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Abstract. Let X be a reflexive uniformly convex Banach space, X∗ be its dual space and let
J : X → X∗ be the normalized duality mapping. Consider the eingenvalue problem

Jx + µAx + R(µ, x) = 0

where A and R(µ, ·) are (weakly) continuous mappings, generally nonlinear.
When A is a linear map, bounded from bellow, and R is nonlinear and asymptotical zero we can

prove local and global bifurcation properties similar to those for compact maps, (e.g. Krasnoselskii
and Rabinowitz theorems).

When A is a (nonlinear) maximal monotone map and R(µ, x) := µC(x) with C a compact map,
we can define a new coincidence degree for the pair (A, C) and establish some existence results.

Abstract setting
Let X be a reflexive uniformly convex Banach space and X∗ be its dual Banach

space and J : X → X∗, the duality mapping that in our case is strictly monotone
and uniformly continuous operator on bounded set of X.

Consider the eingenvalue problem

(1) Jx + µAx + R(µ, x) = 0

where A : X → X∗ is a linear continuous operator and R(µ, ·) : X → X∗ is a nonlinear
perturbation such that R(µ, 0) = 0, ∀µ ∈ R. In this case (µ, 0) are solutions of (1) for
all µ ∈ R-named trivial solutions and the set of all trivial solutions are denoted by C.

A point (µ0, 0) ∈ C is said to be a bifurcation point for (1) provided that there exist
solutions (µ, xµ) , xµ 6= 0 in each neighborhood of (µ0, 0) . Let us denote by S0 the set
all of these nontrivial solutions and let S := S0 be its adherence in R×X.

The key step in our extension is the Browder-Ton theorem concerning the compact
imbedding property for separable Banach spaces (e.g. D. Pascali, S. Sburlan p[1,
p.302]) namely:

Let X be a separable reflexive Banach space and let S be a countable subset of
X. Then there exists a separable Hilbert space H and a compact one-to-one linear
operator ψ : H → X such that S ⊂ ψ(H) and ψ(H) is dense in X.
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Define now the adjoint operator φ : X∗ → H using the inner product of H denoted
by (·, ·) :

(2) < φ(u), v >= (u, ψ(v)), ∀u ∈ H, v ∈ X∗.

Then we have the following scheme H
ψ→ X

A→
R(µ,·)

X∗ φ→ H and the operator

L := −ψφA : X → X is linear and compact as the composition of a continuous map
with a compact one. Since the spectrum σ(L) is a discrete we can choose δ > 0 such
that σ(L) ∩ (I1 ∪ I2) = ∅, where I1 := (εµ0 − δ, εµ0) and I2 := (εµ0, εµ0 + δ) and
µ0 ∈ σ(L).

Suppose that A is a bounded from below in the sense

(i) < Ax, x >≥ − ε

εµ0 + δ
||x||2, ∀x ∈ X

and the complementary part is a asimptotical zero, i.e.,

(ii) Jx + R(µ, x) = o(||x||)
uniformly in µ on bounded sets.

Of course, when A is linear and monotone the condition (i) holds.
Reasoning by contradiction we can prove an analogous of Krasnoselskii theorem

for monotone operators (see S. Sburlan [10]).

Proposition. Let µ0 be a characteristic value with odd algebraic multiplicity of
the linear compact operator L ∈ L(X).

If there exist ε, δ > 0 such that (i)-(ii) hold, then (ε, µ0) ∈ R×X is a bifurcation
point for (1).

Example: If consider R(µ, x) : µ||x||2JX, then < R(µ, x)x >=
= µ||x||2 < Jx, x >= µ||x||4. The above results can be applied in Sobolev space
X := H1(Ω) for any linear elliptic operator, A, defined there. The corresponding
nonlinear part Ju + R(µ, u) is −∆u + µ||u||2∆u.

This result still remain true in the general case X := W 1,p(Ω), but in this case
J is nonlinear, namely the p-laplacian J(u) := div(|Ou|p−2Ou) (see e.g. D. Pascali,
S. Sburlan [9, p. 127]).

