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Abstract. Every homogeneous C∗-algebra corresponds to the algebraic fibre bundle. C∗-algebra is
called non-trivial if the corresponding algebraic fibre bundle is non-trivial. All C∗-algebras generated
by idempotents that studied before corresponds to the trivial algebraic fibre bundles. In the work was
showed that non-trivial C∗-algebras of any dimension n ≥ 3 can be generated by three idempotents.
It is follows from here that we need to study the topology properties of C∗-algebras generated by
the idempotents to describe such algebras.
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1. Preliminaries

In order to formulate the main problem of the paper, we’ll represent some necessary
information on the theory of fiber bundles [2], [5].

A fiber bundle (bundle) is a triple (E, B, p), where E B are topological spaces,
p : E → P is a continuous surjection. Here E is a bundle space, B is a base space and
p is a projection. The subspace Ex = p−1(x) ⊂ E, x ∈ B is called a fiber over the
point x. Let F be a topological space. An example of a bundle is the product-bundle
E = B × F .

The bundles (E1, B, p1) and (E2, B, p2) with the same base B and the same struc-
ture group G are called isomorphic if there exists a homeomorphism φ : E1 → E2,
which maps the fiber E1

x onto E2
x and this mapping belongs to the group G.

A bundle which is isomorphic to a bundle product is called trivial. The bundle
(E,B, p) is called locally trivial with a fiber F , if each point of B has a neighborhood
U such that the bundle E over U is trivial. In this case all fibers are isomorphic to
a typical fiber F . If the fiber F is the C∗-algebra Mat(n) = Cn×n of matrices of
dimension n and if the structure group that operates in each fiber is a group Aut(n)
of automorphisms of the algebra, then the bundle is called algebraic.

Let us to remind that C∗-algebra is a Banach algebra with one additional identity
for the norm: ‖a∗a‖ = ‖a‖2.

If all irreducible representations of C∗-algebra have the same dimension n then the
algebra is called homogeneous. The number n is called dimension of the algebra. An
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example of homogeneous algebra is the algebra C(M, Cn×n) of continuous matrix-
functions of dimension n on the compact space M . In this example the space M is
the space Prim of primitive ideals of algebra in the appropriate topology.

The element a of the algebra A is called idempotent if a2 = a.
It was shown in the paper [2] that every homogeneous C∗-algebra is corresponds

to the algebraic fiber bundle over compact space. C∗-algebra that isomorphic to
the algebra of all continuous matrix-functions on compact space is called trivial C∗-
algebra. Every trivial C∗-algebra is corresponds to the algebraic fiber bundle.

It is usual that non-trivial C∗-algebra is isomorphic to a subalgebra of algebra of
all continuous functions over compact space. It was shown in the paper [1] that the
non-trivial C∗-algebra of all sections of algebraic fiber bundles over the sphere S2 can
be reproduced as a subalgebra of the algebra C(D, Cn×n), where D = z ∈ C : |z| < 1
is the unit disk. Let V(z) be a continuous matrix-function on the circle with values
in the unitarian matrices of dimension n.

We’ll denote via BV the algebra of continuous matrix-functions a(z) on the unit
disk z : |z| ≤ 1, which satisfies the condition a(z) = V −1(z)a(1)V (z), if |z| = 1. It
was shown in the [1] that every homogeneous algebra A with the set of primitive
ideals PrimA = S2 is isomorphic to one of the algebras BV . The next theorem is the
criterium for two algebras BV and BW to be trivial.

Statement 1.1. ([1]). The algebras BV and BW are isomorphic if and only if indV −
indW = ln, l ∈ Z.

2. The main results

The next question is the main problem of the work. Can some C∗-algebras be
generated by idempotents? The history of the question was reproduced in the [4]. It
was shown in the [1] that each C∗-algebra of dimension 2, which corresponds to the
algebraic bundle over the sphere S2, can be generated by three idempotents. It is
follows from the results of the work [4] that every trivial C∗-algebra over the sphere
S2 can be generated by idempotents. It is very interesting for us to know the answer
on the next question. Can the non-trivial C∗-algebra over the sphere S2 of dimension
n ≥ 3 be generated by idempotents? The answer is true and it was proved in the
work [6]. In this paper we’ll find the minimal number of idempotent generators for
the non-trivial C∗-algebras over the sphere S2.

We will use the next classical statement.

Statement 2.1. (Stone and Weierstrass). Let C(X) be the circle of the continuous
complex-valued functions over the compact space X with the topology that generated
by the norm ‖ f ‖= maxx∈X |f(x)|, f ∈ C(X).

