FUNCTIONAL-DIFFERENTIAL EQUATIONS OF MIXED TYPE, VIA WEAKLY PICARD OPERATORS

IOAN A. RUS

Department of Applied Mathematics Babeş-Bolyai University, Cluj-Napoca, Romania
E-mail: iarus@math.ubbcluj.ro

Abstract

In this paper we apply the weakly Picard operators technique to study the following second order functional-differential equations of mixed type

$$
-x^{\prime \prime}(t)=f(t, x(t), x(g(t)), x(h(t))), \quad t \in[a, b]
$$

where $g([a, b] \cap(-\infty, a) \neq \emptyset$ and $h([a, b]) \cap(b,+\infty) \neq \emptyset$.
Keywords: Picard operators, weakly Picard operators, fixed points, equations of mixed type, boundary value problems, data dependence.
AMS Subject Classification: 34K10, 47H10.

1. Introduction

The purpose of this paper is to study the following boundary value problem (see [1], [3], [5], [7], [10], [12], [19]-[21])

$$
\begin{equation*}
-x^{\prime \prime}(t)=f(t, x(t), x(g(t)), x(h(t))), \quad t \in[a, b] ; \tag{1.1}
\end{equation*}
$$

$$
\begin{cases}x(t)=\varphi(t), & t \in\left[a_{1}, a\right], \tag{1.2}\\ x(t)=\psi(t), & t \in\left[b, b_{1}\right],\end{cases}
$$

where
$\left(H_{1}\right) \quad a_{1} \leq a<b \leq b_{1} ;$
$\left(H_{2}\right) \quad g, h \in C\left([a, b],\left[a_{1}, b_{1}\right]\right)$;
$\left(H_{3}\right) \quad f \in C\left([a, b] \times R^{3}\right)$;
$\left(H_{4}\right)$ there exists $L_{f}>0$ such that:

$$
\left|f\left(t, u_{1}, u_{2}, u_{3}\right)-f\left(t, v_{1}, v_{2}, v_{3}\right)\right| \leq L_{f}\left(\sum_{i=1}^{3}\left|u_{i}-v_{i}\right|\right)
$$

for all $t \in[a, b], u_{i}, v_{i} \in R, i=1,2,3$;
$\left(H_{5}\right) \quad \varphi \in\left[a_{1}, a\right]$ and $\psi \in C\left[b, b_{1}\right]$.
Some problems concerning equation (1.1) was study in the following particular cases (see [4], [14], [2], [5], [6], [17], [24], [25], [26]...)

$$
g(t)=t-h, \quad h(t)=t+h, \quad h>0,
$$

and ([16])

$$
g(t)=\lambda t, \quad h(t)=\frac{1}{\lambda} t, \quad 0<\lambda<1 .
$$

For other considerations on the functional-differential equations we mention: [1], [5], [6], [8], [9], [11], [13], [14], [18], [23], [27].

Let G be the Green function of the following problem

$$
-x^{\prime \prime}=\chi, \quad x(a)=0, \quad x(b)=0 .
$$

From the definition of the Green function we have that, the problem

$$
(1.1)+(1.2), \quad x \in C\left[a_{1}, b_{1}\right] \cap C^{2}[a, b],
$$

is equivalent with the fixed point equation

$$
x(t)=\left\{\begin{array}{l}
\varphi(t), t \in\left[a_{1}, a\right], \tag{1.3}\\
w(\varphi, \psi)(t)+\int_{a}^{b} G(t, s) f(s, x(s), x(g(s)), x(h(s))) d s, t \in[a, b], \\
\psi(t), t \in\left[b, b_{1}\right], \\
x \in C\left[a_{1}, b_{1}\right],
\end{array}\right.
$$

where

$$
w(\varphi, \psi)(t):=\frac{t-a}{b-a} \psi(b)+\frac{b-t}{b-a} \varphi(a)
$$

The equation (1.1) is equivalent with

$$
x(t)=\left\{\begin{array}{l}
x(t), t \in\left[a_{1}, a\right] \tag{1.4}\\
w\left(\left.x\right|_{\left[a_{1}, a\right]},\left.x\right|_{\left[b, b_{1}\right]}\right)(t)+\int_{a}^{b} G(t, s) f(s, x(s), x(g(s)), x(h(s))) d s, t \in[a, b] \\
x(t), t \in\left[b, b_{1}\right] .
\end{array}\right.
$$

