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Abstract. In this paper we show how can be generalized the random scaling law such that the
Brownian motion satisfies it. Using contraction method in probabilistic metric spaces, we can weak
the first moment condition for the existence and uniqueness of fractal process.
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A first theory of selfsimilar fractal sets and measures was developed in Hutchinson
[1]. Falconer, Graf, Mouldin and Williams, and Arbeiter randomized each step in
the approximation process to obtain self-similar random fractal sets and measures.
Recently Hutchinson and Rüschendorf [2] gave a simple proof for the existence and
uniqueness of random fractal sets, measures and fractal functions using probability
metrics defined by expectation. In these works a finite first moment condition is
essential.

In this paper, using probabilistic metric spaces techniques, we can weak the first
moment condition for existence and uniqueness of fractal process.

1. Invariant sets in E-spaces

Let ∆+ denote the set of all distribution functions F with F (0) = 0, and let X be
a nonempty set. A Menger space is a triplet (X,F , T ), where F : X ×X → ∆+ is a
mapping with the next properties:

10. Fx,y(t) = Fy,x(t) for all x, y ∈ X and t ∈ R;
20. Fx,y(t) = 1, for every t > 0, if and only if x = y;
30. Fx,y(s + t) ≥ T (Fx,z(s), Fz,y(t)) for all x, y, z ∈ X and s, t ∈ R+,
and T is a t-norm.

The mapping f : X → X is said to be a contraction if there exists r ∈]0, 1[ such
that

Ff(x),f(y)(rt) ≥ Fx,y(t)
for every x, y ∈ X and t ∈ R+.
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A sequence (xn)n∈N from X is said to be fundamental if limn,m→∞ Fxm,xn
(t) = 1

for all t > 0. The element x ∈ X is called limit of the sequence (xn)n∈N if
limn→∞ Fx,xn

(t) = 1 for all t > 0. A probabilistic metric (Menger) space is said
to be complete if every fundamental sequence in that space is convergent.

The notion of E-space was introduced by Sherwood [5] in 1969. Let (Ω,K, P ) be
a probability space and let (Y, ρ) be a metric space. The ordered pair (E ,F) is an
E-space over the metric space (Y, ρ) if the elements of E are random variables from Ω
into Y and F : E × E → ∆+ defined via F(x, y) = Fx,y, where

Fx,y(t) = P ({ω ∈ Ω| d(x(ω), y(ω)) < t})
for every t ∈ R. The E-space (E ,F) is said to be complete if the Menger space
(E ,F , Tm) is complete, where Tm(x, y) = max{x + y − 1, 0}.

The next result was proved in [3]:

Theorem 1.1. Let (E ,F) be a complete E- space, N ∈ N∗, and let f1, ..., fN : E → E
be contractions with ratio r1, ...rN , respectively. Suppose that there exists an element
z ∈ E and a real number γ such that

(1) P ({ω ∈ Ω|ρ(z(ω), fi(z(ω)) ≥ t}) ≤ γ

t
,

for all i ∈ {1, .., N} and for all t > 0. Then there exists a unique nonempty closed
bounded and compact subset K of E such that

f1(K) ∪ ... ∪ fN (K) = K.

Corollary 1.1. Let (E ,F) be a complete E- space, and let f : E → E be a contraction
with ratio r. Suppose there exists z ∈ E and a real number γ such that

P ({ω ∈ Ω| ρ(z(ω), f(z)(ω)) ≥ t}) ≤ γ

t
for all t > 0.

Then there exists a unique x0 ∈ E such that f(x0) = x0.

2. Scaling law and Brownian motion

Denote (X, d) a complete separable metric space. Let g : I → X, where I ⊂ R is a
closed bounded interval, N ∈ N and let I = I1 ∪ I2 ∪ · · · ∪ IN be a partition of I into
disjoint subintervals. Let Φi : I → Ii be increasing Lipschitz maps with pi = LipΦi.

We have
∑N

i=1 pi ≥ 1 and, if the Φi are affine, then
∑N

i=1 pi = 1. If gi : Ii → X, for
i ∈ {1, ..., N} define tigi : I → X by

(tigi) (x) = gj(x) for x ∈ Ij .

A scaling law S is an N-tuple (S1, ...., SN ), N ≥ 2, of Lipschitz maps Si : X → X.
Denote ri = LipSi.

A random scaling law S = (S1, S2, ..., SN ) is a random variable whose values are
scaling laws. We write S = distS for the probability distribution determined by S
and d= for the equality in distribution.
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Let S = (S1, ..., SN ) be a random scaling law and let G = (Gt)t∈I be a stochastic
process or a random function with state space X. The trajectory of the process G is
the function g : I → X. The trajectory of the random function Sg is defined up to
probability distribution by

Sg d= tiSi ◦ g(i) ◦ Φ−1
i ,

where S, g(1), ..., g(N) are independent of one another and g(i) d= g, for i ∈ {1, ..., N}.
We say g or G satisfies the scaling law S, or is a random fractal function, if

Sg d= g,

The Brownian motion can be characterized as the fixed point of a scaling law.
Let (Ω,K, P ) be a probability space. A Brownian motion is a stochastic process

Xα = (Xα
t )t∈R characterised by Xα

0 (ω) = 0a.s. and

Xα(t + h)−Xα(t) d=N(0, αh), for t > 0 andh > 0,

where N(0, αh) denote the normal distribution with mean 0 and variance αh.
For each α > 0, let Bα : [0, 1] → R denote the constrained Brownian motion given

by
Bα(0) = 0 a.s., and Bα(1) = 1 a.s..

