Seminar on Fixed Point Theory Cluj-Napoca, Volume 3, 2002, 361-368 http://www.math.ubbcluj.ro/~nodeacj/journal.htm

INTEGRAL INCLUSIONS OF FREDHOLM TYPE RELATIVE TO MULTIVALUED φ -CONTRACTIONS

ALINA SÎNTĂMĂRIAN

"Babeş-Bolyai" University, Department of Applied Mathematics, Str. M. Kogălniceanu Nr. 1, 3400 Cluj-Napoca, Romania E-mail: salina@math.ubbcluj.ro

Abstract. The purpose of this paper is to give a data dependence theorem of the fixed points set of a multivalued φ -contraction, where φ is a strong comparison function.

We also prove an existence theorem for the integral inclusion of Fredholm type

$$x(t) \in \int_a^b K(t,s,x(s)) \ ds + f(t), \ t \in [a,b],$$

where K is a multivalued operator which satisfies a condition where appears a strong comparison function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ and we give a data dependence theorem of the solutions set of this Fredholm integral inclusion, using the established data dependence theorem of the fixed points set for a multivalued φ -contraction.

Keywords: multivalued operator, strong comparison function, fixed point, data dependence, integral inclusion.

AMS Subject Classification: 47H10, 54H25.

1. INTRODUCTION

Let X be a nonempty set. We denote by P(X) the set of all nonempty subsets of X. For a multivalued operator $T: X \to P(X)$ we denote by F_T the set of the fixed points of T, i. e.

$$F_T := \{ x \mid x \in X, x \in T(x) \}.$$

If X is a linear space, then we put

 $P_{cv}(X) := \{ Y \mid Y \in P(X) \text{ and } Y \text{ is a convex set } \}.$

Let (X, d) be a metric space. We denote

 $P_{cl}(X) := \{ Y \mid Y \in P(X) \text{ and } Y \text{ is a closed set } \},\$

$$P_{cp}(X) := \{ Y \mid Y \in P(X) \text{ and } Y \text{ is a compact set } \}$$

and we consider the following functionals

$$D: P(X) \times P(X) \to \mathbb{R}_+, \ D(A,B) = \{ \ d(a,b) \mid a \in A, \ b \in B \},$$

$$H: P(X) \times P(X) \to \mathbb{R}_+ \cup \{+\infty\}, \ H(A,B) = \left\{ \sup_{a \in A} D(a,B), \ \sup_{b \in B} D(b,A) \right\}.$$

Definition 1.1. We say that a function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is a strong comparison function *iff*

(i) φ is strictly increasing, (ii) $\sum_{k=0}^{\infty} \varphi^k(t) < +\infty$, for each $t \in \mathbb{R}_+$.

Definition 1.2. Let (X,d) be a metric space, $T: X \to P(X)$ be a multivalued operator and $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ be a strong comparison function. We say that T is a multivalued φ -contraction *iff*

$$H(T(x), T(y)) \le \varphi(d(x, y)),$$

for each $x, y \in X$.

We denote by $\mathcal{C}([a, b], \mathbb{R}^n)$ the Banach space of the continuous functions $u: [a, b] \to$ \mathbb{R}^n , equipped with Cebyshev's norm $||u||_C = \sup_{t \in [a,b]} ||u(t)||$.

2. Data dependence of the fixed points set for multivalued φ -CONTRACTIONS

First of all we remind a result given by Wegrzyk in [10].

Theorem 2.1 (Węgrzyk [10]). Let (X, d) be a complete metric space, $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ be a strong comparison function and $T: X \to P_{cl}(X)$ be a multivalued φ -contraction. Then $F_T \neq \emptyset$.

Remark 2.1. It is not difficult to show that F_T is a closed set.

We also remind the following well-known properties of the functional H (see [1], [3], [6]).