Consider the following operators

$$
B_{f}, E_{f}: C\left[a_{1}, b_{1}\right] \rightarrow C\left[a_{1}, b_{1}\right]
$$

where

$$
B_{f}(x)(t):=\text { second part of }(1.3)
$$

and

$$
E_{f}(x)(t):=\text { second part of (1.4). }
$$

Let $X:=C\left[a_{1}, b_{1}\right]$ and $X_{\varphi, \psi}:=\left\{x \in X|x|_{\left[a_{1}, a\right]}=\varphi,\left.x\right|_{\left[b, b_{1}\right]}=\psi\right\}$. Then

$$
X=\bigcup_{\substack{\varphi \in C[a 1, a] \\ \psi \in C\left[b, b_{1}\right]}} X_{\varphi, \psi}
$$

is a partition of X.
We have
Lemma 1.1. We suppose that the conditions $\left(H_{1}\right),\left(H_{2}\right),\left(H_{3}\right)$ and $\left(H_{5}\right)$ are satisfied. Then
(a) $B_{f}(X) \subset X_{\varphi, \psi} ; B_{f}\left(X_{\varphi, \psi}\right) \subset X_{\varphi, \psi}$;
(b) $\left.B_{f}\right|_{X_{\varphi, \psi}}=\left.E_{f}\right|_{X_{\varphi, \psi}}$.

In this paper we shall prove that, if L_{f} is small enough, then the operator E_{f} is weakly Picard operator and we study the equation (1.1) in the terms of this operator.

2. Weakly Picard operators

Let (X, d) be a metric space and $A: X \rightarrow X$ an operator. We shall use the following notations:
$F_{A}:=\{x \in X \mid A(x)=x\}$ - the fixed point set of A;
$I(A):=\{Y \subset X \mid A(Y) \subset Y, Y \neq \emptyset\}$ - the family of the nonempty invariant subsets of A;

$$
A^{n+1}:=A \circ A^{n}, \quad A^{0}=1_{X}, \quad A^{1}=A, \quad n \in N .
$$

Definition 2.1. ([22], [23]) An operator A is weakly Picard operator (WPO) if the sequence

$$
\left(A^{n}(x)\right)_{n \in N}
$$

converges, for all $x \in X$, and the limit (which may depend on x) is a fixed point of A.

Definition 2.2. ([22], [23]) If the operator A is WPO and $F_{A}=\left\{x^{*}\right\}$, then by definition, the operator A is Picard operator (PO).

Definition 2.3. ([22], [23]) If A is WPO, then we consider the operator A^{∞} defined by

$$
A^{\infty}: X \rightarrow X, \quad A^{\infty}(x):=\lim _{n \rightarrow \infty} A^{n}(x)
$$

It is clear that

$$
A^{\infty}(X)=F_{A} \text { and } \omega_{A}(x)=\left\{A^{\infty}(x)\right\}
$$

where $\omega_{A}(x)$ is the ω-limit point set of A.
For some examples of WPOs see [22] and [23].

3. Boundary value problem

Consider the problem (1.1)+(1.2). We have
Theorem 3.1. ([7], [19]) We suppose that
(a) the conditions $\left(H_{1}\right)-\left(H_{5}\right)$ are satisfied,
(b) $\frac{3}{8} L_{f}(b-a)^{2}<1$.

Then the problem (1.1)+(1.2) has a unique solution which is the uniform limit of the successive approximations.

Proof. Consider the Banach space $C\left[a_{1}, b_{1}\right]$ with Chebyshev norm. The problem $(1.1)+(1.2)$ is equivalent with the fixed point equation

$$
B_{f}(x)=x, \quad x \in C\left[a_{1}, b_{1}\right]
$$

From the condition $\left(H_{4}\right)$, the operator B_{f} is an α-contraction, with

$$
\alpha=\frac{3}{8} L_{f}(b-a)^{2} .
$$

The proof follows from the contraction principle.
Remark 3.1. From the Theorem 3.1 we have the operator B_{f} is PO. But

$$
\left.B_{f}\right|_{X_{\varphi, \psi}}=\left.E_{f}\right|_{X_{\varphi, \psi}},
$$

and

$$
X:=C\left[a_{1}, b_{1}\right]=\bigcup_{\varphi, \psi} X_{\varphi, \psi}, \quad X_{\varphi, \psi} \in I\left(E_{f}\right)
$$

So, the operator E_{f} is WPO and

$$
F_{E_{f}} \cap X_{\varphi, \psi}=\left\{x_{\varphi, \psi}^{*}\right\}, \forall \varphi \in C\left[a_{1}, a\right], \psi \in C\left[b, b_{1}\right],
$$

where $x_{\varphi, \psi}^{*}$ is the unique solution of the problem (1.1)+(1.2).

