ON NONLINEAR PARABOLIC FUNCTIONAL DIFFERENTIAL EQUATIONS IN UNBOUNDED DOMAINS

LÁSZLÓ SIMON

Department of Applied Analysis
L. Eötvös University of Budapest Pázmány Péter sétány $1 / \mathrm{C}$
H-1117 Budapest, Hungary
E-mail: simonl@ludens.elte.hu

Abstract

The purpose of this paper is to study a initial-boundary value problem generated by a climate model of Diaz and Hetzer. Keywords: Sobolev space, Carathéodory condition. AMS Subject Classification: 35K20.

Introduction

We shall consider initial-boundary value problems for the equation

$$
\begin{gathered}
D_{t} u(t, x)-\sum_{j=1}^{n} D_{j}\left[f_{j}(t, x, u(t, x), \nabla u(t, x))\right]+f_{0}(t, x, u(t, x), \nabla u(t, x))+ \\
h(t, x,[H(u)](t, x))=F(t, x), \quad(t, x) \in Q_{T}=(0, T) \times \Omega
\end{gathered}
$$

where $\Omega \subset R^{n}$ is an unbounded domain with sufficiently smooth boundary, H is a linear continuous operator in $L^{p}\left(Q_{T}\right)$, the functions f_{j}, h satisfy the Carathéodory conditions and certain polynomial growth conditions. We shall show that the weak solutions of this problem can be obtained as the limit (as $k \rightarrow \infty$) similar problems, considered in $(0, T) \times \Omega_{k}$ where $\Omega_{k} \subset \Omega$ are bounded domains with sufficiently smooth boundary, having the property $\Omega_{k} \supset \Omega \cap B_{k}\left(B_{k}=\left\{x \in R^{n}:|x|<k\right\}\right)$. Similar statements were proved in [13] for more special equations. There will be also proved a uniqueness theorem and the boundedness of the solutions if some additional conditions are satisfied.

The problem was motivated by the climate model considered by J.I. Díaz and G. Hetzer [8] where this type of equation was considered on the unit sphere in R^{3} (instead of Ω). Some qualitative properties were proved in [1] and [7] for the climate model. Functional partial differential equations arise also in population dynamics, plasticity, hysteresis (see, e.g., [2], [5], [12], [19]).

In [15] similar problem was considered for bounded Ω, where the equation contained a rapidly increasing term with respect to u and also discontinuous terms in u. It is not
difficult to extend the results of the present paper to higher order parabolic equations, containing discontinuous terms with respect to the unknown function.

1. Existence theorems

Let $\Omega \subset R^{n}$ be an unbounded domain with sufficiently smooth boundary, $p>2$. For any domain $\Omega_{0} \subset R^{n}$ denote by $W^{1, p}\left(\Omega_{0}\right)$ the usual Sobolev space with the norm

$$
\|u\|=\left[\int_{\Omega_{0}}\left(|\nabla u|^{p}+|u|^{p}\right)\right]^{1 / p} .
$$

Let V be a closed linear subspace of $W^{1, p}\left(\Omega_{0}\right)$ and denote by $L^{p}(0, T ; V)$ the Banach space of the set of measurable functions $u:(0, T) \rightarrow V$ such that $\|u\|^{p}$ is integrable and define the norm by

$$
\|u\|_{L^{p}(0, T ; V)}^{p}=\int_{0}^{T}\|u(t)\|_{V}^{p} d t
$$

The dual space of $L^{p}(0, T ; V)$ is $L^{q}\left(0, T ; V^{\star}\right)$ where $1 / p+1 / q=1$ and V^{\star} is the dual space of V (see [9], [11], [18]).

Let γ be a continuous weight function satisfying

$$
\gamma(x) \geq c_{1}>0 \text { and } \int_{\Omega} \frac{1}{\gamma^{2 /(p-2)}}<\infty
$$

with some constant c_{1}. Denote by $W_{\gamma}^{1, p}(\Omega)$ the space of functions having a finite norm

$$
\|w\|=\left[\int_{\Omega}\left[|\nabla w|^{p}+\gamma|w|^{p}\right]\right]^{1 / p} .
$$

By Hölder's inequality it is easy to show that $W_{\gamma}^{1, p}(\Omega)$ is continuously imbedded into $L^{2}(\Omega)$. Let V^{γ} be a closed linear subspace of $W_{\gamma}^{1, p}(\Omega)$ and $X_{T}^{\gamma}=L^{p}\left(0, T ; V^{\gamma}\right)$.

Let $\varphi \in C_{0}^{\infty}\left(R^{n}\right)$ be a fixed function having the properties

$$
0 \leq \varphi(x) \leq 1, \quad \varphi(x)=1 \text { if }|x| \leq 1 / 2, \quad \varphi(x)=0 \text { if }|x| \geq 3 / 4
$$

and define function φ_{k} by $\varphi_{k}(x)=\varphi(x / k)$.
Assume that
A V_{k} is a closed linear subspace of $W^{1, p}\left(\Omega_{k}\right)$ such that for any $w \in V^{\gamma},\left.\left(\varphi_{k} w\right)\right|_{\Omega_{k}} \in$ V_{k}.

