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Abstract. The notion of B-contraction mapping in probabilistic metric spaces is due to V. M.
Sehgal(1966), who proved that any B-contraction on a complete Menger space (X,F , Min)
has a unique fixed point. Important contributions are due to Sherwood(1970) and Istrăţescu &
Săcuiu(1971). A fundamental step was made by O. Hadžić in 1978, who introduced a class of
continuous t-norms, essentially weaker than Min, for which the above result of Sehgal still holds.

Our aim is to present some comments and results related to the following statements concerning
a triangular norm T :

(BI) T is of Hadžić type; that is the family of its iterates is equicontinuous at x = 1.
(BII) T has the fixed point property; that is each B-contraction on every complete Menger space

(X,F , T ) has a fixed point.
(BIII) ∀a ∈ (0, 1), ∃b ≥ a such that T (b, b) = b < 1

which are seen to correspond to different kinds of classical deterministic fixed point theorems, together
with the main tools used in fixed point theory for probabilistic contractions.
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1. Preliminaries

1.1. Menger norms and triangular norms
Definition 1.1.1 10 A mapping

T : [0, 1]× [0, 1] → [0, 1] = I

is called a Menger- norm (shortly M-norm) if it satisfies the following conditions:

N1) T (a, b) = T (b, a) , ∀a, b ∈ I

N2) a ≤ c, b ≤ d ⇒ T (a, b) ≤ T (c, d)

N3) T (a, 1) = a, (∀)a ∈ I.

20 A triangular norm (shortly t-norm) is an associative M -norm:

N4) T (a, T (b, c) = T (T (a, b), c), ∀a, b, c ∈ I.
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It is easy to see that if T is an M -norm then T (a, b) ≤ Min(a, b) (∀)a, b ∈ I, and
T (a, 0) = T (0, a) = 0, (∀)a ∈ I. Among the most important examples of t-norms, we
will use:

T1(a, b) = W (a, b) = Max(a + b− 1, 0),
T∗(a, b) = TP (a, b) = Prod(a, b),

T∞(a, b) = TM (a, b) = Min(a, b).

Given a t-norm T and an element x ∈ [0, 1], we can define the T -powers of x by:

x0 = 1, x1 = x and xn+1 = T (xn, x), (∀)n ≥ 1.

Since ([0, 1], T ) is a semigroup, T (xn, xm) = xn+m, (∀)n,m ∈ N.
Definition 1.1.2 A t-norm T is called Archimedean if, for each a ∈ [0, 1),

limn→∞ an = 0 or, equivalently,

∀a, ε ∈ (0, 1),∃m ∈ N : am < ε .

Proposition 1.1.3 A continuous (in the product topology on I) t-norm is
Archimedean if and only if

δ(x) < x (∀)x ∈ (0, 1),

where δ(x) := T (x, x) = x2.
There are known many proofs of the representation theorems for continuous and

Archimedean t-norms, which have a simple structure.
Simple proofs can be given by using the following
Lemma 1.1.4 Let T be a continuous and Archimedean t-norm.
a) If T does not have interior nilpotents, then the semigroup([0, 1], T ) is iseomor-

phic with the semigroup ([0, 1], P rod) (Faucett, 1955)
b) If T has interior nilpotents, then ([0, 1], T ) is iseomorphic with ([1/2, 1], o)

where x ◦ y = Max{1/2, xy} [M-S, 1957].
Therefore, if T is a continuous and Archimedean t-norm, then there exist α ∈

{0, 1/2 } and h : [0, 1] → [α, 1], a continuous bijection, such that

T (u, v) = h−1(Max {α, h(u) · h(v)}), (∀)u, v ∈ [0, 1].

c) Let h(−1) : [0, 1] → [0, 1] , h(−1)(x) = h−1(Max {α, x}). Then

(Mult) T (u, v) = h(−1)(h(u) · h(v)), (∀)u, v ∈ [0, 1].

d) Moreover, for f : [0, 1] → [0,−logα], f(x) = −logh(x), f is strictly decreasing
and continuous, with f(1) = 0, and

(Addit) T (a, b) = f (−1)(f(a) + f(b))(∀)u, v ∈ [0, 1],

where f (−1)(x) = f−1(Min {x, f(0)}) is the pseudo-inverse of f .
Proposition 1.1.5 (The structure theorem for continuous t-norms ). Let T be a

continuous t-norm. Then there exists an at most countable family of closed intervals
Ik = [αk, βk] ⊂ [0, 1], such that

i) [0, 1] = (∪Ik)
⋃ C(∪Ik)

ii) (αk, βk)
⋂

(αl, βl) = ∅, (∀)k 6= l
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iii) T (b, b) = b, (∀)b /∈ ∪(αk, βk)

iv) T (a, b) =
{

Tk(a, b) ∈ Ik, if a, b ∈ Ik

Min(a, b), otherwise
v) T (a, a) < a, (∀)a ∈ Ik (thus Tk = T /Ik×Ik

is Archimedean)
The proof is based on the fact that the set i = {b| T (b, b) = b} is a closed subset

of [0, 1], and Ci = (0, 1)�i is an at most countable union of open disjoint intervals.
More details on M-norms and t-norms can be seen in [SCSK83]. A proof of the
representation theorem can also be found in [MRD93].

1.2. The strong topology and the strong semiuniformity on Menger spaces
In what follows ∆+ denotes the set of distribution functions F : [0,∞] → [0, 1]

with the properties:
a) F (0) = 0 and F (∞) = 1;
b) F is increasing ;
c) F is left continuous on (0,∞).
D+ is the subset of ∆+ containing functions F which also satisfy the condition

lim
x→∞

F (x) = 1. If a ≥ 0, then εa is defined by

εa(x) =
{

0, if x ≤ a
1, if x > a

.

Let X be a nonempty set and F : X ×X −→ D+ a given mapping (F(x, y) will
be denoted by Fxy). The pair (X,F) is called a probabilistic semi-metric space
(shortly PSM-space) if

I. Fxy = ε0 if and only if x = y
II. Fxy = Fyx ∀x, y ∈ X.

One uses the generic term probabilistic metric space (PM-space) if some kind
of ”triangle inequality” is verified. The weakest one was proposed in [SCSK60]:

IIISS . [Fxy(t) = 1, Fyz(t) = 1] ⇒ Fxz(t + s) = 1
If there exists a triangular norm T such that

IIIM . Fxz(t + s) ≥ T (Fxy(t), Fyz(s))
then we say that (X,F , T ) is a Menger space. A more general form for IIIM ,
defining σ-Menger spaces, was formulated by using some operations σ on [0,∞),
instead of the addition (see [RD94] for more details).