4. Inequalities of Čaplygin type

We have
Theorem 4.1. We suppose that
(a) the conditions $\left(H_{1}\right)-\left(H_{5}\right)$ are satisfied;
(b) $\frac{3}{8} L_{f}(b-a)^{2}<1$;
(c) $u_{i}, v_{i} \in R, u_{i} \leq v_{i}, i=1,2,3$, imply that

$$
f\left(t, u_{1}, u_{2}, u_{3}\right) \leq f\left(t, v_{1}, v_{2}, v_{3}\right)
$$

for all $t \in[a, b]$.
Let x be a solution of the equation (1.1) and y a solution of the inequality

$$
-y^{\prime \prime}(t) \leq f(t, y(t), y(g(t)), y(h(t))), \quad t \in[a, b] .
$$

Then

$$
y(t) \leq x(t), \forall t \in\left[a_{1}, a\right] \cup\left[b, b_{1}\right] \Rightarrow y \leq x .
$$

Proof. In the terms of the operator E_{f}, we have

$$
x=E_{f}(x) \text { and } y \leq E_{f}(y)
$$

and

$$
w\left(\left.y\right|_{\left[a_{1}, a\right]},\left.y\right|_{\left[b, b_{1}\right]}\right) \leq w\left(\left.x\right|_{\left[a, a_{1}\right]},\left.x\right|_{\left[b, b_{1}\right]}\right)
$$

On the other hand, from the condition (c), we have that the operator E_{f}^{∞} is monotone increasing, and we have (see [22])

$$
y \leq E_{f}^{\infty}(y)=E_{f}^{\infty}(\widetilde{w}(y)) \leq E_{f}^{\infty}(\widetilde{w}(x))=x
$$

where, for $z \in X$,

$$
\widetilde{w}(z)(t):=\left\{\begin{array}{l}
z(t), t \in\left[a_{1}, a\right] \\
w\left(\left.z\right|_{\left[a_{1}, a\right]},\left.z\right|_{\left[b, b_{1}\right]}\right)(t), t \in[a, b] \\
z(t), t \in\left[b, b_{1}\right]
\end{array}\right.
$$

So, $y \leq x$.
Remark 4.1. Let Y be an ordered Banach space. We consider the problem (1.1) $+(1.2)$, where
$\left(H_{1}^{\prime}\right) \quad a_{1} \leq a<b \leq b_{1}$;
$\left(H_{2}^{\prime}\right) \quad g, h \in C\left([a, b],\left[a_{1}, b_{1}\right]\right)$;
$\left(H_{3}^{\prime}\right) \quad f \in C([a, b] \times Y \times Y \times Y, Y) ;$
$\left(H_{4}^{\prime}\right)$ there exists $L_{f}>0$, such that

$$
f\left\|\left(t, u_{1}, u_{2}, u_{3}\right)-f\left(t, v_{1}, v_{2}, v_{3}\right)\right\| \leq L_{f} \sum_{i=1}^{3}\left\|u_{i}-v_{i}\right\|
$$

for all $t \in[a, b], u_{i}, v_{i} \in Y, i=1,2,3$;
$\left(H_{5}^{\prime}\right) \quad \varphi \in C\left(\left[a_{1}, a\right], Y\right), \psi \in C\left(\left[b, b_{1}\right], Y\right)$.
As in the case $Y=R$, we consider the operators

$$
B_{f}, E_{f}: C\left(\left[a_{1}, b_{1}\right], Y\right) \rightarrow C\left(\left[a_{1}, b_{1}\right], Y\right)
$$

By a similar way we have
Theorem 4.2. We suppose that
(a) the condition $\left(H_{1}^{\prime}\right)-\left(H_{5}^{\prime}\right)$ are satisfied;
(b) $\frac{3}{8} L_{f}(b-a)^{2}<1$.

Then the corresponding problem, (1.1)+(1.2), has in $C\left(\left[a_{1}, b_{1}\right], Y\right) \cap C^{2}([a, b], Y)$ a unique solution x_{f}^{*}, and $F_{B_{f}}=\left\{x_{f}^{*}\right\}$.

Theorem 4.3. We suppose that
(i) f, g and h are as in the Theorem 4.2,
(ii) the operator $f(t, \cdot, \cdot, \cdot): Y^{3} \rightarrow Y^{3}$ is monotone increasing.