Let us denote

i− := dS(J + µA, B, 0) = dLS(I +
1
ε
µψφA, B, 0), µ ∈ I1,

i+ := dS(J + µA,B, 0) = dLS(I +
1
ε
µψφA, B, 0), µ ∈ I2,

and observe that these degrees are constant in µ1 ∈ I1 and µ2 ∈ I2.
For any fixed r > 0 define the mapping Hr : R+ ×X → R+ ×X∗ as follows

Hr(µ, x) :=
(||x||2 − r2, Jx + µAx + R(µ, x)

)
, ∀(µ, x) ∈ R×X.

Since we can prove a formula similar to Ize’s formula

(3) dS(Hr,B, 0) = i− − i+,
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where B = {(ν, x) ∈ R × X | 2 + ||x||2 < δ2 + r2} (see Sburlan [10], a global re-
sults concerning the bifurcation under monotonocity condition similar to those under
compactness condition proved by Rabinowitz is true:

Theorem. If E is a connected component containing the bifurcation point
(εµ0, 0) ∈ S, then we have one of the following two possibilities:

(j) E is unbounded in R×X.
(jj) E contains a finite number of bifurcation points (εµj , 0) where
1
µj

∈ σ(L). Moreover, the number of these points, including (εµ0, 0) , is even.

Suppose now that the operator A : D(A) ⊂ X → X∗ is maximal monotone and
C : D̄ ⊂ X → X∗ is a compact one, both of them nonlinear ones. Consider an
eingenvalue problem of the form

(4) λJx + Ax− Cx = 0, λ > 0,

with x ∈ X. Since A is maximal monotone, there exists (λJ + A)−1 and it is contin-
uous, for every λ > 0. Equation (4) can be written as

(λJ + A)x = Cx ⇔ x− (λJ + A)−1Cx = 0.

For each λ > 0, we set Mλ = (λJ + A)−1C. It is easy to see that
Mλ : X → X is compact, as the product of a continuous operator with a compact
one. Therefore I − Mλ : X → X is a compact perturbation of the identity, so the
Leray-Schauder topological degree can be considered. From the equivalence:

λJx + Ax− Cx = 0 ⇔ (I −Mλ)x = 0

it follows the next natural definition of the coincidence degree of the pair of nonlinear
operators (A,C) :

Assume that the operator A : D(A) ⊂ X → X∗ is maximal monotone and
C : D̄ ⊂ X → X∗ is compact, both of them nonlinear. If
0 /∈ (λJ + A− C)(D(A) ∩ ∂D), then define the coincidence degree of the pair (A,C)
with respect to D by the formula:

dλ((a,C), D) = dLS(I −Mλ, D, 0),

where dLS stands for the Leray-Schauder degree.
The next properties of the coincidence degree follow easily from the properties of

the Leray-Schauder topological degree.
(a) Solution property: If dλ((A,C), D) 6= 0, then

0 ∈ (λJ + A)(D(A) ∩D).
(b) Additivity with respect to the domain: If D1, D2 ⊂ D,

D1 ∩D2 = ∅ and 0 /∈ (λJ A− C) (D(A) ∩ (D\D1 ∪D2)),then

dλ((AC), D) = dλ((A, C), D1) + dλ(A,C), D2).

(c) The invariance to homotopy: Let Ct : D̄ ⊂ X → X∗, 0 ≤ t ≤ 1 be
compact and At : D(At) ⊂ X → X∗, 0 ≤ t ≤ 1 be maximal monotone such that⋂
0≤t≤1

D(At) 6= ∅.
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If 0 /∈ (λJ + at−Ct)(D(At)∩ ∂D) < for all 0 ≤ t ≤ 1, then the coincidence degree
dλ((At, Ct), D) is independent on t ∈ [0, 1].

Application
Let X be a real, reflexive Banach space. Assume, without loss of generality, that

X and X∗ are locally uniform convex, according to a result due to Trojanski (e.g.
[3]).