Further, there exist linear and continuous (extension) operators $L_{k}: V_{k} \rightarrow V^{\gamma}$ such that for any $w_{k} \in V_{k},\left.\left(L_{k} w_{k}\right)\right|_{\Omega_{k}}=w_{k}$, for any $w \in V^{\gamma},\left.\left(L_{k} \varphi_{k} w\right)\right|_{\Omega_{k}}=\varphi_{k} w$, the sequence $\left\|L_{k}\right\|$ is bounded.

Remark 1. It is easy to show that assumption \mathbf{A} is satisfied e.g. in the followig special cases:
a/ $V^{\gamma}=W_{\gamma, 0}^{1, p}(\Omega), V_{k}=W_{0}^{1, p}\left(\Omega_{k}\right) ;$
b/ $\partial \Omega$ is bounded, $\Omega_{k}=\Omega \cap B_{k}, V^{\gamma}=W_{\gamma}^{1, p}(\Omega)$ and $V_{k}=W^{1, p}\left(\Omega_{k}\right)$;
c/ $\partial \Omega \in C^{1}$ is bounded, $\Omega_{k}=\Omega \cap B_{k}, V^{\gamma}=W_{\gamma, 0}^{1, p}(\Omega)$ and $V_{k}=\left\{v \in W^{1, p}\left(\Omega_{k}\right)\right.$: $\left.\left.v\right|_{\partial \Omega}=0\right\}$.
Define the operators M_{k} by $\left(M_{k} v\right)(t, x)=\left.v(t, \cdot)\right|_{\Omega_{k}}(x), v \in X_{T}^{\gamma}$. Then we have $M_{k}\left(\varphi_{k} v\right) \in X_{T}^{k}=L^{p}\left(0, T ; V_{k}\right)$.

Similarly, define the operators N_{k} by $\left(N_{k} v\right)(t, x)=\left(L_{k} v(t, \cdot)\right)(x), v \in X_{T}^{k}$. Then $N_{k}: L^{p}\left(0, T ; V_{k}\right) \rightarrow L^{p}\left(0, T ; V^{\gamma}\right)$ are linear and continuous, their norms are bounded. On the functions f_{j} we assume that
B (i) $f_{j}: Q_{T} \times R \times R^{n} \rightarrow R$ are measurable in $(t, x) \in Q_{T}$ and continuous in $\eta \in R, \zeta \in R^{n}$;
(ii) $\left|f_{j}(t, x, \eta, \zeta)\right| \leq c_{1}\left[(\gamma(x))^{1 / q}|\eta|^{p-1}+|\zeta|^{p-1}+|\eta|\right]+k_{1}(x), j=1, \ldots, n$,
$\left|f_{0}(t, x, \eta, \zeta)\right| \leq c_{1}\left[(\gamma(x))^{p-1}|\eta|^{p-1}+|\zeta|^{p-1}+|\eta|\right]+k_{1}(x)$ with some constant c_{1} and a function $k_{1} \in L^{q}(\Omega)$;
(iii) $\sum_{j=1}^{n}\left[f_{j}(t, x, \eta, \zeta)-f_{j}(t, x, \eta, \tilde{\zeta})\right]\left(\zeta_{j}-\tilde{\zeta}_{j}\right)>0$ if $\zeta \neq \tilde{\zeta}$;
(iv) $\sum_{j=1}^{n} f_{j}(t, x, \eta, \zeta) \zeta_{j}+f_{0}(t, x, \eta, \zeta) \eta \geq c_{2}\left[|\zeta|^{p}+(\gamma(x))^{p-1}|\eta|^{p}\right]-k_{2}(x)$ with some constant $c_{2}>0$ and $k_{2} \in L^{1}(\Omega)$.

Remark 2. A simple example for f_{j} satisfying \mathbf{B} is

$$
\begin{gathered}
f_{j}(t, x, \eta, \zeta)=a_{j}(t, x) \zeta_{j}\left|\zeta_{j}\right|^{p-2} \quad(j=1, \ldots, n) \\
f_{0}(t, x, \eta, \zeta)=(\gamma(x))^{p-1} \eta|\eta|^{p-2}+b_{0}(t, x) \eta
\end{gathered}
$$

where a_{j}, b_{0} are measurable functions, satisfying $0<c_{0} \leq a_{j}(t, x) \leq c_{0}^{\prime}, 0 \leq b_{0}(t, x) \leq$ c_{0}^{\prime} with some constants c_{0}, c_{0}^{\prime}.

