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1. INTRODUCTION

Goursat’s Problem defined by E. Goursat [11] for a quasilinear hyperbolic equation
consists in determining one of its solutions, provided that the values of the solution
on two curve arcs having a common point, which may be taken as the origin of the
system of coordinates, are known [4].

In his PhD Thesis (1927) [13], D.V. Ionescu studied — for the first time in the
mathematical literature — boundary value problems of Darboux, Cauchy, Picard and
Goursat types for second order partial differential equations with modified argument.

More recently, a series of authors studied the same problems for second order
hyperbolic equations of various forms.

In this paper, we consider Goursat-Ionescu Problem in Straburzyniski’s sense [18§],
for a hyperbolic inclusion with modified argument.

Let a,b,a’,b,ap,by be positive numbers with 0 < ag < a’, 0 < by < b and
y=g(x):[0,a] = IR, z = h(y) : [0,b] — IR be nondecreasing functions of class C*
such that g(0) = h(0) =0, 0 < g(z) < b, 0 < h(y) < a. We denote:

P = [_al7a] X [—bl7b], A= [O,G] X [Ovb]7 AVES [075(50] X [anO] C A,
D= {(s,t)/h(t) < s <a, g(s) <t<b}, Py=][—ao,xo] % [~bo,yo] C
Dyy =A{(s,1)/h(t) <s <z, g(s) <t <y}
for (z,y) € A, G=P —D, Gy = Py — Dyy,, Go C G.

Let ¢ : P — IR™ be an absolutely continuous function in Carathéodory’s sense,
v € C*(P; IR™) [1,8565 - §570].

P,
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We consider Goursat-Ionescu Problem for the hyperbolic inclusion with modified
argument of the form
0?z(x,y) _

(11) Ta;/ € F(x,y,z(a(x,y),ﬁ(x,y))), (x,y) € D,

(12) Z(‘Tvy) = w(m,y), (x,y) € G,
where F : A x Q — 2F" is a multifunction with compact, convex and non-empty
values, 2 C IR™ is an open subset, a € C'(A;[0,qa]), B € C(A;[0,b]).

Under suitable assumptions, we prove an existence theorem for a local solution of
this problem, and that the set of solutions is compact in Banach space C'(Py; R"),
Py = [—ap, xo] X [=bo,yo] € P; moreover, as a function of the initial values, this set
defines an upper- semicontinuous multifunction.

This study was suggested by papers which deal with the Goursat Problem [7],
[18], with Goursat-Ionescu Problem for univalued hyperbolic equations [8], [9] and
[19].

2. PRELIMINARIES

The definitions and Theorem 2.1 in this section are taken from [1], [2], [3], [5]-[7],
[14]-[17].

Definition 2.1. Let X and Y be two non-empty sets. A multifunction ® : X — 2
is a function from X into the family of all non-empty subsets of Y.

To each z € X, a subset ®(z) of Y is associated by the multifunction ®. The set

U ®(x) is the range of ®.
zeX
Definition 2.2. Let us consider ® : X — 2V,
a) If A C X, the image of A by @ is ®(A) = U d(x);
r€A
b) If B C Y, the counterimage of B by ® is &~ (B) = {z € X|®(z) N B # 0};
¢) The graph of ®, denoted graph ® is the set

graph® = {(z,y) € X x Y|y € ®(x)}.

Definition 2.3. Let now take ® : X — 2%, An element 2 € X with the property
x € ®(x) is called a fized point of the multifunction ®.

Definition 2.4. A univalued function ¢ : X — Y is said to be a selection of
®: X —2Y if p(x) € ®(x) for all x € X.

Definition 2.5. Let X and Y be two topological spaces. The multifunction
®: X — 2Y is upper-semicontinuous if, for any closed subset B C Y, ®~(B) is closed
in X.

Definition 2.6. If (X, F) is a measurable space and Y is a topological space, the
multifunction ® : X — 2Y is measurable if = (B) € F for every closed subset B C Y,
F being the o-algebra of the measurable sets of X, i.e. &~ (B) is measurable.

Theorem 2.1. [17]. Let X and Y be two compact metric spaces and ® : X — 2Y
a multifunction with the property that ®(z) is a closed subset of Y for any = € X.
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The following assertions are equivalent:

(i) the multifunction ® is upper-semicontinuous;

(ii) the graph of ® is a closed subset of X x Y;

(iii) any would be the sequences (n)nenw, (YUn)new, from z, — z, y, € D(x,),
yn — y it follows y € &(x).