Also let C0 ⊆ C(X) is the sub-circle , that contains all constants and distinguishes
all points of X, i.e. for each two points x1 ∈ X, x2 ∈ X, (x1 6= x2), there exists
the function f ∈ C0, such that f(x1) 6= f(x2). Let the sub-circle C0 contains both
functions f(x) and f(x), i.e. if f(x) ∈ C0 ⇒ f(x) ∈ C0.

Then [C0] = C(X), i.e. every continuous function on X is the limit of functions
from C0.
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The next theorem is the important step to describe the class of the C∗-algebras,
that can be generated by three idempotents. The algebras BV will be generated by
idempotents P1, P2, P3 as Banach algebras. In the previous results the algebras was
generated as C∗-algebras, i.e. by the idempotents Pi and P ∗i .

Theorem 2.1. C∗-algebras BV of dimension 3 with the matrix-functions V =
(z−m, 1, 1),m = 1, 2 can be generated by three idempotents.

Proof. Let the Eij denote the matrix that has 1 on (ij)-th place and other elements
are equal to 0. Let us to see the next matrix-functions of dimension 3.

P1=
µ1 µ3q+m µ2

µ3q−mµ1 µ2
3 µ3q−mµ2

(1− |z|)µ1 (1− |z|)µ3q+m µ2(1− |z|)

P2=
0 0 0
0 1 1

2 + 1
2µ2(1− |z|)

0 0 0

P3=
0 0 0
0 1 0
0 1 0

, where µ3(z) = ( 1
6 − |z|). The function q±m = 1, if |z| < 1

6 and z±m, if |z| ≥ 1
6 ,

µ2(z) = z(1−|z|), µ1(z) = 1−µ2(z)(1−|z|)−µ3(z)2. It can be directly checked that
P1, P2, P3 are idempotents. The matrix-function P3(z) belongs to any algebra BV .
The matrix-functions P1(z), P2(z) belong to the algebra BV with the matrix-function
V (z) = diag{z−m, 1, 1},m = 1, 2.

Let the symbol A denote the algebra generated by the idempotents, i.e the minimal
Banach algebra that contains the idempotents P1, P2, P3. Our goal is to show that
all matrix units Eij ∈ A, 2 ≤ i, j ≤ 3.

The next goal is to prove that ∀f ∈ C(D/S1) the matrix-functions fE33 ∈ A,
where the symbol D denotes the disk {z : |z| ≤ 1}, S1 denotes the circle {z : |z| = 1},
D/S1 denotes the factor-space that homeomorphic to the sphere S2.

Lemma 2.1. The algebra A contains all Eij , 2 ≤ i, j ≤ 3.

Proof. We’ll denote via X := E22(1 + ( 1
2 + 1

2µ2(1− |z|))) = P2P3.
Let us to consider the following sequence hn(x) := 1 − (1 − x)n. The sequence

hn(X) → E22, n → ∞. It is follows from the fact that ‖ µ2(1 − |z|) ‖< 1 ⇒‖
1
2 + 1

2µ2(1 − |z|)) ‖< 1 on the space D/S1. Next, E32 = P3 − E22, and we’ll denote
Y := E33( 1

2 + 1
2µ2(1−|z|)) = (P3−E22)(P2−E22). Then hn(Y ) → E33, n →∞. It is

follows from the next inequality ‖ 1
2− 1

2µ2(1−|z|)) ‖< 1 on the space D/S1. Next step,
E33 = E32E23. It is follows from above that all matrix units Eij ∈ A, 2 ≤ i, j ≤ 3.
The lemma is proved.

Lemma 2.2. ∀f ∈ C(D/S1) ⇒ fEij ∈ A, (1 ≤ i, j ≤ 2).

Proof. We’ll show that some matrix-functions belong to the A and then we’ll use
the Stone-Weierstrass theorem.

E33P1E33 = µ2(1− |z|)E33 ∈ A.
2E32(P2 − E22 − E33) = µ2(1− |z|)E33 ∈ A.
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E32P1E23 = µ2
3E33 ∈ A.

The functions µ2(1− |z|) and µ2
3 district the points of D/S1. This fact was proved

in the paper [6].
Now we can use the Stone-Weierstrass theorem. It is follows from this theory that

the functions µ2(1 − |z|), µ2(1 − |z|), µ2
3 and the identity generates the algebra of

all continuous functions on the D/S1. It is means that for any continuous function
f ∈ C(D/S1) ⇒ fE33 ∈ A. It is follows from above that fEij ∈ A, 2 ≤ i, j ≤ 3.
Indeed, the matrix-function fEij = Ei3fE33E3j . The lemma is proved.