Let x be a solution of the corresponding equation (1.1) and y a solution of the inequality

$$
-y^{\prime \prime} \leq f(t, y(t), y(g(t)), y(h(t))), \quad t \in[a, b] .
$$

Then

$$
y(t) \leq x(t), \forall t \in\left[a_{1}, a\right] \cup\left[b, b_{1}\right] \Rightarrow y \leq x
$$

Remark 4.2. In the case $Y=R^{n}$, the corresponding equation, (1.3), is the following system of functional-integral equations $\left(f=\left(f_{1}, \ldots, f_{n}\right), \varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right), \psi=\right.$ $\left.\left(\psi_{1}, \ldots, \psi_{n}\right), x=\left(x_{1}, \ldots, x_{n}\right)\right)$
$x_{i}(t)=\left\{\begin{array}{l}\varphi_{i}(t), t \in\left[a_{1}, a\right], \\ w\left(\varphi_{i}, \psi_{i}\right)(t)+\int_{a}^{b} G(t, s) f_{i}(s, x(s), x(g(s)), x(h(s))) d s, t \in[a, b], i=\overline{1, n} \\ \psi_{i}(t), t \in\left[b, b_{1}\right] .\end{array}\right.$
Remark 4.3. In the problem (1.1)+(1.3), instead of, $-x^{\prime \prime}$, we can put

$$
-\left(p(t) x^{\prime}\right)^{\prime}+q(t) x
$$

if $p>0$ and $q \geq 0$.
In this case, instead of the condition

$$
\frac{3}{8} L_{f}(b-a)^{2}<1
$$

we must put

$$
3 L_{f} \int_{a}^{b} G(t, s) d s \leq \alpha<1
$$

where G is the Green function of the problem

$$
-\left(p(t), x^{\prime}\right)^{\prime}+q(t) x=\chi, \quad x(a)=0, \quad x(b)=0
$$

5. Data dependence: monotony

Now we shall study the monotony of the solution of the problem (1.1)+(1.2), with respect to φ, ψ and f. For this study we need the following abstract result ([22]).

Abstract comparison lemma. Let (X, d, \leq) be an ordered metric space and $A, B, C: X \rightarrow X$ be such that:
(i) $A \leq B \leq C$;
(ii) the operators A, B, C are WPOs;
(iii) the operator B is monotone increasing.

Then

$$
x \leq y \leq z \Rightarrow A^{\infty}(x) \leq B^{\infty}(y) \leq C^{\infty}(z)
$$

We have
Theorem 5.1. Let $f_{i} \in C\left([a, b] \times R^{3}\right), i=1,2,3, g$ and h be as in the Theorem 3.1. We suppose that
(a) $f_{2}(t, \cdot, \cdot, \cdot): R^{3} \rightarrow R^{3}$ is monotone increasing;
(b) $f_{1} \leq f_{2} \leq f_{3}$.

Let x_{i} be a solution of the equation

$$
-x^{\prime \prime}=f_{i}(t, x(t), x(g(t)), x(h(t))), \quad t \in[a, b] .
$$

If

$$
x_{1}(t) \leq x_{2}(t) \leq x_{3}(t), \forall t \in\left[a_{1}, a\right] \cup\left[b, b_{1}\right],
$$

then

$$
x_{1} \leq x_{2} \leq x_{3}
$$

Proof. The operators $E_{f_{i}}, i=1,2,3$, are WPOs. From the condition (a) the operator $E_{f_{2}}$ is monotone increasing. From (b) it follows that

$$
E_{f_{1}} \leq E_{f_{2}} \leq E_{f_{3}}
$$

We remark that

$$
x_{i}=E_{f_{i}}^{\infty}\left(\widetilde{w}\left(x_{i}\right)\right), \quad i=1,2,3 .
$$

Now the proof follows from the Abstract comparison lemma.

6. Data dependence: continuity

Consider the boundary value problem (1.1)+(1.2) in the conditions of the Theorem 3.1. Denote by

$$
x(\cdot ; \varphi, \psi, f)
$$

the solution of this problem. We have
Theorem 6.1. Let $\varphi_{i}, \psi_{i}, f_{i}, i=1,2$, be as in the Theorem 3.1. We suppose that (i) there exists $\eta_{1}>0$, such that

$$
\left|\varphi_{1}(t)-\varphi_{2}(t)\right| \leq \eta_{1}, \quad \forall t \in\left[a_{1}, a\right],
$$

and

$$
\| \psi_{1}(t)-\varphi_{2}(t) \leq \eta_{2}, \forall t \in\left[b, b_{1}\right] ;
$$