In [HISH84] is proposed the inequality ∀ε > 0 ∃δ > 0 such that

III1.[1− Fxy(δ) < δ, 1− Fyz(δ) < δ] ⇒ 1− Fxz(ε) < ε,

which can be generalized : ∀ε > 0 ∃δ > 0 such that

IIIf .[f ◦ Fxy(δ) < δ, f ◦ Fyz(δ) < δ] ⇒ f ◦ Fxz(ε) < ε,

by using additive generators f (see e.g. [RD94] for more details).
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For every PSM-space (X,F) we can consider the sets of the form

Uε,λ = {(x, y) ∈ X ×X, Fxy(ε) > 1− λ}, ε > 0, λ ∈ (0, 1)

which generates a semiuniformity, denoted by UF , and a topology, TF , named also
the (ε, λ)−topology, the strong topology, or the F-topology. Namely,

O ∈ TF iff ∀x ∈ O ∃ε > 0, ∃λ ∈ (0, 1) s.t. Uε,λ(x) ⊂ O
Actually, UF can also be generated by the family of the sets Vδ := Uδ,δ.In [SHR71]
one can find details concerning the completion of Menger spaces under left-continuous
t-norms(lc-t-norms).

2. B-Contractions on Menger spaces

The notion of contraction map in probabilistic metric spaces was introduced by V.
M. Sehgal in [SHG66](cf. [SBHR72]).

Definition 2.1 Let (X,F) be a probabilistic metric space and A : X → X. The
mapping A is called a probabilistic contraction or B-contraction if there exists an
L ∈ (0, 1) such that, for all points p, q ∈ X and all u ≥ 0, the following inequality
holds:

(B) FAp,Aq(Lu) ≥ Fp,q(u).
In the paper[SBHR72] it is shown that any B-contraction on a complete Menger

space (X,F ,Min) has a unique fixed point.
Immediate contributions are due to H. Sherwood, who obtained a simple charac-

terization for the existence of fixed points and proved that for a very large class of
triangular norms it is possible to construct complete Menger spaces together with
fixed points free contraction maps and to V.I. Istrăţescu-I. Săcuiu[ISS73].

A fundamental step is made by O. Hadžić in 1978, who introduces a class of
continuous t-norms, essentially weaker than Min, for which the above result of Sehgal
still holds.

If T is a given t-norm, then Tm is defined on Im by

(1) T 1(x) = x, Tm+1(x1, ..., xm+1) = T (Tm(x1, ..., xm), xm+1).
Definition 2.2[RD83b] We say that T is an h-t-norm (of Hadžić type or of

h-type), if the family of mappings HT = {Tm}m∈ N, defined on I by

(2) Tm(x) = Tm(x, x, ..., x),
is equicontinuous at x = 1.

There are nontrivial examples of h-t-norms, due also to Olga Hadžić.
Definition 2.3[RD84,87,99] We say that the t-norm T has the fixed point

property (shortly f.p.p.) if each B-contraction on every complete Menger space (X
F , T ) has a fixed point (which clearly is unique and globally attractive).

In this section we will present some comments and results related to the following
three statements concerning a triangular norm:

(BI) T is of Hadžić type;
(BII) T has the fixed point property;
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(BIII) ∀a ∈ (0, 1), ∃b ≥ a such that T (b, b) = b < 1,
which will be seen to correspond to different kinds of classical deterministic fixed
point theorems.

We note for references, the following lemmas which are immediate consequences of
Sherwood’s results, and their proofs are easy to reproduce:

Lemma 1. If (X,F , T ) is a Menger space, T is an lc-t-norm and A is a B-
contraction on X, then there exists a completion (X∗,F∗, T ) of (X,F , T ) and a
unique extension A∗ of A such that A∗ is a B-contraction on X, with the same
Lipschitz constant.

Lemma 2. A t-norm T has the f.p.p. if for every B-contraction A on a Menger
space (XF , T ) and for each fixed p0 in X, the sequence pn = Anp0 is F-Cauchy.
Moreover, it suffices to consider contractions with the Lipschitz constant in (o, 1

2 ].
The converse holds for lc-t-norms.

2.1. B-Contractions and the t-norms of Hadžić -type
Remark 2.1.1 Olga Hadžič proved in [HAD80] that each continuous t-norm of h-

type has the f.p.p.. The following theorem shows that the continuity is not necessary.
Theorem 2.1.2 [RD83]. Every t-norm of h-type has the fixed point property.
Proof. Let (X,F , T ) be a Menger space such that T is of h-type and consider a

mapping A : X → X which verifies (B) with L ∈ (0, 1
2 ].

Let p0 ∈ X and x ∈ (0,∞) be fixed. If m is a positive integer, then

Fp0Am+1p0(2x) ≥ T (Fp0Ap0(x), FAp0Am+1p0(x))
≥ T (Fp0Ap0(x), Fp0Amp0(2x))

and, therefore,

Fp0Amp0(2x) ≥ Tm(Fp0Ap0(x)),∀m ≥ 1.

Thus we obtain that for any positive integers n,m,

(3) FAnp0An+mp0(2x) ≥ Tm(Fp0Ap0(xL−n)).
Since T is of h-type and Fp0Ap0 ∈ D+, then it follows that

(4) lim
n−→∞

FAnp0An+mp0(2x) = 1,

uniformly in m, for each x ∈ (0,∞). By definition, (4) means that {Anp0} is F-Cauchy
and the theorem follows from Lemma 2.

Lemma 2.1.3[RD84] Let T be an lc-t-norm and fix an F in D+. Let X =
{1, 2, ...} and define a probabilistic metric on X by

(5 ) Fnn+m(x) = Tm[F (2n+1x), F (2n+2x), ..., F (2n+mx)],m 6= 0

and Fnn+m = H0,m = 0. Then (X,F , T ) is a Menger space and the mapping
n

A−→ n + 1 is a contraction with the Lipschitz constant 1
2 .

A partial converse to Theorem 2.1.2 is the following.
Theorem 2.1.4[RD84] If T is an lc-t-norm which is not of h-type, then T does

not have the f.p.p.
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Proof. If T is not of h-type, then there exists a ∈ (0, 1) such that for each b > a
there is mb ≥ 1 for which Tmb

(b) < a. Let bn ∈ (a, 1) be increasing to 1, and mn ≥ 1,
strictly increasing and such that

(6) Tmn(bn) < a, n = 1, 2, ...

Let F ∈ D+ be defined by

(7) F (x) =





0 if x ≤ 1
b1 if x ∈ (1, 22+m1 ]
bn+1 if x ∈ (22n+mn , 22n+mn+1 ], n ≥ 1

If we consider the Menger space from Lemma 2.1.3, then we have successively:

Fnn+mn
(1) ≤ Fnn+mn

(2n)
= Tmn [F (22n+1), F (22n+2), ..., F (22n+mn)]

≤ Tmn [F (22n+mn), ..., F (22n+mn)]
≤ Tmn

(bn) < a

Therefore the sequence {An1} is not F-Cauchy. From Lemma 2 it follows that T
does not have the fixed point property and the theorem is proved.