On function h we assume
\mathbf{C} (i) $h(t, x, \theta)$ is measurable in (t, x) and continuous in θ.
(ii) $|h(t, x, \theta)| \leq k_{3}(x) k_{4}(|\theta|)(\gamma(x))^{p-1}|\theta|^{p-1}+k_{5}(x)$
where $k_{3} \in L^{1}(\Omega) \cap L^{\infty}(\Omega), \int_{\Omega}\left|k_{5}\right|^{q} \frac{1}{\gamma^{p-1}}<\infty$ and k_{4} is a continuous function, satisfying $\lim _{\infty} k_{4}=0$.

Finally, assume that
D $H: L_{\gamma}^{p}\left(Q_{T}\right) \rightarrow L_{\gamma}^{p}\left(Q_{T}\right)$ is a linear and continuous operator (in the L^{p} space with the weight function γ) such that for any compact $K \subset \Omega$ there is a compact $\tilde{K} \subset \Omega$ with the following property: the restriction of $H(u)$ to $(0, t) \times K$ depends only on the restriction of u to $(0, t) \times \tilde{K}$ for all $t \in(0, T]$ and it is continuous as an operator $L_{\gamma}^{p}\left(Q_{t}\right) \rightarrow L_{\gamma}^{p}\left(Q_{t}\right)$ with the same bounds for all t.

Remark 3. The operator H may have e.g. one of the following forms:

$$
[H(u)](t, x)=\int_{0}^{t} \beta_{0}(s, t, x) u(s, x) d s \text { or }[H(u)](t, x)=u(\tau(t), x)
$$

with some $\beta_{0} \in L^{\infty}\left((0, T) \times Q_{T}\right)$ and a continuously differentiable function τ satisfying $\tau^{\prime}>0,0<\tau(t) \leq t$.

Define operators $A, B: X_{T}^{\gamma} \rightarrow\left(X_{T}^{\gamma}\right)^{\star}$ and $A_{k}, B_{k}: X_{T}^{k} \rightarrow\left(X_{T}^{k}\right)^{\star}$ by

$$
\begin{gathered}
{[A(u), v]=\int_{0}^{T}\langle A(u)(t), v(t)\rangle d t=} \\
\int_{0}^{T}\left[\sum_{j=1}^{n} \int_{\Omega} f_{j}(t, x, u, \nabla u) D_{j} v d x+\int_{\Omega} f_{0}(t, x, u, \nabla u) v d x\right] d t \\
{[B(u), v]=\int_{0}^{T}\langle B(u)(t), v(t)\rangle d t=\int_{0}^{T}\left[\int_{\Omega} h(t, x, H(u)(t, x)) v d x\right] d t, \quad u, v \in X_{T}^{\gamma} ;}
\end{gathered}
$$

$$
\begin{gathered}
{\left[A_{k}\left(u_{k}\right), v_{k}\right]=\int_{0}^{T}\left\langle A_{k}\left(u_{k}\right)(t), v_{k}(t)\right\rangle d t=} \\
\int_{0}^{T}\left[\sum_{j=1}^{n} \int_{\Omega_{k}} f_{j}\left(t, x, u_{k}, \nabla u_{k}\right) D_{j} v_{k} d x+\int_{\Omega_{k}} f_{0}\left(t, x, u_{k}, \nabla u_{k}\right) v_{k} d x\right] d t \\
{\left[B_{k}\left(u_{k}\right), v_{k}\right]=\int_{0}^{T}\left\langle B_{k}\left(u_{k}\right)(t), v_{k}(t)\right\rangle d t=\int_{0}^{T}\left[\int_{\Omega_{k}} h\left(t, x, H\left(N_{k} u_{k}\right)(t, x)\right) v_{k} d x\right] d t}
\end{gathered}
$$

$u_{k}, v_{k} \in X_{T}^{k}$.
Finally, define for $F \in\left(X_{T}^{\gamma}\right)^{\star}$ its "restriction" $F_{k} \in\left(X_{T}^{k}\right)^{\star}$ by

$$
\left[F_{k}, v_{k}\right]=\left[F, N_{k} v_{k}\right], \quad v_{k} \in X_{T}^{k}
$$

Theorem 1.1. Assume A-D. Then for any $F \in\left(X_{T}^{\gamma}\right)^{\star}, u_{0} \in V^{\gamma}$ there exists $u_{k} \in X_{T}^{k}$ satisfying

$$
\begin{gather*}
\frac{d u_{k}}{d t}+\left(A_{k}+B_{k}\right)\left(u_{k}\right)=F_{k}, \quad \frac{d u_{k}}{d t} \in L^{q}\left(0, T ; V_{k}^{\star}\right) \tag{1.1}\\
u_{k}(0)=M_{k}\left(\varphi_{k} u_{0}\right), \quad k=1,2, \ldots
\end{gather*}
$$