Lemma 2.1. Let (X, d) be a metric space, $A, B \in P(X)$ and $\varepsilon \in \mathbb{R}$, $\varepsilon > 0$. Then for each $a \in A$, there exists $b \in B$ such that

$$d(a,b) \le H(A,B) + \varepsilon.$$

Lemma 2.2. Let (X,d) be a metric space and $A, B \in P(X)$. If there exists $\eta \in \mathbb{R}$, $\eta > 0$ such that

(i) for each $a \in A$, there is $b \in B$ so that $d(a, b) \leq \eta$,

(ii) for each $b \in B$, there is $a \in A$ so that $d(b, a) \leq \eta$,

then $H(A, B) < \eta$.

Further on we shall prove a data dependence theorem of the fixed points set for multivalued φ -contractions.

Theorem 2.2. Let (X,d) be a complete metric space and $T_1, T_2: X \to P_{cl}(X)$ be two multivalued operators. We suppose that:

- (i) for each $i \in \{1,2\}$ there exists $\varphi_i : \mathbb{R}_+ \to \mathbb{R}_+$ a strong comparison function such that T_i is multivalued φ_i -contraction;
- (ii) there exists $\eta > 0$ such that

$$H(T_1(x), T_2(x)) \le \eta,$$

for each $x \in X$.

362

Then $F_{T_1}, F_{T_2} \in P_{cl}(X)$ and

$$H(F_{T_1}, F_{T_2}) \le \max \left\{ \inf_{u \in \mathbb{N}^*} s_1\left(\eta + \frac{1}{u}\right), \inf_{u \in \mathbb{N}^*} s_2\left(\eta + \frac{1}{u}\right) \right\},\$$

where $s_i(t) = \sum_{k=0}^{\infty} \varphi_i^k(t)$, for each $t \in \mathbb{R}_+$, $i \in \{1, 2\}$.

Proof. The fact that $F_{T_1}, F_{T_2} \in P_{cl}(X)$ follows immediately from the Theorem 2.1 and the Remark 2.1.

In order to prove the second part of the conclusion we consider $i, j \in \{1, 2\}$, with $i \neq j$. Let $x_0 \in F_{T_i}$ and $u \in \mathbb{N}^*$. By Lemma 2.1 it follows that there exists $x_1 \in T_j(x_0)$ such that

$$d(x_0, x_1) \le H(T_i(x_0), T_j(x_0)) + 1/(2u) \le \eta + 1/(2u).$$

We put $t_0 = d(x_0, x_1) + 1/(2u)$. It is not difficult to see that we can choose $\varepsilon_1 > 0$ such that $0 < \varepsilon_1 < \varphi_j(t_0) - \varphi_j(d(x_0, x_1))$. Using the Lemma 2.1 it follows that there exists $x_2 \in T_j(x_1)$ such that

$$d(x_1, x_2) \le H(T_j(x_0), T_j(x_1)) + \varepsilon_1 \le \varphi_j(d(x_0, x_1)) + \varepsilon_1 < \varphi_j(t_0).$$

Now, we can choose $\varepsilon_2 > 0$ such that $0 < \varepsilon_2 < \varphi_j^2(t_0) - \varphi_j(d(x_1, x_2))$. Using again the Lemma 2.1 it follows that there exists $x_3 \in T_j(x_2)$ so that

$$d(x_2, x_3) \le H(T_j(x_1), T_j(x_2)) + \varepsilon_2 \le \varphi_j(d(x_1, x_2)) + \varepsilon_2 < \varphi_j^2(t_0).$$

By induction, we prove that there exists a sequence $(x_n)_{n \in \mathbb{N}}$ of successive approximations of T_j , starting from x_0 , such that

$$d(x_n, x_{n+1}) < \varphi_j^n(t_0),$$

for each $n \in \mathbb{N}$.