Lemma 2.1.5.[RD83] Let T be a right continuous t-norm of Hadžić type. Then

∀a ∈ (0, 1), ∃b ≥ a such that T (b, b) = b < 1,

that is (BI)⇒(BIII) in this case.
Proof. Suppose that (BI) holds, and let a > 0 be fixed. Then there exists c > a

such that Tm(x) > a, ∀x ≥ c, ∀m ≤ 1. Since clearly {Tm(c)} is nonincreasing, then it
is convergent to some limit b ≥ a. As

T2m(c) = T (Tm(c), Tm(c))

then b = T (b, b) and we obtain that (BI) implies (BIII).

By combining the above results we obtain the following
Theorem 2.1.6 [RD84,87] Let T be a continuous t-norm. Then the statements

(BI), (BII) and (BIII) are equivalent.
Lemma 2.1.7 [RD84b,99] Let T be a continuous t-norm. Then
10 T 6∈ H iff there exists a ∈ [0, 1) such that

T (a, a) = a, and T (x , x ) < x , ∀x ∈ (a, 1 ).
20 T 6∈ H iff there exist aT ∈ [0, 1) and an increasing bijection hT : [aT , 1] → [0, 1]

such that
(8) : T (α, β) = h−1

T [T̃ (hT (α), hT (β))],∀α, β ≥ aT

where T̃= T1 or T̃= Prod ( T̃ depends only on T).
The following result is easy to reproduce:
Proposition 2.1.8 [RD84b,87,99] Let T be a continuous t-norm, T 6∈ H.
(i) If (X,F , T1) is a Menger space, then (X, eF−1, P rod) is a Menger space with

the same (ε, λ)-uniformity;
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(ii) If (X,F , T̃ ) is a Menger space, then (X, h−1
T ◦ F , T ) is a Menger space with

the same (ε, λ)-uniformity;
(iii) If (X,F , T ) is a Menger space, then (X, hT ◦F , T̃ ) is a Menger space with the

same (ε, λ)-uniformity.
Corollary 2.1.9 [RD84b,87,99] Let T be an arbitrary but fixed t-norm such that

T 6∈ H. Then the following are equivalent
(i) T does not have the f.p.p.;
(ii) Prod does not have the f.p.p.;
(iii) T1 does not have the f.p.p.

Focus on the statement (BIII) and a family of pseudo-metrics
The following two lemmas are well-known :
Lemma 2.2.1 If a ≤ b ≤ c, T (b, b) = b and T is continuous, then

10 T(a,b)=a;
20 T(b,c)=b;
30 T(a,c)=a.

Lemma 2.2.2[RD92] Let {bn} ⊂ [0, 1) be a strictly increasing sequence such that
bn → 1. Then, for every distribution function G ∈ D+, the function G∗ defined by:

40 G∗(t) =





0 iff G(t) ≤ b0

bn iff G(t) ∈ (bn, bn+1]
1 iff G(t) = 1

is also in D+. Moreover, G∗ ≤ G.
Using these results we can obtain the following
Theorem. 2.2.3[RD92] Let {bn} ⊂ [0, 1) be a strictly increasing sequence. If we

suppose that bn → 1, T (bn, bn) = bn and
50 a, b > bn ⇒ T (a, b) > bn,

then, for every Menger space (XF , T ), we have that (X,F∗,Min) is a Menger space
with the same (ε, λ)-topology. Moreover, if (X,F) is complete, then (X,F∗) is com-
plete.

Definition. 2.2.4 [RD92] The continuous t-norm T is of type Hadžić-
Budinčević if the family {Tn} is equicontinuous at b = 1 and each Tk is strict.

We know that a t-norm of type Hadžić-Budinčević verifies the condition 50, for
some sequence {bn}.

If we have that Ik

⋂
Ik′ = ∅ for k 6= k′ and lim bk = 1, then T is of Hadžić type

(that is {Tn} is equicontinuous at 1) and we can choose a sequence {b′n} for which 50

holds and T is not necessarily of Hadžić-Budinčević type.
The following results are very clear:
Theorem 2.2.5 (of Hadžić-Budinčević) [HBD78,79] If (X ,F ,T ) is a complete

Menger space, T is continuous, {Tn} is equicontinuous at 1 and each Tk is strict,
then every B- contraction on X has a unique fixed point.

Theorem 2.2.6 (see e.g. [CKS75,KAS]). Let (X ,F ,T ) be a complete Menger
space, where T verifies the condition 50 from Theorem 1.3. Then every probabilistic
contraction on X has a unique fixed point.

Theorem 2.2.7 [RD92] The theorems 2.2.5 and 2.2.6 are equivalent
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Proof. Clearly 2.2.5 is a particular case of 2.2.6. Now if (X,F , T ) is as in Theorem
2.2.6, then, by Theorem 2.2.3., (X,F∗, Min) is a complete Menger space. It is easy
to see that any probabilistic contraction in (X,F , T ) is a probabilistic contraction in
(X,F∗,Min) and, by 2.2.5., it has a unique fixed point.

Remark 2.2.8 [RD92] The result of Theorem 2.2.5 is proven by using deterministic
semi-metrics of the form

(9) ρb(x, y) = sup{t/Fxy(t) ≤ b}
In [RD83b, RD84] we used a different method, by using a generalized metric, in order
to prove a result more general . Actually formula (9) can be slightly modified:

(9′) db(x, y) = inf{t,Fx,y(t) ≥ b}
and if b = T (b, b) then db is a pseudo-metric. Moreover, if T is of Hadžić type, then we
obtain a countable family {dbn} which generate the (ε, λ)-uniformity and the method
of G.L.Cain can be applied. In fact, for t-norms of Hadžić-Budinčević, formula (9)
can be used for F ∗ and one obtains generally (9′).

The pseudo-metrics of type (9′) have been successfully used by D. Miheţ to prove
fixed point theorems for more general contraction-type mappings.

Definition 2.2.9 [MIH93,97]. Let (bn) ∈ b, that is strictly increasing to 1 . We
say that the PSM space (X,F) is

10 a (bn)- probabilistic metric structure or a (bn)-strict structure if the fol-
lowing triangle inequality takes place :

(PM3bn) (Fpq(s) > bn, Fqr(t) > bn) ⇒ Fpr(s + t) > bn

20 a (bn) - probabilistic metric structure if the following relation takes place :

(PM3(bn)) (Fpq(s) ≥ bn, Fqr(t) ≥ bn) ⇒ Fpr(s + t) ≥ bn.