Further, there exist a subsequence $\left(u_{k_{l}}\right)$ of the sequence $\left(u_{k}\right)$ and $u \in X_{T}^{\gamma}$ such that

$$
\left(N_{k_{l}} u_{k_{l}}\right) \rightarrow u \text { weakly in } X_{T}^{\gamma}
$$

and u satisfies

$$
\begin{align*}
\frac{d u}{d t}+(A+B)(u) & =F, \quad \frac{d u}{d t} \in\left(X_{T}^{\gamma}\right)^{\star} \tag{1.2}\\
u(0) & =u_{0} .
\end{align*}
$$

Proof. The existence of solutions u_{k} of (1.1) follows from the fact that $\left(A_{k}+B_{k}\right)$: $X_{T}^{k} \rightarrow\left(X_{T}^{k}\right)^{\star}$ is bounded, demicontinuous, pseudomonotone with respect to

$$
D(L):=\left\{u \in X_{T}^{k}: \frac{d u}{d t} \in\left(X_{T}^{k}\right)^{\star}, u(0)=0\right\}
$$

and it is coercive (see, e.g., [14], [15]). Thus by a known existence theorem (see, e.g., [3]) there exists a solution of (1.1).

Applying both sides of (1.1) to u_{k} we find

$$
\begin{gather*}
\frac{1}{2}\left\|N_{k} u_{k}(t)\right\|_{L^{2}(\Omega)}^{2}-\frac{1}{2}\left\|u_{0}\right\|_{L^{2}(\Omega)}^{2}+c_{3}\left\|N_{k} u_{k}\right\|_{L^{p}\left(0, t ; V^{\gamma}\right)}^{p} \leq \tag{1.3}\\
{\left[\|F\|_{\left(X_{T}^{\gamma}\right)^{\star}}+c_{4}\right]\left\|N_{k} u_{k}\right\|_{L^{p}\left(0, t ; V^{\gamma}\right)}+c_{5}}
\end{gather*}
$$

for all $t \in[0, T]$ with some positive constants c_{3}, c_{4}, c_{5}. This inequality implies that
$\left\|N_{k} u_{k}\right\|_{X_{T}^{\gamma}}$ is bounded.
Hence

$$
\begin{equation*}
A_{k}\left(u_{k}\right), \quad B_{k}\left(u_{k}\right) \text { are bounded in } L^{q}\left(0, T ; V_{k}^{\star}\right) \tag{1.5}
\end{equation*}
$$

Further,

$$
\begin{equation*}
\left(N_{k} u_{k}\right) \rightarrow u \text { weakly in } X_{T}^{\gamma} \text { for a subsequence } \tag{1.6}
\end{equation*}
$$

with some $u \in X_{T}^{\gamma}$. Define the "extensions" $\hat{A}_{k}\left(u_{k}\right)$ by

$$
\left[\hat{A}_{k}\left(u_{k}\right), v\right]=\left[A_{k}\left(u_{k}\right), M_{k}\left(\varphi_{k} v\right)\right], \quad v \in X_{T}^{\gamma}
$$

then $\left\|\hat{A}_{k}\left(u_{k}\right)\right\|_{\left(X_{T}^{\gamma}\right)^{\star}}$ is bounded. Consequently, for a subsequence

$$
\begin{equation*}
\left(\hat{A}_{k}\left(u_{k}\right)\right) \rightarrow w \text { weakly in }\left(X_{T}^{\gamma}\right)^{\star} \tag{1.7}
\end{equation*}
$$

with some $w \in\left(X_{T}^{\gamma}\right)^{\star}$.
Since by (1.1), (1.4), (1.5) $\left\|\frac{d u_{k}}{d t}\right\|_{\left(X_{T}^{k}\right)^{\star}}$ is bounded, by using also (1.4) we can choose a subsequence of $\left(u_{k}\right)$ such that for any bounded $\Omega_{0} \subset \Omega$,

$$
\begin{equation*}
\left(N_{k} u_{k}\right) \rightarrow u \text { in } L^{p}\left((0, T) \times \Omega_{0}\right) \text { and } \tag{1.8}
\end{equation*}
$$

By (1.8) and assumption \mathbf{D} for a suitable subsequence

$$
\begin{equation*}
H\left(N_{k} u_{k}\right) \rightarrow H(u) \text { a.e. in } Q_{T} . \tag{1.10}
\end{equation*}
$$

