let us take $\lambda \in C^*(\Delta; \mathbb{R}^n)$ with $\lambda(x, y) \in M$ for $(x, y) \in \Delta_0$. To each $Z \in \mathcal{Z}_M$ we associate the set $\Phi(Z) \subset \mathcal{Z}_M$ as follows:

(3.16)
$$U \in \Phi(Z) \Leftrightarrow U \in \mathcal{Z}_M, \ \frac{\partial^2 U(x,y)}{\partial x \partial y} \in F(x,y,Z(\alpha(x,y),\beta(x,y))), \text{ a.e. } (x,y) \in \Delta_0.$$

We thus define a multifunction $\Phi : \mathbb{Z}_M \to 2^{\mathbb{Z}_M}$. The set $\Phi(Z)$ is convex, compact and non-empty. It can be seen that $\Phi(Z)$ is convex since F(x, y, Z(x, y)) is convex by hypothesis (H_1) . We have $\Phi(Z) \subset \mathbb{Z}_M$ but \mathbb{Z}_M is compact. The multifunction Φ has a closed graph because graph Φ is the set \mathcal{G} for each fixed λ and \mathcal{G} is closed. It follows that $\Phi(Z)$ is compact in $C(P_0; \mathbb{R}^n)$ as a closed subset of the compact set \mathbb{Z}_M . The set $\Phi(Z)$ is non-empty since there exists U, defined by (3.8) with the property $U \in \Phi(Z)$.

The multifunction $\Phi : \mathbb{Z}_M \to 2^{\mathbb{Z}_M}$ having a closed graph, is upper-semicontinuous by Theorem 2.1. Taking into account all the properties of Φ , the Kakutani-Ky Fan fixed point Theorem [10], [17] can be applied.

Indeed, $\Phi : \mathcal{Z}_M \to 2^{\mathcal{Z}_M}$ is defined on \mathcal{Z}_M which is a convex, compact and nonempty set; it is also upper-semicontinuous and its set-values $\Phi(Z)$ are convex, closed and non-empty in \mathcal{Z}_M . From Kakutani-Ky Fan fixed point Theorem it follows that the multifunction Φ has at least a fixed point, i.e. there exists at least an element $Z \in \mathcal{Z}_M$ such that $Z \in \Phi(Z)$, hence Z = U; but U is of the form (3.8), therefore this fixed point Z is a solution of Goursat-Ionescu Problem (1.1)+(1.2).

ii) We denote by S_{λ} the set of solutions to Problem (1.1)+(1.2), a notation showing that any solution Z depends on the function λ defined by (3.1). The set S_{λ} contains at least one element. The set S_{λ} is *compact*, *non-empty* in the Banach space $C(P_0; \mathbb{R}^n)$, being the set of the fixed points of multifunction Φ .

iii) The graph \mathcal{H} of the multifunction $\lambda \to S_{\lambda}$, defined on $C^*(\Delta_0; \mathbb{R}^n)$ with values in $2^{\mathbb{Z}_M}$, $S_{\lambda} \subset \Phi(\mathbb{Z}_M) \subset 2^{\mathbb{Z}_M}$, is closed in $C^*(\Delta_0; \mathbb{R}^n) \times \mathbb{Z}_M$ since \mathcal{H} is the image of the compact set \mathcal{H}_1 of the triples $(\lambda, Z, U) \in \mathcal{G}$ with Z = U, through the projection mapping $(\lambda, Z, U) \to (\lambda, Z)$. The mapping $\lambda \to S_{\lambda}$ is – in general – a multifunction because several solutions of the Problem (1.1)+(1.2) can exist, which are fixed points of mapping Φ corresponding to the same function λ . Because the mapping $\lambda \to S_{\lambda}$ has a closed graph \mathcal{H} by Theorem 2.1, it follows that $\lambda \to S_{\lambda}$ is upper-semicontinuous on $C^*(\Delta_0; \mathbb{R}^n)$, what completes the proof.

References

- Carathéodory C., Vorlesungen über Reelle Funktionen, Chelsea Publishing Company, New York, 1968, 3 Ed.
- [2] Castaing Ch., Sur les équations différentielles multivoques, Comptes Rendus Acad. Sci. Paris, T. 263, No. 2 (1966), Série A, 63-66.
- [3] Castaing Ch., Quelques problèmes de mésurabilité liés à la théorie de la commande, Comptes Rendus Acad. Sci. Paris, T. 262, No. 7 (1966), Série A, 409-411.
- [4] Cinquini Cibrario M., Cinquini S., Equazioni a derivate parziali di tipo iperbolico, Ed. Cremonese, Roma, 1964.
- [5] Deimling K., A Carathéodory theory for systems of integral equations, Ann. Mat. Pura Appl., (4) 86 (1970), 217-260.
- [6] Deimling K., Das Picard-Problem für $u_{xy} = f(x, y, u, u_x, u_y)$ unter Carathéodory-Voraussetzungen, Math. Z., 114(1970), 303-312.

GEORGETA TEODORU

- [7] Deimling K., Das Goursat-Problem fur $u_{xy} = f(x, y, u)$, Aequationes Mathematicae, Vol. 6, Fasc. 2/3 (1971), 303-312.
- [8] Dezsö G., On the Problem Goursat-Ionescu, Seminarul Național "Realizări şi perspective în domeniul traductoarelor pentru echipamente de măsură", Institutul Politehnic Cluj-Napoca, 1986, Vol. II, 151-158.
- [9] Dezsö G., Principii de punct fix şi aplicaţii în teoria ecuaţiilor hiperbolice cu argument modificat, Teză de doctorat, Facultatea de Matematică şi Informatică, Universitatea "Babeş-Bolyai", Cluj-Napoca, 1 Aprilie 2000 (with English Abstract).
- [10] Edwards R. E., Functional Analysis. Theory and Applications, Holt, Rinehart and Winston, 1965.
- [11] Goursat E., Traité d'Analyse, Tome III (1923), 123-124.
- [12] Hille E., Phillips R. S., Functional Analysis and Semigroups, American Mathematical Society, Colloquium Publications, Vol. 31(1957), Fourth printing of Revised Edition, 1981.
- [13] Ionescu D. V., Sur une classe d'équations fonctionelles, Thèse, Paris (1927).
- [14] Marano S., Generalized Solutions of Partial Differential Inclusions Depending on a Parameter, Rend. Accad. Naz. Sc. XL, Mem. Mat., 13(1989), 281-295.
- [15] Marano S., Classical Solutions of Partial Differential Inclusions in Banach Spaces, Appl. Anal., 42, no. 2(1991), 127-143.
- [16] Marano S., Controllability of Partial Differential Inclusions Depending on a Parameter and Distributed Parameter Control Processes, Le Matematiche, Vol. XLV, Fasc. II(1990), 283-300.
- [17] Rus I. A., Principii și aplicații ale teoriei punctului fix, Editura Dacia, Cluj-Napoca, 1979.
- [18] Straburzyński J., Existence of solutions of the Goursat Problem for some functional-differential equations, *Demonstratio Mathematica*, Vol. XV, No. 4 (1982), 883-897.
- [19] Teodoru G., Le problème de Goursat pour une équation aux dérivées partielles multivoque, Mathematica, Tome 28(51), No. 2(1986), 185-188.