Note that every Menger space relative to a (bn)-M norm T of Hadžić-Budincević
type is a (bn)-probabilistic metric structure:

(Fpq(s) > bn, Fqr(t) > bn, Fpr(s + t)
≥ T (Fpq(s), Fqr(t))) ⇒ Fpr(s + t) > bn

and every Menger space relative to a (bn)-M norm of Hadžić type is a (bn)-
probabilistic metric structure.

Definition 2.2.10 [MIH97]. Let (X,F) be a PSM space and let (bn) ∈ b. We say
that the mapping f : X → X is a strict (bn)-probabilistic contraction (shortly a
s− (bn) contraction ) if :

(∀)n ∈ N (∃)k = kn ∈ (0, 1) : Fpq(t) > bn ⇒ Ffpfq(knt) > bn.

Obviously, every B-contraction is a s− (bn) contraction for every (bn) ∈ b.
Theorem 2.2.11 [MIH93,97]. If (X,F) is a complete s-(bn) probabilistic metric

structure and f : X → X is an s−(bn)-contraction, then f has a unique fixed point.
Corollary 2.2.12 [HDB78]. Let T be a (bn)− t-norm of Hadžić-Budincević type.

If (X,F , T ) is a complete Menger space and f : X → X is a mapping with the
property that for every n ∈ N there exists kn ∈ (0, 1) such that

Fpq(t) > bn ⇒ Ffpfq(knt) ≥ Fpq(t),

then f has a unique fixed point.
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Definition 2.2.13 [MIH97]. Let (X,F) be a PSM space and let (bn) ∈ b. We say
that f : X → X is a (bn)-probabilistic contraction if

(∀)n ∈ N (∃)kn ∈ (0, 1) : Fpq(t) ≥ bn ⇒ Ffpfq(knt) ≥ bn.

Theorem 2.2.14 [MIH97] If (X,F) is a complete (bn)-probabilistic
metric structure and f : X → X is a (bn)- probabilistic contrac-
tion, then f has a unique fixed point which can be obtained by the suc-
cessive approximation method, starting from an arbitrary point of X.

2.3. B-Contractions and generalized metrics
Let E be an element of D+ and consider a Menger space (X,F , T ), where T is an

lc-t-norm.
Theorem 2.3.1[RD83a,83b] The function dE : X ×X → [0,∞], defined by

dE(p, q) = inf{a > 0, Fpq(ax) ≥ E(x) , ∀x ∈ R}
has the following properties:

10 dE(p, q) = 0 ⇔ p = q;
20 dE(p, q) = dE(q, p);
30 dπT (E,G)(p, q) ≤ dE(p, r) + dG(r, q);
40 If dE 6= ∞, then the semiuniformity and the topology generated by dE are

stronger than those generated by F ;
50 If πT (E,E) = E, then dE is a generalized metric on X .
60 Every B-contraction on (X, F, T ) is a strict contraction on (X, dE) for each dE ,

with the same Lipschitz constant.
Remark 2.3.2 The left continuity of E is not used above.
Example 2.3.3 If

E(x) =
{

0 x ≤ 1
1 x > 1 ,

then
dE(p, q) = inf{x, Fpq(x) = 1},

which shows that dE needs not be nontrivial. Moreover , if (X, d) is a metric space,
considered as a Menger space with Fpq(x) = H(x− d(p, q)), then dE(p, q) = d(p, q).
Corollary 2.3.4 [RD83]. Let (X,F ,Min) be a complete Menger space and suppose
that A : X → X is a B-contraction . Then A has a unique fixed point p∗ , and for
each p ∈ X , p∗ = lim

n→∞
An(p) , in the (ε, λ) topology.

Proof. Let E = FpAp. Then dE is a generalized metric space, dE(p,A(p)) ≤ 1,
and it is easy to see that (An(p)) is dE−Cauchy. Therefore it is F-Cauchy, and the
theorem follows.

The following lemma shows how to construct generalized metrics on a Menger
space under an h-t-norm:

Lemma 2.3.5 [RD83a,83b] Let T be an h-t-norm. For

0 < a1 < a2 < . . . , an →∞
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and
0 < b1 < b2 < . . . , bn → 1,

such that T (bn, bn) = bn, let us set

F (x) =
{

0 if x ≤ a1

bn if x ∈ (an, an+1], n = 1, 2, . . .

Consider a Menger space (X,F ,T ) and define

d(p, q) = inf{a > 0, Fpq(ax) ≥ F (x), ∀x ∈ R}

Then
(i) d is a generalized metric on X;

(ii) If X is F-complete, then X is d-complete;
(iii) The d-uniformity is stronger than the F-uniformity.
Proof. (i) We prove only the triangle inequality. If

d(p, q) < a′ < a, :: d(q, r) < b′ < b

and x ∈ (an, an+1], then

Fpr(a′x + b′x) ≥ T (Fpq(a′x), Fqr(b′x)) ≥ T1(F (x))
= T (bn, bn) = bn = F (x).

Therefore d(p, q) ≤ a′ + b′ < a + b, and we obtain the triangle inequality.
(ii) and (iii) : Let {pn} be a d-Cauchy sequence. and fix a > 0.
For ε > 0 and λ ∈ (0, 1),let x0 ∈ R such that F (x0) > 1 − λ and let a > 0 such

that ax0 < ε. By the definition of d, there exists na ≥ 1 such that

Fpnpm(ax) ≥ F (x), ∀ : n ≥ na, ∀m ≥ 1,∀x ∈ R.

If n ≥ na, m ≥ 1, then Fpnpn+m(ε) > 1− λ, which shows that {pn} is F-Cauchy.
If we suppose that X is F-complete, then {pn} is convergent to some limit p.

Therefore

F (x) ≤ lim inf
m→∞

Fpnpn+m(ax) = Fpnp(ax)

for each x and all n ≥ na, that is d(p, q) ≤ a,∀n ≥ n0. Thus pn is d-convergent and
the lemma is proved.

Remark 2.3.6 For given p, q in X, we can take an in the lemma such that
Fpq(an) ≥ bn. Therefore the metric d is nontrivial and we obtain that the above
result still holds, with a new proof.

Remark 2.3.7 As it is well known the Banach contraction principle is a conse-
quence of the above Corollary. Actually we can modify the above proof in order to
see that the Banach fixed point principle implies Corollary 2.3.4 : Let (X,F , T ) and
A be as in Corollary 2.3.4. If p0 is given in X, then let an and bn be as in Lemma
2.3.5 and such that Fp0Ap0(an) ≥ bn. Consider the generalized metric d as in Lemma
2. It is easy to see that d(p0, Ap0) < ∞ and therefore X0 := {q0 ∈ X, d(p0, q0) < ∞}
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is a complete metric space and A is a strict contraction on X0. Therefore pn =
Anp0 will d-converge to the (evidently unique) fixed point of A.