Definition 2.7. [5]-[6]. The function u : A — IR™ is absolutely continuous in
Carathéodory’s sense [1, §565 - §570] iff u(x,y) is continuous on A, absolutely contin-
uous in z (for any y), absolutely continuous in y (for any ), u,(z,y) is (possibly after
a suitable definition on a two-dimensional set of zero measure) absolutely continuous
in y (for any x) and ug,, is Lebesgue-integrable on A.

We denote the class of absolutely continuous functions in Carathéodory’s sense by

C*(A; IR™) [5]-[6]-

3. RESULTS

In a similar way as in [2] and [19], we define the notion of a local solution for the
Goursat-Tonescu Problem (1.1)+(1.2) and we prove an existence theorem for a local
solution of this problem, together with some properties of the set of solutions, namely
that this is a compact subset in Banach space C'(Ag; IR™) and, as a function of initial
values, it defines an upper-semicontinuous multifunction.

Let the following hypotheses be satisfied:

(Hop) The curves Cy : y = g(z), 0 <2z <a,and Cy : z = h(y), 0 <y < b are
defined by nondecreasing functions of class C! such that g(0) = h(0), 0 < g(z) < b,
0<h(y)<a

(H) F: AxQ— 2" is a multifunction with compact, convex, non-empty values
in IR", Q C IR" is an open subset, A = [0,a] x [0,b] C IR?.

(H3) For any (z,y) € A, the mapping z — F(x,y, z) is upper-semicontinuous on §2;
(H3) For any z € ) the mapping (z,y) — F(x,y, z) is Lebesgue measurable on A;
(Hy) a € C(A;[0,a)) and B € C(A; [0,b]);

(Hs) There exists a function k : A — IRy, k € L1(A; IR, such that

1<l < k(z,y) for V¢ € F(x,y,2), V(z,y) € A, Vze;

(Hg) There exists a convex, compact set M C € and a point (zg,yo) €]0,a]x]0, ],
such that

Yo
/ k(s, t)ds dt < d(M, Cy),
where d(M, Cgq) is the distance from M to Cq = R™ —
(H7) The function ¢ : P — IR"™ is absolutely continuous in Carathéodory’s sense,
p e C*(P;R™).
(Hg) The values of function A : A — IR™, defined by

(3.1) Az, y) = 9(0,0) + / "ol (s, g(s))ds + / AOR

belong to the set M for (x,y) € Ag = [0, zo] % [0,y0] C A.
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Remark. It follows that the function A defined by (3.1) is absolutely continuous
in Carathéodory’s sense [1, §565 - §570], A € C*(A;R™), due to hypotheses (Hr),
© € C*(P;IR™) and the integral is absolutely continuous.

Definition 3.1. The Goursat-Ionescu Problem for the hyperbolic inclusion with
modified argument (1.1) means to determine a solution of this inclusion which satisfies
the initial conditions (1.2).

Definition 3.2. It is defined a local solution of the Goursat-Ionescu Problem
(1.1)+(1.2) as a function Z : Py — Q, Py = [—ag, Zo] X [—bo, yo], with 0 < ag < o
and 0 < by < V', which is absolutely continuous in Carathéodory’s sense [1], Z €
C*(Dy; IR™) and satisfies (1.1) a.e. for (x,y) € Dy, 4, and also conditions (1.2) for
(x,y) € Go =Py — Dyyyy € G.

Theorem 3.1. Let the hypotheses (Hy) — (Hg) be satisfied. Then:

(i) there exists at least a local solution Z of the Goursat-Ionescu Problem (1.1)+(1.2);
(ii) the set Sy of local solutions Z is compact in the Banach space C(Py; IR");

(iii) the multifunction A — S} is upper-semicontinuous on C*(Ag; IR™) taking values
in C(Ag; R™).