Since for an arbitrary $v \in X_{T}^{\gamma}$

$$
\begin{aligned}
\left(M_{k}\left(\varphi_{k} v\right)\right) & \rightarrow v \text { in the norm of } X_{T}^{\gamma} \text { and } \\
{\left[F_{k}, M_{k}\left(\varphi_{k} v\right)\right] } & =\left[F, N_{k}\left(M_{k}\left(\varphi_{k} v\right)\right)\right]=\left[F, \varphi_{k} v\right],
\end{aligned}
$$

applying (1.1) to $M_{k}\left(\varphi_{k} v\right)$ with an arbitrary fixed $v \in X_{T}^{\gamma}$, we obtain as $k \rightarrow \infty$

$$
\begin{gather*}
\frac{d u}{d t}+w+B(u)=F, \quad \frac{d u}{d t} \in\left(X_{T}^{\gamma}\right)^{\star} \tag{1.11}\\
u(0)=u_{0}
\end{gather*}
$$

(see, e.g., [18]).
Now we prove $w=A(u)$. Apply (1.1) to $M_{k}\left(u_{k}-u\right) \zeta$ with arbitrary fixed $\zeta \in$ $C_{0}^{\infty}(\Omega)$ having the properties $\zeta \geq 0, \zeta(x)=1$ in a compact subset K of Ω. So we obtain for sufficiently large k

$$
\begin{gather*}
{\left[D_{t} u_{k}-D_{t} u, M_{k}\left(\left(u_{k}-u\right) \zeta\right)\right]+\left[D_{t} u, M_{k}\left(\left(u_{k}-u\right) \zeta\right)\right]+} \tag{1.12}\\
{\left[A_{k}\left(u_{k}\right), M_{k}\left(\left(u_{k}-u\right) \zeta\right)\right]+\left[B_{k}\left(u_{k}\right), M_{k}\left(\left(u_{k}-u\right) \zeta\right)\right]=\left[F_{k}, M_{k}\left(\left(u_{k}-u\right) \zeta\right)\right] .}
\end{gather*}
$$

For the first term (for sufficiently large k) we have

$$
\begin{gather*}
{\left[D_{t} u_{k}-D_{t} u, M_{k}\left(\left(u_{k}-u\right) \zeta\right)\right]=1 / 2 \int_{0}^{T}\left[\frac{d}{d t} \int_{\Omega}\left(u_{k}(t)-u(t)\right)^{2} \zeta d x\right] d t=} \tag{1.13}\\
1 / 2 \int_{\Omega}\left(u_{k}(T)-u(T)\right)^{2} \zeta d x \geq 0
\end{gather*}
$$

Further, by (1.6)

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left[D_{t} u, M_{k}\left(\left(u_{k}-u\right) \zeta\right)\right]=0 \tag{1.14}
\end{equation*}
$$

$$
\lim _{k \rightarrow \infty}\left[F_{k}, M_{k}\left(\left(u_{k}-u\right) \zeta\right)\right]=\lim _{k \rightarrow \infty}\left[F, N_{k}\left(M_{k}\left(\left(u_{k}-u\right) \zeta\right)\right)\right]=\lim _{k \rightarrow \infty}\left[F,\left(u_{k}-u\right) \zeta\right]=0
$$

By D, Hölder's inequality and (1.8)

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left[B_{k}\left(u_{k}\right), M_{k}\left(\left(u_{k}-u\right) \zeta\right)\right]=0 \tag{1.15}
\end{equation*}
$$

Thus (1.12) - (1.15) imply

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left[A_{k}\left(u_{k}\right), M_{k}\left(\left(u_{k}-u\right) \zeta\right)\right] \leq 0 \tag{1.16}
\end{equation*}
$$

Since by D, Hölder's inequality and (1.8)

$$
\lim _{k \rightarrow \infty} \int_{Q_{T, k}} f_{0}\left(t, x, u_{k}, \nabla u_{k}\right)\left(u_{k}-u\right) \zeta d t d x=0 \quad\left(\text { where } Q_{T, k}=(0, T) \times \Omega_{k}\right)
$$

(1.16) implies

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \sum_{j=1}^{n} \int_{Q_{T, k}} f_{j}\left(t, x, u_{k}, \nabla u_{k}\right) D_{j}\left[\left(u_{k}-u\right) \zeta\right] d t d x \leq 0 \tag{1.17}
\end{equation*}
$$

By using arguments of [6] (see also [13]) we obtain from (1.17)

$$
\nabla u_{k} \rightarrow \nabla u \text { a.e. in }(0, T) \times K .
$$

Since K can be chosen as any compact subset of Ω, we find

$$
\nabla\left(N_{k} u_{k}\right) \rightarrow \nabla u \text { a.e. in } Q_{T} .
$$

Thus Vitali's theorem and Hölder's inequality imply (see, e.g. [6])

$$
\left(\hat{A}_{k}\left(u_{k}\right)\right) \rightarrow A(u) \text { weakly in }\left(X_{T}^{\gamma}\right)^{\star}
$$

i.e. $w=A(u)$ which completes the proof of our theorem.

Remark 4. It follows from the above proof that if the solution of (1.2) is unique then also for the original sequence $\left(u_{k}\right)$ of solutions to (1.1), $\left(N_{k} u_{k}\right)$ converges weakly in X_{T}^{γ} to the solution u of (1.2).