2.3.1. A generalized metric on probabilistic f-metric structures and the
fixed point alternative

Let f : [0, 1] −→ [0,∞] be a continuous function which is strictly decreasing and
vanishes at 1.

Definition 2.3.1.1 ([RD85]). The pair (X,F) which has the properties (PM0)−
(PM2) is called a probabilistic f-metric structure iff ∀t > 0 , ∃s > 0 such that

IIIf [f ◦ Fxz(s) < s, f ◦ Fzy(s) < s] ⇒ f ◦ Fxy(t) < t.

Remark 2.3.1.2 If (X,F) is a probabilistic f -metric structure then the family
WF f := {W f

ε }ε∈(0,f(0)), where W f
ε := {(x, y)|Fxy(ε) > f−1(ε)}, is a uniformity base

which generates the uniformity UF .
Lemma 2.3.1.3[PRD97] Consider a Menger space (X,F , T ), where T ≥ Tf . For

each k > 0 let us define

dk(x, y) := sup
s>0

sk

∞∫

s

f ◦ Fxy(t)
t

dt

and
ρk(x, y) := (dk(x, y))

1
k+1 .

Then ρk is a generalized metric on X .
Lemma 2.3.1.4 Let (X,F , T ) be a Menger space with T ≥ Tf . Then UF ⊂ Uρk

.
Lemma 2.3.1.5 If (X,F)is a probabilistic f -metric structure and A is a B-

contraction then A is, for each k > 0, a strict contraction in (X, ρk)
Theorem 2.3.1.6 [PRD97] Let (X,F , T ) be a complete Menger space with T ≥

Tf . If there exists some k > 0 such that for every pair (x, y) ∈ X one has

(10) sup
s>0

sk

∞∫

s

f ◦ Fxy(t)
t

dt < ∞

then every B-contraction on X has a unique fixed point.
Corollary.2.3.1.7 ([cf. SHR71]) Let (X, F, T ) be a complete Menger space under

T ≥ Tf , where f(0) < ∞ and suppose that for each pair (x, y) ∈ X2 there exists txy

for which Fxy(txy) = 1. Then every B-contraction on X has a unique fixed point.
Corollary 2.3.1.8 [TAR92] Let (X, F, T ) be a complete Menger space under T ≥

T1 and suppose that there exists k > 0 such that every Fxy has a finite k-moment.
Then every B-contraction on X has a unique fixed point.

Generally, from the fixed point alternative ([DMG79]) we obtain the following
Theorem 2.3.1.9 Let (X,F, T ) be a complete Menger space under T ≥ Tf and

A an B-contraction. Then for each x ∈ X either,
(A1) there is some k > 0 such that (Aix) is ρk-convergent to the unique fixed

point of A, or
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(A2) for all k > 0, for all n ∈ N and for all M > 0 there exists s := s(k, n, M)
such that

sk

∞∫

s

f ◦ FAnxAn+1x(t)
t

dt > M.

2.4. Using a single metric
The results of this section are related to the following well known classical result.
Lemma 2.4 Let (X, d) be a complete metric space, and A a continuous self-

mapping of X. Then the following two statements are equivalent:
i) A has a fixed point;
ii) There exists p ∈ X such that

∑
n≥0

d(Anp,An+1p) < ∞

2.4.1. A metric for the strong uniformity in some Menger spaces
Proposition 2.4.1.1 [RD98] The two-place function ρ0, defined by

(11) ρ0(p, q) =
∫ 1

0

(1− Fpq(x))dx, ∀(p, q) ∈ X ×X

is a semi-metric, on X, which generates UF .

Remark 2.4.1.2 Let K be the semi-metric of type Ky Fan, defined by

K(p, q) := sup{t | t ≤ 1− Fpq(t)}.
Then ρ0 and K are related by the inequalities

K2 ≤ ρ0 ≤ 2K−K2

Theorem 2.4.1.3 Let (X,F , T ) be a Menger space relatively to the t-norm T ≥
W . Then the mapping R0 : X ×X −→ R, given by:

(12) R0(p, q) =
{∫ 1

0

[1− Fpq(x)] dx

} 1
2

∀p, q ∈ X ×X

is a metric, on X, which generates the strong uniformity UF . Moreover,

K(p, q) ≤ R0(p, q) ≤
√

2K(p, q) ∀p, q ∈ X

so that (X,F , T ) is complete iff (X, Ro) is complete.

Remark 2.4.1.4 If (X,F , W )is either an E-space or a non-Archimedean Menger
space, then ρ0 itself is seen to be a metric.

Example 2.4.1.5 Consider the random variables (on (0, 1) with Lebesgue mea-
sure) a, b, c defined by:

a(t) = t2, b(t) = t + t2 , c(t) = t.

If Fpq(x) = λ(|p− q| < x) ,then (X, (p, q) −→ Fpq,W )is a Menger space. In this
case ρ0(a, b) = 1

2 , ρ0(b, c) = 1
3 and ρ0(a, c) = 1

6 ; thus ρ0 is a metric.
Now if we take Fab and Fbc as above, and Fac = τW (Fab, Fbc), then one obtains

ρ0(a, c) = 31
32 > 1

2 + 1
3 = ρ0(a, b) + ρ0(b, c), so that ρ0 is not a metric. Clearly R0 is a

metric.
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2.4.2. A family of metrics which generate the F - uniformity
The above idea can be easily extended. Let λ be fixed in [0, 1] and define

(12λ) Rλ(p, q) :=
(∫ 1

0

1− Fpq(x)
(1 + x)λ

dx

) 1
2

, ∀p, q ∈ X.

Then we have the following theorem:

Theorem 2.4.2.1 [RD99] If (X,F , T ) is a Menger space and T ≥ W, then
(i) Rλ is a metric, for each λ ∈ [0, 1].
(ii) For 0 ≤ λ < µ ≤ 1 one has

1√
2
R0(p, q) ≤ R1(p, q) ≤ Rµ(p, q) ≤ Rλ(p, q) ≤ R0(p, q), ∀p, q.

(iii) Rλ generates the strong F-uniformity on X.
(iv) (X,F , T ) is complete iff (X,Rλ) is complete for some λ ∈ [0, 1].
Remarks 2.4.2.2 (a) It is easy to see that

2−
λ
2 K(p, q) ≤ Rλ(p, q) ≤

√
2K(p, q).

(b) For E-spaces or nonArchimedean Menger spaces ρλ := R2
λ is a metric.

2.4.3. A fixed point principle
Let (X,F , T ) be a complete Menger space and consider a B-contraction A on X.

The following lemma is obvious.

Lemma 2.4.3.1 For every λ ∈ [0, 1] one has

(12′) Rλ(Ap, Aq) ≤ L
1−λ

2

{∫ 1
L

0

1− Fpq(x)
(1 + x)λ

dx

} 1
2

.