Using this property, we are able to write, for each $n \in \mathbb{N}$ and for every $p \in \mathbb{N}^*$, that

(2.1)
$$d(x_n, x_{n+p}) \le \sum_{k=n}^{n+p-1} d(x_k, x_{k+1}) < \sum_{k=n}^{n+p-1} \varphi_j^k(t_0) \le \sum_{k=n}^{\infty} \varphi_j^k(t_0)$$

This implies that $(x_n)_{n \in \mathbb{N}}$ is a Cauchy sequence and therefore a convergent sequence, because (X, d) is a complete metric space. Let $x^* = \lim_{n \to \infty} x_n$. For each $n \in \mathbb{N}$ we have

$$D(x^*, T_j(x^*)) \le d(x^*, x_{n+1}) + D(x_{n+1}, T_j(x^*)) \le d(x^*, x_{n+1}) + H(T_j(x_n), T_j(x^*)) \le d(x^*, x_{n+1}) + \varphi_j(d(x_n, x^*)) \le d(x^*, x_{n+1}) + d(x_n, x^*).$$

Letting n to tend to infinity we get that $D(x^*, T_j(x^*)) = 0$, so $x^* \in T_j(x^*)$, i. e. $x^* \in F_{T_j}$. From the relation (2.1), letting p to tend to infinity, we obtain

$$d(x_n, x^*) \le \sum_{k=0}^{\infty} \varphi_j^k(t_0) = s_j(t_0),$$

for each $n \in \mathbb{N}$.

For n = 0 we have

$$d(x_0, x^*) \le s_j(t_0).$$

Taking into account the fact that $d(x_0, x_1) \leq \eta + 1/(2u)$, it follows that

$$d(x_0, x^*) \le s_j(\eta + 1/u).$$

Hence

$$d(x_0, x^*) \le \inf_{u \in \mathbb{N}^*} s_j(\eta + 1/u).$$

Now, using the Lemma 2.2, we obtain the conclusion of the theorem. \blacksquare

Remark 2.2. Another version of the Theorem 2.2 was given by Sîntămărian in [9].

Remark 2.3. If in the Theorem 2.2 we take $\varphi_i : \mathbb{R}_+ \to \mathbb{R}_+$ defined as follows: $\varphi_i(t) = a_i t$, for each $t \in \mathbb{R}_+$, where $a_i \in]0, 1[$, for $i \in \{1, 2\}$, then we get

 $H(F_{T_1}, F_{T_2}) \le \eta / (1 - \max \{ a_1, a_2 \}).$

For $a_1 = a_2 \in]0, 1[$ this is a result given by Lim in [4].

3. Integral inclusions of Fredholm type

The first result of this section is an existence theorem for an integral inclusion of Fredholm type.

Theorem 3.1. We consider the integral inclusion of Fredholm type

(3.1)
$$x(t) \in \int_{a}^{b} K(t, s, x(s)) \, ds + f(t), \ t \in [a, b]$$

and we suppose that:

(i) the multivalued operator $K : [a,b] \times [a,b] \times \mathbb{R}^n \to P_{cp,cv}(\mathbb{R}^n)$ is such that for each $x \in \mathcal{C}([a,b],\mathbb{R}^n)$, the multivalued operator $K_x(t,s) := K(t,s,x(s))$, $(t,s) \in [a,b] \times [a,b]$ is lower semicontinuous;

(ii)
$$f \in \mathcal{C}([a, b], \mathbb{R}^n);$$

(iii) there exists $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ a strong comparison function such that

 $H(K(t, s, u_1), K(t, s, u_2)) \le l(t, s) \varphi(||u_1 - u_2||),$

for each $t, s \in [a, b]$ and for every $u_1, u_2 \in \mathbb{R}^n$, where $l(t, \cdot) \in L^1[a, b]$, for each $t \in [a, b]$ and $\sup_{t \in [a, b]} \int_a^b l(t, s) \, ds \leq 1$.

Then the integral inclusion (3.1) has at least a solution in $\mathcal{C}([a, b], \mathbb{R}^n)$.

Proof. We consider the multivalued operator $T : \mathcal{C}([a,b],\mathbb{R}^n) \to \mathcal{P}(\mathcal{C}([a,b],\mathbb{R}^n))$ defined as follows

$$T(x) = \left\{ v \in \mathcal{C}([a,b],\mathbb{R}^n) \middle| v(t) \in \int_a^b K(t,s,x(s)) \, ds + f(t), \ t \in [a,b] \right\},$$

for each $x \in \mathcal{C}([a, b], \mathbb{R}^n)$.