In the sequel, we use the above coincidence degree to establish an existence result
for the operator equations of the form:

(5) Ax + Tx + Cx = y, y ∈ X∗,

where A : D(A) ⊂ X → X∗, 0 ∈ D(A) and satisfy the following hypotesis:
(i) A is bounded demicontinuous and strongly monotone with A(0) = 0;
(ii) T is linear, compact;
(iii) C is completely continuous;
(iv) there exists p > 0 and g : B(0, 1) ⊂ X → [0,∞) a completely continuous

function with g(u) = 0 ⇔ u = 0, such that

< Cu, u >≥ g

(
u

||u||
)
||u||2+p, ∀u ∈ X\{0}.

Theorem 1. Under the assumption (i)-(iv), for every y ∈ X∗ the equation (5)
has solutions in D(A).

Proof. Let c > 0 be such that > Au−Av, u− v >≥ c||u− v||2, for all u ∈ D(A).
Then the operator A′ : D(A) ⊂ X → X∗, defined by
A′x = Ax− cJx, x ∈ D(A), is maximal monotone. The equation (5) can be written
as: cJx + A′x + Cx = y.

First, we will prove that the solution set of the equation

(6) cJx + A′x + tCx− ty = 0

is uniformly bounded in t ∈ [0, 1]. Indeed, let us suppose on the contrary that there
exists (xn)n∈N ∈ X with ||xn|| → ∞, and tn ∈ [0, 1] such that cJxn +A′xn + tnTxn +
tnCxn − tny = 0.

Now, we can find ε > 0 such that

(7) g

(
xn

||xn||
)
≥ ε, ∀n ∈ N.

If assume on the contrary that g

(
xn

||xn||
)
→ 0, then

xn

||xn|| → u0, eventually

on a subsequence, according with Minty theorem ( e.g., D. Pascali, S. Sburlan [9, p.
2]). In this case, using the fact that g is completely continuous, we obtain g(u0) = 0
and thus u0 = 0. Further,

c < Jxnxn >= − < A′xn, xn > −tn < Txn, xn > −tn < Cxn, xn > +
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+tn < y, xn >≤ ||Txn|| ||xn||+ ||y|| ||xn||, so c ≤
∣∣∣∣
∣∣∣∣T

(
xn

||xn||
)∣∣∣∣

∣∣∣∣ +

+
||f ||
||xn|| → ||T (0)|| = 0 is a contradiction. Hence (7) holds true. Now,

c < Jxn, xn >+¡A′xn, xn >+tn < Txn, xn >+tn < Cxn, xn > −
−tn < y, xn >=0.

But A′ is monotone and A′(0) = 0, so

0 ≥< txn, xn > + < Cxn, xn > − < y, xn >≥ g

(
xn

||xn||
)
||xn||2+p−

−||T || ||xn||2 − ||y|| ||xn|| ≥ ε||xn||2+p − ||T || ||xn||2 − ||y|| ||xn|| n→∞→ ∞
is a contradiction. In fact, we proved that there exists R > 0 such that the equation (6)
has no solutions on ∂B(0, R). Finally, we will use the invariance to homotopy Ct(x) =
tTx + tCx − ty, 0 ≤ t ≤ 1, of the coincidence degree. As we have proved, 0 /∈
(cJ + A′ + Ct)(D(A) ∩ ∂B(0, R)) and consequently, the coincidence degree dλ(cJ +
A′+Ct− y)(D(A)∩B(0, R), 0) is independent on t ∈ [0, 1]. According to the solution
property (a) and Minty theorem, the equation (3.1) has solutions. ¥

By imposing usual conditions of monotonocity it can be easily obtained the unique
solvability of (5).

The above methods can be applied to study:

The simplest Model Problems:
Let g : I × R2 → R2 be a bounded continuous function

|g(t, ξ, η) | ≤ M, ∀t ∈ I, (ξ, η) ∈ R2

and consider the eingenvalue problem{
u′′(t) + λu(t) + g(t, u(t), u′(t)) = f(t), t ∈ I

B(u, t)u′(t) = 0, t ∈ ∂I,

where I := [0, π] ⊂ R and B denotes either Dirichlet boundary conditions u(0) =
u(π) = 0 or Neumann boundary conditions u′(0) = u′(π) = 0 or periodic boundary
conditions u(0) = u(π), u′(0) = u′(π).
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