We are in position to give a characterization of probabilistic B-contractions with
fixed points.

Theorem 2.4.3.2 [RD99] If T ≥ W , then the following statements are equivalent
10 A has a fixed point.
20 There exist p ∈ X and λ ∈ [0, 1) such that

(13λ) E
(λ)
pAp :=

∫ ∞

0

1− FpAp(x)
(1 + x)λ

dx < ∞.

Proof. The implication 10 ⇒ 20 is obvious : p = Ap ⇒ FpAp (x) = 1,∀ẋ > 0 ⇒
E

(λ)
pAp = 0, ∀λ < 1. Let us prove the implication 20 ⇒ 10 .
Thus we suppose that there exists p ∈ X which verifies (13λ) for some λ < 1. Since

λ < µ ⇒ 1
(1+x)µ ≤ 1

(1+x)λ , ∀x ≥ 0, then it is clear that (13λ) ⇒ (13µ) for λ < µ. So it
suffices to consider the case λ ∈ [0, 1) .
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Since FApnApn+1 (x) ≥ FpAp

(
x

Ln

)
, ∀x ≥ 0,∀n ≥ 0, where An is the n-iterate of

A, then from formula (12
′
λ) we obtain the inequality

Rλ

(
Anp,An+1p

) ≤
(
L

1−λ
2

)n
{∫ 1

Ln

0

1− FpAp(x)
(1 + x)λ

dx

} 1
2

which implies that

(14λ) Rλ

(
Anp,An+1p

) ≤
(
L

1−λ
2

)n {
E

(λ)
pAp

} 1
2

.

From (14λ) and (13λ) it results that
∞∑

n=0
Rλ

(
Anp,An+1p

)
< ∞

Therefore (Anp) is a Cauchy sequence in the complete metric space (X,Rλ), thus
it converges to some element p∗ ∈ X.

From the continuity of A, one obtains that p∗ is a fixed point for A, which is
necessarily unique. The theorem is completely proved.

Remark 2.4.3.3 Since every Archimedean t-norm T has the representation

(8′) T (a, b) = h−1
(
T̃ (h (a) , h (b))

)
, ∀a, b ∈ [0, 1]

where h : [0, 1] −→ [0, 1] , an increasing homeomorphism, and T̃ ∈ {W,Prod} are
precisely determined by T , then it is easy to see that, for every Menger space (X,F , T ),
the probabilistic metric h ◦ F verifies the triangle inequality with W . Therefore
Theorem 2.4.3.2 can be applied:

Corollary 2.4.3.4 Let (X,F , T ) be a complete Menger space such that the
Archimedean t-norm T has the representation (8′) . Then a given B-contraction A
on X has a fixed point if and only if there exist p ∈ X and λ < 1 such that

(13λ,h)
∫ ∞

0

1− h ◦ FpAp(x)
(1 + x)λ

dx < ∞.

Remark 2.4.3.5 Our results are clearly applicable in the case of E-spaces, which
are Menger spaces under W . The condition (13λ) says that the random variable
dist (p,Ap) is in the Lebesgue space L1−λ (that is it has a finite moment of order
1 − λ) for one element p and some value λ <1, a condition which appears to be
reasonable strong and easy to verify in concrete applications.

2.4.4. A family of semi-metrics on PM-spaces
In the following lemma we introduce a family of nonnegative functions which mea-

sure the distance between ε0 and the elements of D+ Let k be a (fixed) positive real
number.

Lemma 2.4.4.1 [RD98] The one-place mapping δk: D+ → R+, given by

(15) δk(F ) := sup
x>0

{xk[1− F (x)]e−x},

has the following properties:
(i) δk(F ) = 0 ⇔ F = ε0;
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(ii) If F1 ≤ F2, then δk(F1) ≥ δk(F2);
(iii) δk(λ ◦ F ) ≤ λkδk(F ), ∀λ ≥ 1;
(iv) δk+1e−δ ≤ δk(F ) ≤ max{δk, δkke−k},

where δ = δ(F ) := sup{t|t ≤ 1− F (t)} is the écart of Ky Fan.
(v) δk(Fn) → 0 ⇔ Fn(x) → 1, for each x > 0.
Proposition 2.4.4.2 [RD98] Let (X,F) be a probabilistic metric space and define

(16 ) ek (p, q) := δk (Fpq) = sup
x>0

x k [1 − Fpq(x )]e−x , ∀p, q ∈ X .

Then
1o ek is a semi-metric which generates the strong F-topology;
2o ek generates the F-uniformity, if this exists;
3o If (X,F ,W ) is a Menger space, then

(17 ) (p, q) → θk (p, q) := {ek (p, q)} 1
k+1

gives a metric on X. Moreover, (X,F) is complete if and only if (X, θk) is complete.
Theorem 2.4.4.3 [RD98] Let (X,F , T ) be a complete Menger space such that

T ≥ W . If A : X → X is a B-contraction, then the following statements are
equivalent:

(1) A has a fixed point;
(2) There exist p ∈ X and k ∈ (0,∞) such that

(18) Ek (p) := sup
x>0

{x k [1 − FpAp(x )]} < ∞.

Remarks 2.4.4.4 a) Simple examples show that A is generally not contractive
relatively to θk(or ek).

b) The suppremum in (18) may be infinite for some different values of k or for
different points in X.

c) Our condition is verified if there exists an element p such that FpAp(tp) = 1 for
some tp > 0 (Note that H. Sherwood in [SHER71, Corollary] imposed this condition
for all Fpq)

d) The condition (18) is verified if FpAp has a finite k moment. Thus Theorem 2.1.
slightly extends our above results

Corollary 2.4.4.5 If T ≥ W and (X,F , T ) is a complete Menger space, then a
given probabilistic contraction A on X has a fixed point if and only if there exist k > 0
and p ∈ X such that

(19)
∫ ∞

0

xkdFpAp(x) < +∞.

Proof . It is well known and easy to see that

(20) lim
x→∞

xk(1− FpAp(x)) = 0,

if (19) holds, Q.E.D.
Remark 2.4.4.6 A t-norm T is Archimedean if and only if there exists an increas-

ing homeomorphism h : [0, 1] → [0, 1] such that

(8′) T (a, b) = h−1(T∗(h(a), h(b))) =: T∗(a, b)
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where T∗ = W or T∗ = Prod (see Theorem 0.4). Since ab ≥ a+b−1 for all a, b ∈ [0, 1],
then we obtain the following.

Theorem 2.4.4.7 [RD98] Let (X,F , T ) be a complete Menger space such that
T ≥ Th for some increasing homeomorphism h : [0, 1] → [0, 1]. Then a probabilistic
contraction A of X has a fixed point if and only if there exist k > 0 and p ∈ X such
that

(21) sup
x>0

xk[1− h ◦ FpAp(x)] < +∞.