Let $x \in \mathcal{C}([a, b], \mathbb{R}^n)$. For the multivalued operator $K_x : [a, b] \times [a, b] \to P_{cp,cv}(\mathbb{R}^n)$, from Michael's selection theorem, we get that there exists a continuous operator $k_x : [a, b] \times [a, b] \to \mathbb{R}^n$ such that $k_x(t, s) \in K_x(t, s)$, for each $(t, s) \in [a, b] \times [a, b]$. It follows that $\int_a^b k_x(t, s) \, ds + f(t) \in T(x)$. So $T(x) \neq \emptyset$.

It is easy to show that T(x) is a closed set.

Therefore, we are able to write that $T : \mathcal{C}([a, b], \mathbb{R}^n) \to P_{cl}(\mathcal{C}([a, b], \mathbb{R}^n)).$

364

Further on we shall prove that T is multivalued φ -contraction, i. e. $H_C(T(x_1), T(x_2)) \leq \varphi(||x_1 - x_2||_C)$, for each $x_1, x_2 \in \mathcal{C}([a, b], \mathbb{R}^n)$, where by $H_C(\cdot, \cdot)$ we denoted the Pompeiu-Hausdorff distance corresponding to Cebyshev's norm.

Let $x_1, x_2 \in \mathcal{C}([a, b], \mathbb{R}^n)$ and $v_1 \in T(x_1)$. Then there exists $k_{x_1}(t, s) \in K_{x_1}(t, s)$, $(t, s) \in [a, b] \times [a, b]$ so that $v_1(t) = \int_a^b k_{x_1}(t, s) ds + f(t), t \in [a, b]$. But

$$H(K(t, s, x_1(s)), K(t, s, x_2(s))) \le l(t, s) \varphi(||x_1(s) - x_2(s)||),$$

for each $t, s \in [a, b]$. So, there exists $w(t, s) \in K_{x_2}(t, s)$ such that

$$||k_{x_1}(t,s) - w(t,s)|| \le l(t,s) \ \varphi(||x_1(s) - x_2(s)||),$$

for each $(t,s) \in [a,b] \times [a,b]$.

Now, we can consider the multivalued operator U defined by

$$U(t,s) = K_{x_2}(t,s) \cap \{ u \in \mathbb{R}^n \mid ||k_{x_1}(t,s) - u|| \le l(t,s) \varphi(||x_1(s) - x_2(s)||) \},\$$

for each $(t,s) \in [a,b] \times [a,b]$. Taking into account the fact that the multivalued operator U is lower semicontinuous, it follows that there exists a continuous operator $k_{x_2} : [a,b] \times [a,b] \to \mathbb{R}^n$ such that $k_{x_2}(t,s) \in U(t,s)$, for each $(t,s) \in [a,b] \times [a,b]$. We have

$$v_2(t) = \int_a^b k_{x_2}(t,s) \, ds + f(t) \in \int_a^b K(t,s,x_2(s)) \, ds + f(t), \ t \in [a,b]$$

and

$$\|v_1(t) - v_2(t)\| \le \int_a^b \|k_{x_1}(t,s) - k_{x_2}(t,s)\| \, ds \le \le \int_a^b l(t,s) \, \varphi(\|x_1(s) - x_2(s)\|) \, ds \le \varphi(\|x_1 - x_2\|_C) \, \int_a^b l(t,s) \, ds$$

ch

for each $t \in [a, b]$.

So $||v_1 - v_2||_C \le \varphi(||x_1 - x_2||_C)$.

Interchanging the role of x_1 and x_2 and using the Lemma 2.2 we obtain that $H_C(T(x_1), T(x_2)) \leq \varphi(||x_1 - x_2||_C)$, for each $x_1, x_2 \in \mathcal{C}([a, b], \mathbb{R}^n)$.

From the Theorem 2.1 we get that $F_T \neq \emptyset$. The conclusion of the theorem follows immediately, because it is clear that $S_{K,f} = F_T$, where by $S_{K,f}$ we denoted the solutions set of the integral inclusion (3.1).