(ii) there exists $\eta_{2}>0$ such that

$$
\left|f_{1}\left(t, u_{1}, u_{2}, u_{3}\right)-f_{2}\left(t, u_{1}, u_{2}, u_{3}\right)\right| \leq \eta_{2}, \forall t \in[a, b], \forall u_{i} \in R
$$

Then

$$
\left|x\left(t ; \varphi_{1}, \psi_{1}, f_{1}\right)-x\left(t ; \varphi_{2}, \psi_{2}, f_{2}\right)\right| \leq \frac{8 \eta_{1}+\eta_{2}(b-a)^{2}}{8-3 L_{f}(b-a)^{2}}
$$

where $L_{f}=\max \left(L_{f_{1}}, L_{f_{2}}\right)$.
Proof. Consider the operators $B_{\varphi_{i}, \psi_{i}}, f_{i}, i=1,2$. These operators are contractions. Moreover

$$
\left\|B_{\varphi_{1}, \psi_{1}, f_{1}}(x)-B_{\varphi_{2}, \psi_{2}, f_{2}}(x)\right\|_{C} \leq \eta_{1}+\eta_{2} \frac{(b-a)^{2}}{\varphi}, \forall x \in C\left[a_{1}, b_{1}\right]
$$

Now, the proof follows from the following well known result (see [23]).
Theorem 6.2. Let (X, d) be a complete metric space and $A, B: X \rightarrow X$ two operators. We suppose that
(i) the operator A is an a-contraction;
(ii) $F_{B} \neq \emptyset$;
(iii) there exists $\eta>0$ such that

$$
d(A(x), B(x)) \leq \eta, \forall x \in X
$$

Then if $F_{A}=\left\{x_{A}^{*}\right\}$ and $x_{B}^{*} \in F_{B}$, we have

$$
d\left(x_{A}^{*}, x_{B}^{*}\right) \leq \frac{\eta}{1-a} .
$$

From the Theorem 6.1 we have
Theorem 6.3. Let $\varphi_{i}, \psi_{i}, f_{i}, i \in N$ and φ, ψ, f be as in the Theorem 3.1. We suppose that

$$
\begin{aligned}
& \varphi_{i} \xrightarrow{\text { unif. }} \varphi \text { as } i \rightarrow \infty, \\
& \psi_{i} \xrightarrow{\text { unif. }} \psi \text { as } i \rightarrow \infty, \\
& f_{i} \xrightarrow{\text { unif. }} f \text { as } i \rightarrow \infty .
\end{aligned}
$$

Then

$$
x\left(\cdot, \varphi_{i}, \psi_{i}, f_{i}\right) \xrightarrow{\text { unif. }} x(\cdot, \varphi, \psi, f), \text { as } i \rightarrow \infty .
$$

In what follow we shall use the c-WPOs technique to give some data dependence results.

Definition 6.1. Let A be an WPO and $c>0$. The operator A is c-WPO if

$$
d\left(x, A^{\infty}(x)\right) \leq c d(x, A(x)), \forall x \in X
$$

Example 6.1. Let (X, d) be a complete metric space and $A: X \rightarrow X$ an operator. We suppose that there exists $a \in[0,1[$ such that

$$
d\left(A^{2}(x), A(x)\right) \leq a d(x, A(x)), \forall x \in X
$$

Then A is c-WPO with $c=(1-a)^{-1}$.

We have (see [22])
Theorem 6.4. Let (X, d) be a metric space and $A_{i}: X \rightarrow X, i=1,2$. We suppose that
(i) the operator A_{i} is $c_{i}-W P O, i=1,2$;
(ii) there exists $\eta>0$ such that

$$
d\left(A_{1}(x), A_{2}(x)\right) \leq \eta, \forall x \in X
$$

Then

$$
H\left(F_{A_{1}}, F_{A_{2}}\right) \leq \eta \max \left(c_{1}, c_{2}\right)
$$

Here H stands for Pompeiu-Hausdorff functional.
From the Remark 3.1 and the Theorem 6.4, we have
Theorem 6.5. Let f_{1} and f_{2} be as in the Theorem 3.1. Let S_{i} be the solution set of equation (1.1) corresponding to $f_{i}, i=1,2$. If $\eta>0$ is such that

$$
\left|f_{1}\left(t, u_{1}, u_{2}, u_{3}\right)-f\left(t, u_{1}, u_{2}, u_{3}\right)\right| \leq \eta,
$$

for all $t \in[a, b], u_{i} \in R, i=1,2$, then

$$
H\left(S_{1}, S_{2}\right) \leq \frac{\eta(b-a)^{2}}{8-3 L(b-a)^{2}}
$$

where $L:=\max \left(L_{f_{1}}, L_{f_{2}}\right)$.
Proof. In the condition of the Theorem 3.1 the operators $E_{f_{i}}, i=1,2$, are $c_{i}-W P O s$ with

$$
c_{i}=\left(1-\alpha_{i}\right)^{-1}
$$

where $\alpha_{i}=\frac{3}{8} L_{f_{i}}(b-a)^{2}$.
Now, we are in the conditions of the Theorem 6.4.