If some additional conditions are satisfied then one can prove the uniqueness of the solution.

Theorem 1.2. Assume A-D and the following monotonicity condition is satisfied:

$$
\begin{gather*}
\sum_{j=1}^{n}\left[f_{j}(t, x, \xi)-f_{j}(t, x, \tilde{\xi})\right]\left(\xi_{j}-\tilde{\xi}_{j}\right)+ \tag{1.18}\\
{\left[f_{0}(t, x, \xi)-f_{0}(t, x, \tilde{\xi})\right]\left(\xi_{0}-\tilde{\xi}_{0}\right) \geq-c_{0}\left(\xi_{0}-\tilde{\xi}_{0}\right)^{2}}
\end{gather*}
$$

with some constant c_{0}. Further, there exists a conctant k_{0} such that

$$
\begin{equation*}
|h(t, x, \theta)-h(t, x, \tilde{\theta})| \leq k_{0}|\theta-\tilde{\theta}| \tag{1.19}
\end{equation*}
$$

for any $(t, x) \in Q_{T}$ and $\theta, \tilde{\theta} \in R$. Finally, H is positive, i.e. $u \geq 0$ implies $H(u) \geq 0$.
Then the solution of (1.2) is unique.
Proof. Perform the subtitution $u=e^{c t} \tilde{u}$. Then (1.2) is equivalent with

$$
\begin{gathered}
\frac{d \tilde{u}}{d t}+(\tilde{A}+\tilde{B})(\tilde{u})+c \tilde{u}=\tilde{F}, \quad \frac{d \tilde{u}}{d t} \in\left(X_{T}^{\gamma}\right)^{\star} \\
\tilde{u}(0)=u_{0}
\end{gathered}
$$

where

$$
[\tilde{A}(\tilde{u}), v]=
$$

$$
\begin{gathered}
\int_{0}^{T}\left[\sum_{j=1}^{n} \int_{\Omega} e^{-c t} f_{j}\left(t, x, e^{c t} \tilde{u}, e^{c t} \nabla \tilde{u}\right) D_{j} v d x+\int_{\Omega} f_{0}\left(t, x, e^{c t} \tilde{u}, e^{c t} \nabla \tilde{u}\right) v d x\right] d t \\
{[\tilde{B}(\tilde{u}), v]=\int_{0}^{T}\left[\int_{\Omega} e^{-c t} h\left(t, x, H\left(e^{c t} \tilde{u}\right)(t, x)\right) v d x\right] d t, \quad \tilde{F}=e^{-c t} F}
\end{gathered}
$$

and for sufficiently large c we obtain that the solution of the above problem is unique because then (by (1.18), (1.19)) the operator $\tilde{u} \mapsto(\tilde{A}+\tilde{B}) \tilde{u}+c \tilde{u}$ is monotone.

It is not difficult to prove an existence theorem for the interval $[0, \infty)$. Denote by X_{∞}^{γ} and $\left(X_{\infty}^{\gamma}\right)^{\star}$ the set of functions $u:[0, \infty) \rightarrow V^{\gamma}, w:[0, \infty) \rightarrow\left(V^{\gamma}\right)^{\star}$, respectively, such that for any finite $T, u \in X_{T}^{\gamma}, w \in\left(X_{T}^{\gamma}\right)^{\star}$, respectively. Further, define $Q_{\infty}=(0, \infty) \times \Omega$ and let $L_{\gamma, l o c}^{p}\left(Q_{\infty}\right)$ be the set of functions $v: Q_{\infty} \rightarrow R$ such that $v \in L_{\gamma}^{p}\left(Q_{T}\right)$ for arbitrary finite T.

Theorem 1.3. Assume A, further assume that $f_{j}: Q_{\infty} \times R^{n+1} \rightarrow R, h: Q_{\infty} \times R \rightarrow R$ satisfy \mathbf{B} and \mathbf{C} for any finite $T>0$ and $H: L_{\gamma, l o c}^{p}\left(Q_{\infty}\right) \rightarrow L_{\gamma, l o c}^{p}\left(Q_{\infty}\right)$ satisfies \mathbf{D} for any finite T. Then for arbitrary $F \in\left(X_{\infty}^{\gamma}\right)^{\star}$ there exists $u \in X_{\infty}^{\gamma}$ such that u satisfies (1.2) for any finite T.