Proof. (i) Let C*(Py;IR™) be the set of absolutely continuous functions in
Carathéodory’s sense defined on Py with values in IR™ [1]. We denote by Zjs the
set of functions Z : Py — IR"™, Z € C*(Py; IR"™), which satisfy the inequality

822(‘];’ y) )

T@y” < Ek(z,y), ae. for (z,y) € Dyyy,,

and also conditions (1.2) for (z,y) € Go = Py — Da,y,- The notation Z,, is suitable
because, by hypothesis (Hg), A(z,y) € M for (z,y) € Ag. We remark that the
absolute continuity in Carathéodory’s sense of Z assures the existence of the derivative

2
Z
8@;;’;” a.e. for (z,y) € Py [1, §565 - §570].

We have Z); C C*(Py;R™). Then, by hypothesis (Hg) and inequality (3.2), for
any Z € Z)y, it follows that Z(x,y) € Q
0*Z(x,y)
0zdy

(3-2) |

Indeed, integrating on D,, we obtain

(3.3)
Z(az,y):@(o,ow/o ¢;<s,g<s>>ds+/o dt+// 85;; ds dt —

32
Az, y) // 88tddt

Using hypothesis (Hg), inequality (3.2) and (3.3) it results

82 82
= < <
12 <Al =1 [ [ TS s an < [ [ 177 s a
Zo Yo
< H/ﬁ k(s,t)ds dt §/ / k(s,t)ds dt < d(M,Cg).
Day o Jo

(3.4)
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From the hypothesis (Hs), A(z,y) € M for (z,y) € Ag = [0,z0] X [0,y0] and we
have

which shows that Z(x,y) € Q for (z,y) € Ao.

The set of functions Z); is convex and compactin C'(Py; IR™). The convexity follows
by the definition of this set, and its compactness from the Arzela-Ascoli Theorem,
using hypotheses (Hy), (Hs), (H7), (Hs).

We denote by G the set of the triples (A, Z,U) € C*(Ag; IR™) x Zp; x Zpp with the
property that Z and U satisfy the membership relation

0*U(@,y)
0xdy

We prove that, for each A € C*(Ag; R™) with A(z,y) € M for (z,y) € Ay, the set
of those pairs (Z,U) such that (A, Z,U) € G is non-empty and the set G is closed.

Indeed, let us take Z € Zj;. From Theorem 1 [2], there exists a p-measurable
(under the p-Lebesgue measure) multifunction I' : Ag — 2F" with compact, non-
empty values in IR" such that

(37) I‘(w,y) C F(l’,y,Z(OZ(IE,y),ﬂ(QJ,y))), V(x,y) € AO~

Then, by Theorem 2 or Theorem 3 [3], there exists a measurable selection v of
I, i.e. a measurable univalued function v : Ay — R™ with y(z,y) € I'(x,y) for
(LU, y) € A0~

Let the function U : Py — IR™ be defined by

(3.6) € F(z,y, Z(a(x,y), B(z,y))), ae. for (z,y) € Dyyyp-

Mz,y)— [ [ (s, t)ds dt, (x,9) € Dayy,,
(3.8) Uls,y) = / /D

<p(ac7y) 7($’y)EGOZP0_D$0y0'
Then, the set of those pairs (Z,U) such that (A, Z,U) is non-empty because

(3.9 v(z,y) € T(z,y) C F(z,y, Z(a(x,y), B(z,y))), a.e. for (x,y) € Ao,
(3.10)
TG — 5 a,y) € Dlasy) € Fl,: Zle,): B(o.): e or (0,)€ Doy,
2 T —
(3.11) IZ5 ) s, < Ko, ¥(2:0) € Do

by hypothesis (Hs) for ( = vy(z,y).

For the proof that G is closed, we consider a sequence of elements in G,
{(Mns Zn, Up) fnem, convergent to (A, Z,U) in the space C*(Ag; R™) x C(Po; R™) x
LY (Py; IR™). We must check that (X, Z,U) € G, what implies, by the definition of set
G, that conditions (1.2) and (3.10) are satisfied by Z and U.
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O?Un(z,y)