Let us to consider the set B±m – the set of continuous functions on the unit disk D
that satisfies one additional condition on the circle S1. B±m = {u ∈ C(D)|u =
z±mu(1), |z| = 1}. The set B±m has the structure of module over the algebra
C(D/S1). The axioms of module are satisfies. We omit the details.

Our next goal is to show that if g1 ∈ B+m, then E13g1 ∈ A, and also, if g2 ∈ B−m,
then E31g2 ∈ A. In order to prove this fact we’ll show that the matrix-functions
E13µ2 ∈ A and E13µ3q+m ∈ A. Also, we can multiply these matrix-functions to the
elements from C(D/S1). Let f1 and f2 denote any two functions from the C(D/S1).

P1f1E33 − µ3q−1µ2E32 − µ2(1− |z|)E33 = E13f1µ2 ∈ A
P1f2E32 − µ2

3E32 − µ2(1− |z|)E33 = E13f2µ3q+m ∈ A
Similar, E31µ1(1− |z|) ∈ A and E31µ1µ3q−m ∈ A.
f1E33P1 − (1− |z|)µ3q+mE32 − µ2(1− |z|)E33 = E31µ1(1− |z|)f1 ∈ A
E32(f2E32P1 − µ2

3E22 − µ3q−mµ2) = E31µ1µ3q−mf2 ∈ A
It can be directly checked that the function µ1 6= 0 on the D/S1. Consequently,

the (1− |z|)E31 ∈ A and the µ3q−mE31 ∈ A.
We need to use the next lemma about the elements that generates B±m. It is

follows from the lemma that the set E13B+m ∈ A and E31B−m ∈ A.

Lemma 2.3. The module B+m can be generated over the algebra C(B/S1) by the
elements µ3(z)q+m and µ2(z). The module B−m can be generated over the algebra
C(B/S1) by the elements µ3(z)q−m and (1− |z|).

Proof. Let the M1 denote the submodule of B+m generated by the elements
µ3q+m. Let the M2 denote the submodule of B+m generated by µ2. M1 = B+mI1

and M2 = B+mI2, where I1 and I2 are the ideals of algebra C(B/S1). The ideals
of C(B/S1) can be defined by the points where the generation function has zero.The
ideal I1 = {u(z) ∈ C(B/S1)|u(z) = 0, |z| = 1

6} and the ideal I2 = {u(z) ∈
C(B/S1)|u(z) = 0, z = 0 or z = 1}. The sum of submodules M1+M2 = B+m(I1+I2).

It is enough to show that I1+I2 = C(B/S1) in order to prove that M1+M2 = B+m.
Let us to consider the next functions ||z| − 1

6 | ∈ I1 and |z| − |z|2 ∈ I2. The sum of
these functions has no zeroes on the D/S1. Then, 1 ∈ I1 + I2 and consequently,
I1 + I2 = C(D/S1). The first part of lemma is proved. The second part of lemma is
very similar to the first one. In this case the ideals contains the ideals from the first
part: I ′1 = I1, I

′
2 ⊃ I2. Consequently, I ′1 + I ′2 = C(B/S1). The lemma is proved.

Our next goal is to show that if f1 ∈ C(D/S1) then f1E11 ∈ A. Let us to see two
functions f2, f3 ∈ C(D/S1).

We have that µ2(z)(1− |z|)E11 ∈ A, because of
µ2(z)(1− |z|)E11 = E13µ2E31(1− |z|). Similar, µ2

3E11 ∈ A, because of
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µ2
3E11 = E13µ3q+mE31µ3q−m. The matrix-function µ2(z)(1−|z|)f1E11 also belong

to the algebra A, because of
µ2(1− |z|)f1E11 = E13µ2E33f1E31(1− |z|). Similar,
µ2

3f2E11 = E13µ3q+mE33f2E31µ3q−m

The functions µ2(z)(1−|z|) and µ2
3(z) generates the ideals J1, J2 in C(D/S1). The

sum of the ideals J1 + J2 = C(D/S1), because of the functions µ2(1 − |z|) and µ2
3

does not equal to zero in the same point.
The next lemma will finish the proof of the theorem 2.1.

Lemma 2.4. The algebra BV is the direct sum of the modules over the algebra
C(D/S1).