2. Boundedness of the solutions

Theorem 2.1. Assume that the conditions A - D are satisfied for any finite T such that the constants and functions are independent on T. Further, assume that $\|F(t)\|_{V^{\star}}$ is bounded,

$$
\begin{equation*}
|h(t, x, \theta)|^{q} \leq c_{4}^{\star}|\theta|^{2}+k_{4}^{\star}(x) \tag{2.20}
\end{equation*}
$$

with some constant c_{4}^{\star} and a function $k_{4}^{\star} \in L^{1}(\Omega)$; for any $u \in X_{\infty}^{\gamma}$

$$
\begin{equation*}
\int_{\Omega}|H(u)|^{2}(t, x) d x \leq c_{5}^{\star} \sup _{\tau \in[0, t]} \int_{\Omega}|u(\tau, x)|^{2} d x \tag{2.21}
\end{equation*}
$$

with some constant c_{5}^{\star}.
Then for the solution u of the problem in Q_{∞}, the function

$$
y(t)=\int_{\Omega}|u(t, x)|^{2} d x
$$

is bounded in $(0, \infty)$ and there exist positive numbers c^{\prime}, c " such that

$$
\begin{equation*}
\int_{T_{1}}^{T_{2}}\|u(t)\|_{V}^{p} d t \leq c^{\prime}\left(T_{2}-T_{1}\right)+c " \text { for sufficiently large } T_{1}<T_{2} \tag{2.22}
\end{equation*}
$$

Remark 5. The examples in Remark 3. satisfy (2.21).
Proof. Apply (1.2) to u and integrate the equality over $\left(T_{1}, T_{2}\right)$ with respect to t then we obtain

$$
\begin{equation*}
\int_{T_{1}}^{T_{2}}\left\langle D_{t} u(t), u(t)\right\rangle d t+\int_{T_{1}}^{T_{2}}\langle(A+B)(u)(t), u(t)\rangle d t+\int_{T_{1}}^{T_{2}}\langle F(t), u(t)\rangle d t \tag{2.23}
\end{equation*}
$$

For the first term in (2.23) we have

$$
\begin{equation*}
\int_{T_{1}}^{T_{2}}\left\langle D_{t} u(t), u(t)\right\rangle d t=\frac{1}{2}\left[y\left(T_{2}\right)-y\left(T_{1}\right)\right] . \tag{2.24}
\end{equation*}
$$

By the assumption \mathbf{B} (iv)

$$
\begin{equation*}
\int_{T_{1}}^{T_{2}}\langle A(u)(t), u(t)\rangle d t \geq c_{2} \int_{T_{1}}^{T_{2}}\|u(t)\|_{V^{\gamma}}^{p}-\left(T_{2}-T_{1}\right) \int_{\Omega} k_{2} \tag{2.25}
\end{equation*}
$$

Further, by (2.20), (2.21), for arbitrary number $\varepsilon>0$

$$
\begin{gather*}
|\langle B(u)(t), u(t)\rangle| \leq \frac{\varepsilon^{p}}{p}\|u(t)\|_{L^{p}(\Omega)}^{p}+\frac{1}{\varepsilon^{q} q} \int_{\Omega}|h(t, x,[H(u)](t, x))|^{q} d x \leq \tag{2.26}\\
\frac{\varepsilon^{p}}{p}\|u(t)\|_{V}^{p}+\frac{c_{4}^{\star} c_{5}^{\star}}{\varepsilon^{q} q} \sup _{\tau \in[0, t]} \int_{\Omega}|u(\tau, x)|^{2} d x+c_{6}^{\star}
\end{gather*}
$$

with some constant c_{6}^{\star}. Finally, for the right hand side of (2.23)

$$
\begin{equation*}
\left|\int_{T_{1}}^{T_{2}}\langle F(t), u(t)\rangle d t\right| \leq \frac{\varepsilon^{p}}{p} \int_{T_{1}}^{T_{2}}\|u(t)\|_{V}^{p}+\frac{1}{\varepsilon^{q} q} \int_{T_{1}}^{T_{2}}\|F(t)\|_{V^{\star}}^{q} d t . \tag{2.27}
\end{equation*}
$$

Choosing sufficiently small $\varepsilon>0$, we obtain from (2.23) - (2.27)

$$
\begin{gather*}
\frac{1}{2}\left[y\left(T_{2}\right)-y\left(T_{1}\right)\right]+\frac{c_{2}}{2} \int_{T_{1}}^{T_{2}}\|u(t)\|_{V^{\gamma}}^{p} d t \leq \tag{2.28}\\
c_{0} \int_{T_{1}}^{T_{2}} \sup _{\tau \in[0, t]} y(\tau) d t+c_{6}^{\star}\left(T_{2}-T_{1}\right)
\end{gather*}
$$

with some constant c_{0}. Since

$$
y(t)=\int_{\Omega}|u(t, x)|^{2} d x \leq \mathrm{const}\left[\int_{\Omega}|u(t, x)|^{p} \gamma(x) d x\right]^{2 / p},
$$