7. Smooth dependence on parameters

Consider the following boundary value problem with parameter

$$
\begin{gather*}
\left.-x^{\prime \prime}(t)=f(t, x(t), x(g(t)), x(h(t))) ; \lambda\right), \quad t \in[a, b], \tag{7.1}\\
\begin{cases}x(t)=\varphi(t), & t \in\left[a_{1}, a\right], \\
x(t)=\psi(t), & t \in\left[b, b_{1}\right] .\end{cases} \tag{7.2}
\end{gather*}
$$

We suppose that
$\left(C_{1}\right) \quad a_{1} \leq a<b \leq b_{1} ; J \subset R$, a compact interval;
$\left(C_{2}\right) \quad g, h \in C\left([a, b],\left[a_{1}, b_{1}\right]\right)$;
$\left(C_{3}\right) \quad f \in C^{1}\left([a, b] \times R^{3} \times J\right)$;
$\left(C_{4}\right)$ there exists $L_{f}>0$, such that

$$
\left|\frac{\partial f\left(t, u_{1}, u_{2}, u_{3} ; \lambda\right)}{\partial u_{i}}\right| \leq L_{f}
$$

for all $t \in[a, b], u_{i} \in R, i=1,2,3, \lambda \in J$;
$\left(C_{5}\right) \quad \varphi \in C\left[a_{1}, a\right], \psi \in C\left[b, b_{1}\right] ;$
$\left(C_{6}\right) \quad \frac{3}{8} L_{f}(b-a)^{2}<1$.

In the above conditions, from the Theorem 3.1, we have that the problem $(7.1)+(7.2)$ has a unique solution, $x^{*}(\cdot ; \lambda)$.

Now we prove that

$$
x^{*}(t ; \cdot) \in C^{1}(J), \text { for all } t \in\left[a_{1}, b_{1}\right] .
$$

For this, we consider the equation

$$
\begin{gather*}
-x^{\prime \prime}(t ; \lambda)=f(t, x(t ; \lambda), x(g(t) ; \lambda), x(h(t) ; \lambda) ; \lambda), t \in[a, b], \lambda \in J \tag{7.3}\\
x \in C\left(\left[a_{1}, b_{1}\right] \times J\right) .
\end{gather*}
$$

The problem, (7.3)+(7.2) is equivalent with the following functional-integral equation

$$
x(t ; \lambda)=\left\{\begin{array}{c}
\varphi(t), t \in\left[a_{1}, a\right], \lambda \in J \tag{7.4}\\
w(\varphi, \psi)(t)+\int_{a}^{b} G(t, s) f(s, x(s ; \lambda), x(g(s) ; \lambda), x(h(s) ; \lambda) ; \lambda) d s \\
t \in[a, b], \lambda \in J \\
\psi(t), t \in\left[b, b_{1}\right], \lambda \in J
\end{array}\right.
$$

We consider the operator

$$
B: C\left(\left[a_{1}, b_{1}\right] \times J\right) \rightarrow C\left(\left[a_{1}, b_{1}\right] \times J\right)
$$

where $B(x)(t ; \lambda):=$ second part of (7.4).
Let $X:=C\left(\left[a_{1}, b_{1}\right] \times J\right)$ and let, $\|\cdot\|$, be the Chebyshev norm on X. It is clear that, in the conditions $\left(C_{1}\right)-\left(C_{6}\right)$, the operator B is Picard operator. Let x^{*} be the unique fixed point of B.