The set { 92y

} is relatively weakly compact in L'(Ag; IR™) by the
neN

0*Un(z,y)
0x0y
gent to a function V € L'(Ag; IR™). For each (z,y) € Py, we have

(3.12) Ulz,y)=

Dunford-Pettis Criterion [10]. It follows that { } is weakly conver-
neN

n— 00 n—o00 0s0t

2
w— lim Uy, (z,y)=w— lim l)\n(:c,y)—i—// OUn(s,t) ds dt], (2,9) € Dy,
Day

o(r,y), (v,y) € Go= Po— Dayyy,-

A, y)+ /L V(s.t) ds dt, (z,y) € Dy,
_ D

zy

@(x,y), (:C’y) € G’0-

Un(2,y)
Oxdy

lary of Mazur’s Theorem [12], it follows that there exists a sequence of convex com-
2 2
binations {W,.},.c of the set {gxg;, 881]3;1,...
LY(Ap; IR™). Then, we can extract a subsequence from the sequence {W, },cn which
converges a.e. to V : W,, — V a.e. for (z,y) € Ao.
Since F(x,y,Z) is convex and compact for all (z,y) € A and for all Z € Q, we
obtain from the previous results and from Lemma 2 [2] that

o0 o PUn(z,y)
V(z,y) € N2, conv (U”_Taxay)

From the weak convergence — V(z,y), (z,y) € Dyyy,, using the Corol-

.}, strongly convergent to V in

(3.13)

C NP2 conv (U, F(x,y, Zn(a(z,y), B(x,y)))) C

C F(z,y, Z(a(z,y), B(x,y))), ae. for (z,y) € Dayyyo»

from which it follows that G is closed.
Indeed, (3.13) shows that V(z,y) € F(x,y, Z(a(z,y),B(z,y))) a.e. for (x,y) €

) s 82U(xuy) s
Dyyy,, and we obtain “ondy = V(x,y) from (3.12); then, using (3.6) and (3.13)
we have

0%U (x, —
(3.14) V(x,y) = 81:(5'yy) € F(z,y, Z(a(z,y), B(z,y))), ae. for (z,y) € Dayyp,
and also
(315) U(J?,y) = (P($7y) for (J"ay) S GO = PO - onyo;

hence U satisfies initial conditions (1.2) for (x,y) € Go.
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Let us take A € C*(A; R™) with A(z,y) € M for (x,y) € Ag. To each Z € Z); we
associate the set ®(Z) C Zj; as follows:

9*U(x,y)
0zxdy

We thus define a multifunction ® : Z); — 22¥. The set ®(Z) is convez, compact
and non-empty. It can be seen that ®(Z) is convex since F(z,y, Z(z,y)) is convex
by hypothesis (H;). We have ®(Z) C Z); but Z) is compact. The multifunction @
has a closed graph because graph ® is the set G for each fixed A and G is closed. It
follows that ®(Z) is compact in C(Py; IR™) as a closed subset of the compact set Z;.
The set ®(Z) is non-empty since there exists U, defined by (3.8) with the property
Ued(2).

The multifunction ® : Z5; — 2™ having a closed graph, is upper-semicontinuous
by Theorem 2.1. Taking into account all the properties of ®, the Kakutani-Ky Fan
fixed point Theorem [10], [17] can be applied.

Indeed, ® : Zy — 22M is defined on Zj; which is a convex, compact and non-
empty set; it is also upper-semicontinuous and its set-values ®(Z) are convex, closed
and non-empty in Z;. From Kakutani-Ky Fan fixed point Theorem it follows that
the multifunction ® has at least a fixed point, i.e. there exists at least an element
Z € Zpy such that Z € ®(Z), hence Z = U; but U is of the form (3.8), therefore this
fixed point Z is a solution of Goursat-Ionescu Problem (1.1)+(1.2).

ii) We denote by Sy the set of solutions to Problem (1.1)4(1.2), a notation showing
that any solution Z depends on the function A defined by (3.1). The set Sy contains at
least one element. The set Sy is compact, non-empty in the Banach space C'(Py; IR™),
being the set of the fixed points of multifunction ®.

iii) The graph H of the multifunction A — Sy, defined on C*(Ag; IR™) with values
in 22M S, C ®(Z)) C 2°M is closed in C*(Ag; IR") x Z) since ‘H is the image of
the compact set H; of the triples (A, Z,U) € G with Z = U, through the projection
mapping (A, Z,U) — (A, Z). The mapping A — S, is — in general — a multifunction
because several solutions of the Problem (1.1)4(1.2) can exist, which are fixed points
of mapping ® corresponding to the same function A\. Because the mapping A — S
has a closed graph H by Theorem 2.1, it follows that A\ — S} is upper-semicontinuous
on C*(Agp; IR™), what completes the proof.

(3.16) Ued(Z2)=UcZy,, eF(x,y, Z(a(z,y), B(x,y))), ae. (z,y)€Ay.
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