The proof follows from the fact that (X,h◦F ,W ) is seen to be a complete Menger
space, Q.E.D.

3. C-Contractions

A second type of contractions in Menger spaces was introduced by T.L. Hicks
[HIC83] who also proved that for the t-norm Min the Banach principle is valid (and
is essentially equivalent to the classical one).

We improved [RD87]the above result by showing that it remains true in any com-
plete Menger space (X,F , T ) for which sup

a<1
T (a, a) = 1. It is to be noted that this

condition on T is the weakest one which ensures the existence of the (ε, λ) - uniformity
([MNG78]).

Using the method of the so called T-conjugate transforms, in [MOYS79] is in-
troduced a (deterministic) metric which generates the (ε, λ) - topology in a Menger
spaces under an Archimedean t-norm. This metric is given in terms of a multiplicative
generator of the t-norm T .

Considering a modified form of this metric, in terms of an additive generator
of the t-norm, we have given a direct simpler proof of the above result. Our formulas
can be considered as direct generalizations of the Fréchet metrics for the convergence
in probability. In [MOYS79] the following is proved.

Theorem 3.1 For any multiplicative generator h of T and for any positive real
number z, the mapping da defined on X ×X by

(22) da(p, q) = − sup
x>0

eaxhFpq(x)

is a metric on X, which generates the (ε, λ)-topology. Moreover, the metrics da are
uniformly equivalent.

This is proved by using the properties of the so called T -conjugate transform.
We restated the above Theorem in terms of additive generators and so we have

given a direct simpler proof. Namely
Theorem 3.2 [RD82]. Let f be an additive generator of T and define the mapping

(23) ρf (p, q) = inf
t>0
{t + f ◦ Fpq(t)}, p, q ∈ X

Then
(i) ρf is a metric on X;
(ii) The uniformity generated by ρf is the (ε, λ)-uniformity;
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(iii) If a is a positive real number, then ρa
f defined by

(23a) ρa
f (p, q) = inf

t>0
{at + f ◦ Fpq(t)}

has the properties (i)-(ii);
(iv) For each a ∈ (0, 1] one has

aρf ≤ ρaf ≤ ρf

and so all ρf are uniformly equivalent.
Our proof is based on the well known inequality

f ◦ Fpq(x + y) ≤ f ◦ Fpr(x) + f ◦ Fpr(y),∀p, q, r, x, y.

Corollary 3.3 If (X,F , T ) is a Menger space under an Archimedean t-norm T,
then there exists an increasing bijection h : [0, 1] → [0, 1] such that the two-place
function kh defined by

(24) kh(p, q) = inf
t>0
{t + 1− h ◦ Fpq(t)}

is a metric on X, which metricizes the (ε, λ)-uniformity.
The main result of Hicks reads as follows:

Theorem 3.4 Every C-contraction on a complete Menger space (X,F ,Min) has a
unique fixed point , which is the limit of the successive approximations.

The proof of the above result is obtained from the deterministic Banach principle
, by constructing a metric on X which generates the (ε, λ)- uniformity and is such
that f is a contraction with respect to that metric.
As a matter of fact , the same proof is valid for a larger class of t-norms. This is due
to the fact that the two-place function d constructed in [HIC83] is a metric in any
Menger space (X,F , T ) if T ≥ T1 . We proved this fact using a slightly modified
form of d.

Proposition 3.5. Let (X,F) be a PSM-space and define the two place mapping

(25) K(x, y) = sup{t , t ≤ 1− Fxy(t)}.
Then K is semi-metric on (X, TF ) and

(26) K(x, y) < δ ⇔ Fxy(δ) > 1− δ ∀δ > 0,

which shows that K generates the semi-uniformity UF .

Examples 3.6 (i) If d is a semi-metric on X and we set Fxy := εd(x,y) then
(X, εd(.,.)) is a PSM-space and K(x, y) = min(d(x, y), 1).
(ii) Let X be the family of all classes of real random variables on a probability measure
space (Ω,K, P ). If we set F(x, y) = F|x−y|, the distribution function of |x− y|, then
(X,F ,W ) is a Menger space and K is the Ky Fan metric of the convergence in
probability.

It is to be noted that, generally, K need not be a metric. But we have proven
the following.
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Theorem 3.7 [RD85,87] Let (X,F , T1) be a Menger space and define

(27) d(p, q) = sup{t, Fpq(t) ≤ 1− t}
Then

(i) d is a metric on X , which generates the (ε, λ)− uniformity;
(ii) X if F-complete iff X is d-complete;
(iii) f : X → X is a C-contraction iff f is d-contraction

In order to ensure the verification of the triangle inequality for K, T. L. Hicks
[HIC96] proposed the following form of the triangle inequality for (X,F):

III1. [Fxy(t) > 1− t, Fyz(s) > 1− s]
⇒ Fxz(t + s) > 1− (t + s)

and he observed that the property III1 holds for every Menger space (X,F , T ) for
which T ≥ W.

As a matter of fact one has the following
Proposition 3.8 Let T be a t-norm such that (III1) holds for every Menger space

(X,F , T ). Then T ≥ W .
Proof. Let X = {x, y, z}, Fxy = Fyx, Fyz = Fzy, Fxz = Fzx where

Fxy(t) =





0 t ≤ 0
a t ∈ (0, 1]
1 t > 1

, Fyz(t) =





0 t ≤ 0
b t ∈ (0, 1]
1 t > 1

,

Fzx(t) =





0 t ≤ 0
T (a, b) t ∈ (0, 1]

1 t > 1

and Fxx = Fyy = Fzz = ε0. Then (X,F , T ) is a Menger space (for which T is the
best t-norm) and K(x, y) = 1− a,K(y, z) = 1− b, while K(x, z) = 1− T (a, b). Thus
we see that K(x, z) ≤ K(x, y) + K(y, z) ⇔ T (a, b) ≥ a + b− 1.

Remark 3.9 Let (X,F , T ) as in the proof of the theorem and suppose that
T (a, b) < a + b − 1. Therefore 0 < a, b < 1 and there exists p > 1 such that
((1− a)

1
p + (1− b)

1
p )p > 1− T (a, b). Thus (1− a)

1
p + (1− b)

1
p > (1− T (a, b))

1
p and

we see that Kp, given by

Kp(u, v) = sup{t|tp ≤ 1− Fuv(t)},
is verifying the triangle inequality. This shows that the general formulas proposed in
[RD86b] can give metrics in more general situations.