More precisely, BV = E11C(D/S1) + E12B+m + E13B+m + E21B−m + E31B−m +∑3
i,j=2 EijC(D/S1).

Proof. The main idea is to consider the elementary matrices from BV . Any
matrix-function R ∈ BV looks like this:

R =
C(B/S1) B+m B+m

B−m C(B/S1) C(B/S1)
B−m C(B/S1) C(B/S1)

The matrix R has the appropriate elements from B±m and C(D/S1). The lemma
is proved.

It is follows from the lemma 2.2 that EijC(D/S1) ∈ A, 2 ≤ i, j ≤ 3. It is follows
from the lemma 2.3 that

E1jB+m ∈ A,Ei1B−m ∈ A, 2 ≤ i, j ≤ 3. And also, E11C(D/S1) ∈ A. Now we
have that all necessary elements belongs to A. Now we can use the lemma 2.3, and
as result we have that BV = A. The theorem is proved.

We can generalize the results of the lemmas 2.2, 2.3, 2.4 in the next theorem.

Theorem 2.2. Let A is denote the closed subalgebra of the algebra BV . Let the
matrix-function V = (z−m, 1, .., 1), 1 ≤ m ≤ n − 1. Let the elements E1nµ2 ∈ A,
E1nµ3q+m ∈ A, En1µ2 ∈ A, En1(1− |z|) ∈ A.

Let the matrix units Eij ∈ A, 2 ≤ i, j ≤ n and µ2(1− |z|)Enn ∈ A.
Then A = BV .

Proof. The theorem in the case n = 3 was proved in the lemmas 2.2 – 2.4. The
proofs of lemmas 2.2 – 2.4 can be simply modified for another dimensions n ≥ 2. We
omit the details. The theorem is proved.

The next theorem will find the minimal number of idempotent generators for the
homogeneous algebras over the S2 of dimension n ≥ 4.

Theorem 2.3. C∗-algebras BV of dimension n ≥ 4 with matrix-function V =
(z−m, 1, .., 1),m = 1, .., n− 1 can be generated by three idempotents.

Proof. We’ll denote via A1, A2 the next matrix-functions of dimension 4.

A1=

1 µ3q+m 0 µ2

0 0 0 0
0 0 1 1
0 0 0 0
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A2=

1 0 0 µ2

0 0 -1 0
0 0 1 0
0 0 0 0

One can directly checks that A1, A2 are idempotents. The functions µ2(z), µ3(z)
and q±m are the same as in the theorem 1. There is only one difference: m has values
between 1 and n− 1.

We’ll denote as Bl and Cl the next upper-triangular matrices of dimension l.

Bl=

1 1 0 0 0 .
0 0 0 0 0 .
0 0 1 1 0 .
0 0 0 0 0 .
0 0 0 0 1 .

. . . . .
. . .

Cl=

1 0 0 0 0 .
0 0 -1 0 0 .
0 0 1 0 0 .
0 0 0 0 -1 .
0 0 0 0 1 .

. . . . .
. . .

It can be directly checked that Bl and Cl are idempotents. Further, we’ll define
the matrix-functions P1 and P2 of dimension n. The P1 is the block-diagonal matrix-
function that has two blocks, A1 and Bn−4. The P2 has two blocks A2 and Cn−4. In
the case n = 4 the P1 = A1 and the P2 = A2.

The matrix-functions P1 and P2 are the direct sum of two blocks. All these blocks
are idempotents. Therefore, P1 and P2 are idempotents.

The matrix-function P3 has the following definition:

P3=

0 0 . 0 0
. . . . .
0 0 . 0 0

µ3q−m 0 . 1 0
1− |z| 1

2 + 1
2µ2 . 0 1

The last line has the units on the free space. All other values are equal to zero.
One can directly checks that the P3 is idempotent.
The matrix function P2 belong to any algebra BV of dimension n. The matrix-

functions P1 and P3 belong to the algebra BV with the matrix V = diag(z−m, 1, .., 1).
Let us to denote via A the minimal Banach algebra that contains the idempotents

P1, P2, P3.
The proof that algebra A = BV is very similar to the proof of the theorem 2.1.

This proof also using the result of the theorem 2.2. We omit the details.
The theorem is proved. It is follows from the results of [1] and [4] that the alge-

bras BV cannot be generated by two idempotents. Three is the minimal number of
idempotent generators for the algebras BV for any dimension n ≥ 3.

The author wishes to thanks prof. A. Antonevich for useful discussions.
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