For fix p ∈ R consider the Brownian motion Bα
∣∣∣Bα( 1

2 )=p constrained by Bα( 1
2 ) = p.

Let S1, S2 : R→ R be the unique affine transformations characterized by S1(0) =
0, S1(1) = S2(0) = p, S2(1) = 1. If r1 = LipS1 = |p|, r2 = LipS2 = |1− p|, then

Bα|Bα( 1
2 )=p(t)

d= S1 ◦B
α

2r2
1 (2t), t ∈ [0,

1
2
].

Similarly

Bα|Bα( 1
2 )=p(t)

d= S2 ◦B
α

2r2
1 (2t− 1), t ∈ [

1
2
, 1].

Let I = [0, 1], and define Φ1 : I → [0, 1
2 ], Φ1(s) = s

2 , and Φ2 : I → [ 12 , 1], Φ1(s) =
s+1
2 . It follows that

Bα|Bα( 1
2 )(t)

d= tiSi ◦B
α

2r2
i ◦ Φ−1

i (t), t ∈ [0, 1].

Now let pα be random point with distribution N(0, α
2 ). For each α > 0 let us define

the random scaling law Sα = (Sα
1 , Sα

2 ) in the same manner (S1, S2) was previously
defined from the point p.

Let rα
i = Lipα

i for i = 1, 2 and let rα = max{rα
1 , rα

2 }. It follows for each α > 0 that

Bα d= tiS
α
i ◦B

α

2r2
i

(i) ◦ Φ−1
i ,

where S is first chosen as above, and then after conditioning on S, B
α

2r2
1
(1) d= B

α

2r2
1

and B
α

2r2
2
(2) d= B

α

2r2
2 are chosen independently of one another.

Thus the family of constrained Brownian motion {Bα|α > 0} satisfies the family
of scaling laws S = {Sα|α > 0}.
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3. Fractal stochastic process

In this section we generelize the notion of random scaling law. Let pα be a random
point in R with distribution N(0, α

2 ) and denote I = [a, b]. Let Sα
1 , Sα

2 : R → R
be the unique affine transformations characterized by Sα

1 (a) = a, Sα
1 (b) = Sα

2 (a) =
pα, Sα

2 (b) = b. Define Φi : I → Ii, i = 1, 2 increasing Lipschitz maps, such that

I1 ∪ I2 = I and
◦
I1 ∩

◦
I2= ∅.

The generalized random scaling law is a family of scaling laws

S = {Sα|α > 0}.
If fω,α(t) = fω(α, t) :]0,∞[×I → R is a stochastic process, then the stochastic process
(Sf)α is defined up to probability distribution by

(Sf)α d= tiS
α
i ◦ f

α

2r2
i

(i) ◦ Φ−1
i ,

where S is first chosen as before, and then after conditioning on S, f
α

2r2
1
(1) d= f

α

2r2
1 and

f
α

2r2
2
(2) d= f

α

2r2
2 are chosen independently of one another.

The family of stochastic processes or random functions fα satisfies the generalized
scaling law S or is a fractal stochastic process if

(Sf)α d= fα.

The next theorem is essentially proved in [2]:

Theorem 3.1. (Hutchinson-Rüschendorf, 2000) Let S = {Sα|α > 0} be a generalized
scaling law. Then there exists a family of stochastic processes (or random functions)
fω,α(t) = fω(α, t) :]0,∞[×I → R with

sup
α

α
1
2 Eω

∫

I

|fω(α, t)dt < ∞

which satisfies S.

Using contraction method in probabilistic metric spaces, we can weak the first
moment condition in the above theorem:

Theorem 3.2. Denote Eα the set of random functions gα : Ω× I → R with the next
property: there exists hα ∈ Eα and a positive number γ such that

P ({ω ∈ Ω| sup
α

α−
1
2

∫

I

|hα(x)|dx ≥ t}) ≤ γ

t

for all t > 0.
Then there exists a family of stochastic processes g∗ ∈ Eα satisfying S.

Proof. Let f : Eα → Eα defined by

f(gα) = (Sg)α = tiS
α
i ◦ g

α

2r2
i

(i) ◦ Φ−1
i ,

where S is first chosen as in the previous section, and then after conditioning on S,
g

α

2r2
i

(i) d= g
α

2r2
i , i = 1, 2 are chosen independently of one another.
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We first claim that, if gα ∈ Eα then f(gα) ∈ Eα also. For this, choose g
α

2r2
i

(i) d= g
α

2r2
i ,

i = 1, 2, independently of one another and Sα = (Sα
1 , Sα

2 ). Then, for t > 0,

P ({ω ∈ Ω| sup
α

α−
1
2

∫

I

|(Sh)α(x)|dx ≥ t}) ≤

≤ P ({ω ∈ Ω|1
2

sup
α

α−
1
2

2∑

i=1

rα
i

∫

Ii

|h
α

2(rα
i

)2
(i)

(x)|dx ≥ t}) ≤ γ
√

2
t

.

To establish the contraction property let us consider gα
1 , gα

2 ∈ Eα. Because

Ff(gα
1 ),f(gα

2 )(t) ≥ Fgα
1 ,gα

2
(

t√
2
)

for all t > 0, f is a contraction. Then we can apply Corollary 1.1 and existence and
uniqueness follows.
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