Remark 3.1. If in the Theorem 3.1 we take the function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ as follows: $\varphi(t) = at$, for each $t \in \mathbb{R}_+$, where $a \in]0,1[$, then we obtain a result given by Petruşel in [5].

The next result is a data dependence theorem for the solutions set of some integral inclusions of Fredholm type.

Theorem 3.2. We consider the integral inclusions of Fredholm type

(3.2)
$$x(t) \in \int_{a}^{b} K_{1}(t, s, x(s)) \ ds + f_{1}(t), \ t \in [a, b]$$

ALINA SÎNTĂMĂRIAN

and

(3.3)
$$x(t) \in \int_{a}^{b} K_{2}(t, s, x(s)) \ ds + f_{2}(t), \ t \in [a, b].$$

We suppose that:

- (i) the multivalued operators $K_1, K_2 : [a, b] \times [a, b] \times \mathbb{R}^n \to P_{cp, cv}(\mathbb{R}^n)$ are such that for each $x \in \mathcal{C}([a,b],\mathbb{R}^n)$, the multivalued operators $K_{1x}(t,s) := K_1(t,s,x(s))$ and $K_{2x}(t,s) := K_2(t,s,x(s)), (t,s) \in [a,b] \times [a,b]$ are lower semicontinuous; (ii) $f_1, f_2 \in C([a, b], \mathbb{R}^n)$;
- (iii) for each $i \in \{1,2\}$ there exists $\varphi_i : \mathbb{R}_+ \to \mathbb{R}_+$ a strong comparison function such that

$$H(K_i(t, s, u_1), K_i(t, s, u_2)) \le l_i(t, s) \varphi_i(||u_1 - u_2||),$$

for each $t, s \in [a, b]$ and for every $u_1, u_2 \in \mathbb{R}^n$, where $l_i(t, \cdot) \in L^1[a, b]$, for each $t \in [a, b]$ and $\sup_{t \in [a, b]} \int_a^b l_i(t, s) ds \le 1$; (iv) there exists $\eta_K > 0$ such that

$$H(K_1(t,s,u), K_2(t,s,u)) \le \eta_K,$$

for each $t, s \in [a, b]$ and for every $u \in \mathbb{R}^n$.

Then

$$H_C(S_{K_1,f_1}, S_{K_2,f_2}) \le \max \left\{ \inf_{n \in \mathbb{N}^*} s_1\left(\eta + \frac{1}{n}\right), \inf_{n \in \mathbb{N}^*} s_2\left(\eta + \frac{1}{n}\right) \right\},$$

where S_{K_1,f_1} is the solutions set of the integral inclusion (3.2), S_{K_2,f_2} is the solutions set of the integral inclusion (3.3), $m = \max_{t \in [a,b]} \|f_1(t) - f_2(t)\|, \eta = \eta_K (b-a) + m$ and $s_i(t) = \sum_{n=0}^{\infty} \varphi_i^n(t)$, for each $t \in \mathbb{R}_+$, $i \in \{1, 2\}$.

Proof. From the proof of the Theorem 3.1 it follows that for each $i \in \{1, 2\}$ the multivalued operator $T_i: \mathcal{C}([a, b], \mathbb{R}^n) \to P_{cl}(\mathcal{C}([a, b], \mathbb{R}^n))$, defined by

$$T_i(x) = \left\{ v \in \mathcal{C}([a,b],\mathbb{R}^n) \mid v(t) \in \int_a^b K_i(t,s,x(s)) \, ds + f_i(t), \ t \in [a,b] \right\},$$

for each $x \in \mathcal{C}([a, b], \mathbb{R}^n)$, is multivalued φ_i -contraction.

Further on we shall prove that $H_C(T_1(x), T_2(x)) \leq \eta$, for each $x \in \mathcal{C}([a, b], \mathbb{R}^n)$.