We suppose that there exists $\frac{\partial x^{*}}{\partial \lambda}$. Then from (7.4) we have that

$$
\begin{aligned}
& \frac{\partial x^{*}(t ; \lambda)}{\partial \lambda}=\int_{a}^{b} G(t, s) \frac{\partial f\left(s, x^{*}(s ; \lambda), x^{*}(g(s) ; \lambda), x^{*}(h(s) ; \lambda) ; \lambda\right)}{\partial u_{1}} \cdot \frac{\partial x^{*}(s ; \lambda)}{\partial \lambda} d s+ \\
& \quad+\int_{a}^{b} G(t, s) \frac{\partial f\left(s, x^{*}(s ; \lambda), x^{*}(g(s) ; \lambda), x^{*}(h(s) ; \lambda) ; \lambda\right)}{\partial u_{2}} \cdot \frac{\partial x^{*}(g(s) ; \lambda)}{\partial \lambda} d s+ \\
& \quad+\int_{a}^{b} G(t, s) \frac{\partial f\left(s, x^{*}(s ; \lambda), x^{*}(g(s) ; \lambda), x^{*}(h(s) ; \lambda) ; \lambda\right)}{\partial u_{3}} \cdot \frac{\partial x^{*}(h(s) ; \lambda)}{\partial \lambda} d s+ \\
& \quad+\int_{a}^{b} G(t, s) \frac{\partial f\left(s, x^{*}(s ; \lambda), x^{*}(g(s) ; \lambda), x^{*}(h(s) ; \lambda) ; \lambda\right)}{\partial \lambda} d s, \quad t \in[a, b], \in J
\end{aligned}
$$

This relation suggest us to consider the following operator

$$
\begin{aligned}
& C: X \times X \rightarrow X \\
& (x, y) \mapsto C(x, y)
\end{aligned}
$$

where

$$
\begin{gathered}
C(x, y)(t ; \lambda):=\int_{a}^{b} G(t, s) \frac{\partial f(s, x(s ; \lambda), x(g(s) ; \lambda), x(h(s) ; \lambda) ; \lambda)}{\partial u_{1}} y(s ; \lambda) d s+ \\
\quad+\int_{a}^{b} G(t, s) \frac{\partial f(s, x(s ; \lambda), x(g(s) ; \lambda), x(h(s) ; \lambda) ; \lambda)}{\partial u_{2}} y(g(s) ; \lambda) d s+
\end{gathered}
$$

$$
\begin{gathered}
+\int_{a}^{b} G(t, s) \frac{\partial f(s, x(s ; \lambda), x(g(s) ; \lambda), x(h(s) ; \lambda) ; \lambda)}{\partial u_{3}} y(h(s) ; \lambda) d s+ \\
\quad+\int_{a}^{b} G(t, s) \frac{\partial f(s, x(s ; \lambda), x(g(s) ; \lambda), x(h(s) ; \lambda) ; \lambda)}{\partial \lambda} d s
\end{gathered}
$$

for $t \in[a, b], \lambda \in J$ and

$$
C(x, y)(t, \lambda):=0, \text { for } t \in\left[a_{1}, a\right] \cup\left[b, b_{1}\right], \lambda \in J
$$

In this way we have the triangular operator

$$
A: X \times X \rightarrow X \times X
$$

$$
(x, y) \mapsto(B(x), C(x, y)),
$$

where B is a Picard operator and $C(x, \cdot): X \rightarrow X$ is an α-contraction, with $\alpha=$ $\frac{3}{8} L_{f}(b-a)^{2}$.

From the theorem of fibre contraction (see [22], [23]) we have that the operator A is Picard operator. So, the sequences

$$
\begin{aligned}
& x_{n+1}:=B\left(x_{n}\right), \quad n \in N \\
& y_{n+1}:=C\left(x_{n}, y_{n}\right), \quad n \in N
\end{aligned}
$$

converges uniformly (with respect to $\left.t \in\left[a_{1}, b_{1}\right], \lambda \in J\right)$ to $\left(x^{*}, y^{*}\right) \in F_{A}$, for all $x_{0}, y_{0} \in C\left(\left[a_{1}, b_{1}\right] \times J\right)$.

If we take, $x_{0}=0, y_{0}=\frac{\partial x_{0}}{\partial \lambda}=0$, then

$$
y_{1}=\frac{\partial x_{1}}{\partial \lambda}
$$

By induction we prove that

$$
y_{n}=\frac{\partial x_{n}}{\partial \lambda}, \forall n \in N
$$

Thus

$$
\begin{aligned}
& x_{n} \xrightarrow{\text { unif. }} x^{*} \text { as } n \rightarrow \infty, \\
& \frac{\partial x_{n}}{\partial \lambda} \rightarrow y^{*} \text { as } n \rightarrow \infty .
\end{aligned}
$$

These imply that there exists $\frac{\partial x^{*}}{\partial \lambda}$ and $\frac{\partial x^{*}}{\partial \lambda}=y^{*}$.
From the above considerations, we have that
Theorem 7.1. Consider the problem (7.3) $+(7.2)$, in the conditions $\left(C_{1}\right)-\left(C_{6}\right)$. Then
(i) The problem, (7.3) $+(7.2)$, has in $C\left(\left[a_{1}, b_{1}\right] \times J\right)$ a unique solution, x^{*}.
(ii) $x^{*}(t, \cdot) \in C^{1}(J), \forall t \in\left[a_{1}, b_{1}\right]$.