we obtain

$$
\begin{gather*}
\frac{1}{2}\left[y\left(T_{2}\right)-y\left(T_{1}\right)\right]+\tilde{c}_{0} \int_{T_{1}}^{T_{2}}[y(t)]^{p / 2} d t \leq \tag{2.29}\\
c_{0} \int_{T_{1}}^{T_{2}} \sup _{\tau \in[0, t]} y(\tau) d t+c_{6}^{\star}\left(T_{2}-T_{1}\right)
\end{gather*}
$$

with some positive \tilde{c}_{0}. It is not difficult to show that the last inequality implies the boundedness of y if $p>2$ which will imply (2.22) by (2.28). Assume that y is not bounded. Then for any (sufficiently large) M there exist $t_{0}>0$ and $t_{1} \in\left(0, t_{0}\right]$ such that

$$
y\left(t_{1}\right)=\sup _{\left[0, t_{0}\right]} y=M
$$

Since y is continuous, there is a $\delta>0$ such that

$$
y(t)>M-1 \text { if } t_{1}-\delta \leq t \leq t_{1}
$$

Applying (2.29) with $T_{2}=t_{1}$ and $T_{1}=t_{1}-\delta$ we find

$$
\frac{1}{2}\left[y\left(t_{1}\right)-y\left(t_{1}-\delta\right)\right]+\frac{c_{2}}{2} \delta(M-1)^{p / 2} \leq c_{0} \delta M+c_{6}^{\star} \delta
$$

where $y\left(t_{1}\right)-y\left(t_{1}-\delta\right) \geq 0$. Consequently,

$$
\frac{c_{2}}{2}(M-1)^{p / 2} \leq c_{0} M+c_{6}^{\star}
$$

which is impossible if M is sufficiently large.

References

[1] D. Arcoya, J.I. Díaz and L. Tello. S-sharped bifurcation branch in a quasilinear multivalued model arising in climatology. J. Diff. Eq., to appear.
[2] M. Badii, J.I. Díaz and M. Tesei. Existence and attractivity results for a class of degenerate functional-parabolic problems. Rend. Sem. Mat. Univ. Padova, 78 (1987), 109-124.
[3] J. Berkovits, V. Mustonen. Topological degreee for perturbations of linear maximal monotone mappings and applications to a class of parabolic problems. Rend. Mat. Ser. VII, 12, Roma (1992), 597-621.
[4] H. Brézis. Operateurs maximaux monotones et semi-groups de contractions dans les espaces de Hilbert. North-Holland, Amsterdam, 1973.
[5] M. Brokate, J. Sprekels. Hysteresis and Phase Transitions. Springer, 1996.
[6] F.E. Browder. Pseudo-monotone operators and nonlinear elliptic boundary value problems on unbounded domains. Proc. Natl. Acad. Sci. USA 74 (1977), 2659-2661.
[7] J.I. Díaz, J. Hernández, L. Tello. On the multiplicity of equilibrium solutions to a nonlinear diffusion equation on a manifold arising in climatology. J. Math. Anal. Appl. 216 (1997), 593613.
[8] J.I. Díaz, G. Hetzer. A quasilinear functional reaction-diffusion equation arising in climatology, in: PDEs and Applications. Dunod, Paris, 1998.
[9] J.L. Lions. Quelques métodes de résolution des problemes aux limites non linéaires. Dunod, Gauthier-Villars, Paris, 1969.
[10] G. Mahler. Nonlinear parabolic problems in unbounded domains. Proc. Roy. Soc. Edinburgh Sect. A 82 (1978/1979), 201-209.
[11] V. Mustonen. On pseudo-monotone operators and nonlinear parabolic initial-boundary value problems on unbounded domains. Ann. Acad. Sci. Fenn. A. I. Math. 6 (1981), 225-232.
[12] M. Renardy, W.J. Hrusa, J.A. Nohel. Mathematical problems in viscoelasticity. Monographs and Survays in Pure and Applied Mathematics 35, Longman Scientific and Technical - John Wiley and Sons, Inc., New York.
[13] L. Simon. On perturbations of initial-boundary value problems for nonlinear parabolic equations. Annales Univ. Sci. Budapest, Sect. Comp. 16 (1996), 319-341.
[14] L. Simon. On different types of nonlinear parabolic functional differential equations. Pure Math. Appl. 9 (1998), 181-192.
[15] L. Simon. On the stabilization of solutions of nonlinear parabolic functional differential equations. Proceedings of the Conference Function Spaces, Differential Operators and Nonlinear Analysis, Syöte, 1999, 239-250.
[16] W.A. Strauss. The energy method in nonlinear partial differential equations. Notas Mat. 47, 1969.
[17] I.I. Vrabie. Compactness methods for nonlinear evolutions. Pitman Monographs and Survays in Pure and Applied Mathematics 32, Longman Scientific and Technical, Harlow, 1987.
[18] E. Zeidler. Nonlinear functional analysis and its applications II A and II B. Springer, 1990.
[19] F. Wu. Theory and applications of partial functional differential equations. Springer, 1996.