Let $x \in \mathcal{C}([a,b],\mathbb{R}^n)$ and $v_1 \in T_1(x)$. Then there exists $k_{1x}(t,s) \in K_{1x}(t,s)$, $(t,s) \in [a,b] \times [a,b]$ such that $v_1(t) = \int_a^b k_{1x}(t,s) \, ds + f_1(t), t \in [a,b]$.

But

$$H(K_1(t, s, x(s)), K_2(t, s, x(s))) \le \eta_K,$$

for each $t, s \in [a, b]$. So, there exists $w(t, s) \in K_{2x}(t, s)$ such that

$$||k_{1x}(t,s) - w(t,s)|| \le \eta_K,$$

for each $(t, s) \in [a, b] \times [a, b]$.

Now, we can consider the multivalued operator U defined by

$$U(t,s) = K_{2x}(t,s) \cap \{ u \in \mathbb{R}^n \mid ||k_{1x}(t,s) - u|| \le \eta_K \},\$$

366

for each $(t,s) \in [a,b] \times [a,b]$. Taking into account the fact that the multivalued operator U is lower semicontinuous, it follows that there exists a continuous operator $k_{2x}: [a,b] \times [a,b] \to \mathbb{R}^n$ such that $k_{2x}(t,s) \in U(t,s)$, for each $(t,s) \in [a,b] \times [a,b]$. We have

$$v_2(t) = \int_a^b k_{2x}(t,s) \, ds + f_2(t) \in \int_a^b K_2(t,s,x(s)) \, ds + f_2(t), \ t \in [a,b]$$

and

$$\|v_1(t) - v_2(t)\| \le \int_a^b \|k_{1x}(t,s) - k_{2x}(t,s)\| \, ds + \|f_1(t) - f_2(t)\| \le \eta_K \ (b-a) + m = \eta,$$

for each $t \in [a, b]$.

Hence $||v_1 - v_2||_C \leq \eta$.

Interchanging the role of T_1 and T_2 we get that $H_C(T_1(x), T_2(x)) \leq \eta$, for each $x \in \mathcal{C}([a, b], \mathbb{R}^n)$.

Now, applying the Theorem 2.2 we obtain

$$H_C(F_{T_1}, F_{T_2}) \le \max \left\{ \inf_{n \in \mathbb{N}^*} s_1\left(\eta + \frac{1}{n}\right), \inf_{n \in \mathbb{N}^*} s_2\left(\eta + \frac{1}{n}\right) \right\}$$

and from this it follows the conclusion of the theorem, taking into account the fact that $S_{K_1,f_1} = F_{T_1}$ and $S_{K_2,f_2} = F_{T_2}$.

References

- [1] J.-P. Aubin, A. Cellina, Differential inclusions, Springer-Verlag, Berlin, 1984.
- [2] A. Constantin, Some existence results for nonlinear integral equations, Qualitative problems for differential equations and control theory, World Scientific Publishing, 1995, 105-111.
- [3] K. Deimling, Multivalued differential equations, Walter de Gruyter, 1992.
- [4] T.-C. Lim, On fixed point stability for set-valued contractive mappings with applications to generalized differential equations, J. Math. Anal. Appl. 110, 1985, 436-441.
- [5] A. Petruşel, Integral inclusions. Fixed point approaches, Ann. Soc. Math. Polonae, Series I, 40, 2000, 147-158.
- [6] I. A. Rus, Generalized contractions and applications, Cluj University Press, Cluj-Napoca, 2001.
- [7] I. A. Rus, A. Petruşel, A. Sîntămărian, Data dependence of the fixed points set of multivalued weakly Picard operators (to appear).
- [8] I. A. Rus, A. Petruşel, A. Sîntămărian, Data dependence of the fixed points set of c-multivalued weakly Picard operators (to appear).
- [9] A. Sîntămărian, A theorem on data dependence of the fixed points set for multivalued mappings, Seminar on Fixed Point Theory, Babeş-Bolyai Univ., Preprint Nr. 3, 1998, 35-40.
- [10] R. Węgrzyk, Fixed point theorems for multivalued functions and their applications to functional equations, Dissertationes Math. 201, Warszawa, 1982.