Remark 7.1. By the same arguments we have that, if $f(t, \cdot, \cdot, \cdot) \in C^{k}$, then $x^{*}(t, \cdot) \in C^{k}(J), \forall t \in\left[a_{1}, b_{1}\right]$.

References

[1] S.R. Bernfeld, V. Lakshmikantham, An Introduction to Nonlinear Boundary Value Problems, Acad. Press, New York, 1974.
[2] J.S. Cassell, Z. Hou, Initial value problem of mixed-type differential equations, Mh. Math., 124(1997), 133-145.
[3] Gh. Coman, G. Pavel, I. Rus, I.A. Rus, Introducere în teoria ecuaţiilor operatoriale, Ed. Dacia, Cluj-Napoca, 1976.
[4] R.D. Driver, A backwards two-body problem of classical relativistic electrodynamics, The Physical Review, 178(1969), 2051-2057.
[5] L.E. Elsgalts, S.B. Norkin, Introduction to the Theory of Differential Equations with Deviating Arguments (Russian), Nauka, Moscow, 1971.
[6] K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer, Dordrecht, 1992.
[7] L.J. Grimm, H. Schmidt, Boundary value problem for differential equations with deviating arguments, Aequationes Math., 4(1970), 176-180.
[8] D. Guo, V. Lakshmikantham, X. Liu, Nonlinear integral equations in abstract spaces, Kluwer, 1996.
[9] J.K. Hale, S.M.V. Lunel, Introduction to Functional Differential Equations, New York, 1993.
[10] S. Heikkila, On well-posedness of a boundary value problem involving deviating arguments, Funkcialaj Ekvacioj, 28(1985), Nr.2, 221-232.
[11] Z. Hou, J.S. Cassell, Asymptotic solutions of mixed-type equations with a diagonal matrix, Analysis, 17(1997), 1-12.
[12] V. Hutson, A note on a boundary value problem for linear differential difference equations of mixed type, J. Math. Anal., 61(1977), 416-425.
[13] T. Kusano, On even-order functional differential equations with advanced and retarded arguments, J. Diff. Eq., 45(1982), 75-84.
[14] J. Mallet-Paret, The Fredholm alternative for functional differential equations of mixed type, J. Dynam. Diff. Eq., 11(1999), No.1, 1-47.
[15] D.S. Mitronović, J.E. Pečarić, A.M. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Kluwer, 1991.
[16] V. Mureşan, Ecuaţii diferenţiale cu modificarea afină a argumentului, Trans. Press, ClujNapoca, 1997.
[17] R. Precup, Some existence results for differential equations with both retarded and advanced arguments (to appear).
[18] A. Revnic, Dynamic iteration methods for differential equations with mixed modification of the argument, Seminar on Fixed Point Theory, 1(2000), 73-80.
[19] I.A. Rus, Principii şi aplicaţii ale teoriei punctului fix, Ed. Dacia, Cluj-Napoca, 1979.
[20] I.A. Rus, Maximum principles for some systems of differential equations with deviating arguments, Studia Univ. Babeş-Bolyai, 32(1987), Nr.1, 53-59.
[21] I.A. Rus, Maximum principle for some nonlinear differential equations with deviating arguments, Studia Univ. Babeş-Bolyai, 32(1987), Nr.2, 53-57.
[22] I.A. Rus, Weakly Picard operators and applications, Seminar on fixed Point Theory, ClujNapoca, 2(2001).
[23] I.A. Rus, Generalized contractions, Cluj University Press, 2001.
[24] I.A. Rus, C. Iancu, Wheeler-Feynman problem for mixed first order functional-differential equations, Seminar Itinerant, Cluj-Napoca, 2000.
[25] A. Rustichini, Functional differential equations of mixed type: The linear autonomous case, J. Dynam. Diff. Eq., 1(1989), 121-143.
[26] L.S. Schulman, Some differential difference equations containing both advance and retardation, J. Math. Phys., 15(1974), 195-198.
[27] J. Wu, X. Zou, Asymptotic and periodic boundary value problems of mixed FDEs and wave solutions of lattice differential equations, J. Diff. Eq., 135(1997), 315-357.