Let M denote the family of all mappings µ : [0,∞] → [0,∞] which are such that
a) µ(t) + µ(s) ≤ µ(t + s), ∀ t, s ≥ 0
b) µ(t) = 0 ⇔ t = 0

and
c) µ is continuous.
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It is easy to see that every µ ∈ M is finite and strictly increasing on a uniquely
determined interval [0, bµ] and µ(bµ) = ∞.

If we set, for any PSM-space (X,F),
(1µ) Kµ(x, y) = sup{t|t ≥ 0, µ(t) ≤ 1− Fxy(t)}

then Kµ is a semi-metric. Moreover,
(2µ) Kµ(x, y) < δ ⇔ Fxy(δ) > 1− µ(δ),

from which it follows that Kµ generates UF .

3.1. Probabilistic metric spaces of type M
The above remarks suggest the following definition, which extends (III1) :
Definition 3.1.1. [PRD99] A PSM-space (X,F) for which takes place the

following triangle inequality

IIIµ. [Fxy(t) > 1− µ(t), Fyz(s) > 1− µ(s)] ⇒
⇒ Fxz(t + s) > 1− µ(t + s)

is called PM-space of type M.
Remark 3.1.2 The triangle inequality (IIIµ) can be useful and appropriate in

many cases. For example, if (X,F) verifies (III1) – which is (IIIµ) for µ(t) = t –
then it is easy to see that F̃ defined by Fxy ◦ µ, is a probabilistic semi-metric and

F̃xy(δ) > 1− µ(δ) ⇔ Fxy(µ(δ)) > 1− µ(δ).

The formula (1µ) leads to Kµ(x, y) = µ−1(K(x, y)), a very convenient one, for µ−1 is
clearly sub-additive. In particular, for spaces of random variables (see Example 1.3
(ii) ), F̃xy(t) = P (|x−y| < µ(t)) = P (µ−1(|x−y|) < t) and µ−1 ◦K is a metric which
gives the convergence in probability, too. Generally, we can prove the following

Theorem 3.1.3 [PRD99] Let (X,F) be a PM-space of type M, that is the triangle
inequality (IIIµ) holds. Then the two-place function Kµ, defined by formula (1µ), is
a metric on X which generates TF and UF .

Proof. We have only to prove the triangle inequality for Kµ. From (2µ) we see
that [Kµ(x, y) < δ and Kµ(y, z) < ε] ⇒ [Fxy(δ) > 1 − µ(δ) and Fyz(ε) > 1 − µ(ε)].
From (IIIµ) it follows that Fxz(δ+ε) > 1−µ(δ+ε), which shows that Kµ(x, z) < δ+ε
and we obtain the triangle inequality for Kµ.

Corollary 3.1.4 Let T be a t-norm such that

T (a, b) ≥ Tµ(a, b) := max{1− µ[µ−1(1− a) + µ−1(1− b)], 0}.
Then Kµ is a metric for every Menger space (X,F , T ).

Proof. Since T (a, b) ≥ Tµ(a, b) then T (a, b) ≥ 1 − µ[µ−1(1 − a) + µ−1(1 − b)].
From the inequality IIIM it follows that

Fxz(t + s) ≥ 1− µ[µ−1(1− Fxy(t)) + µ−1(1− Fyz(s))].

Now, if we suppose that Fxy(t) > 1 − µ(t), Fyz(s) > 1− µ(s) and µ(t + s) < 1, then
µ(t), µ(s) < 1 and

Fxz(t + s) ≥ 1− µ(t + s).
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Therefore F verifies IIIµ.
Remark 3.1.5 Since µ is super-additive, then µ(µ−1(1−a)+µ−1(1−b)) ≥ 2−a−b,

which shows that Tµ(a, b) ≤ max(a+b−1, 0) = W (a, b). Therefore our Theorem 3.1.3
and Corollary 3.1.4 essentially extend the corresponding Theorem 2 and Corollary 2
of [HIC96]. Actually if we take an increasing sequence (µn) ⊂ M, it is clear that
(Tµn

) is decreasing and so the class of Menger spaces, for which formula (1µ) gives
us a metric, is increasing. For example, if µ−1

n (t) → 1 for t ∈ (0, 1], then we see that
Tµn

(a, b) → Tw(a, b), the weakest t-norm (see also the example in Remark 3.1.2).
Consider an Archimedean t-norm Tf with the additive generator f, and let µ1,

µ2 ∈ M be fixed. Then we have the following
Theorem A [RD88] For every Menger space (X,F , T ) with T ≥ Tf , the mapping

d given by
(28) d(p, q) = sup{t, µ1(t) ≤ f ◦ Fpq(µ2(t))}

is a metric on X. Moreover,

(29) d(p, q) < t ⇔ f ◦ Fpq(µ2(t)) < µ1(t)

and so d and F generate the same uniformity.
1. It suffices to consider the case µ2(t) = t, for (X,F ◦ µ2, T ) is a Menger space

for every (X, F , T ).
2. The formula (28) gives a metric on every Menger space (X,F ,Min) and any

f : [0, 1] → [0,∞] which is continuous, strictly decreasing and such that f(1) = 0.
The case f(1) = 1− t, m1(t) = µ2(t) = t and T = Min, was considered in [HIC83] in
a different formulation.

In [RD84] we observed that the method used in [HIC83] can be applied for a larger
class of t-norms, namely for T ≥ T1.

In [CNS85] this case T ≥ T1 was considered for a larger class of mappings: Let L
be the family of functions L : [0,∞) −→ [0,∞) with the following three properties:

(L1) L is strictly increasing;
(L2) L is right continuous;
(L3) lim

n→∞
Ln(t) = 0, ∀t ≥ 0.

A mapping A is called L-probabilistic contractions iff

(CL) t > 0, Fpq(t) > 1− t ⇒ FApAq (L(t)) > 1− L(t)

We considered (RD88) a slightly more general case, suggested by the following
remark. If we set f(s) = 1− s then (CL) can be formulated as

(Cf
L) f ◦ Fpq(t) < t ⇒ f ◦ FApAq (L(t)) < L(t)

As a matter of facts, a fixed point theorem holds in more general conditions:
Theorem 3.1.6 [RD88] Let (X,F , T ) be a complete Menger space such thatT ≥

Tf . Then every mapping A : X → X which satisfies the condition (µ is fixed)

(30) f ◦ Fpq(t) < µ(t) ⇒ f ◦ FApAq (L(t)) < µ(L(t))

has a unique fixed point which is the limit of successive approximations.

3.2. A special case: L −M contractions
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Definition 3.2.1[PRD99] We say that A : X → X is an L −M probabilistic
contraction if there exist L ∈ L and µ ∈M such that

(Lµ− c) [Fxy(t) > 1− µ(t)] ⇒ [FAxAy(L(t)) > 1− µ ◦ L(t)]

For a concrete pair L− µ we use the term L− µ probabilistic contraction.
Example 3.2.2. Suppose that A is a contraction of Hicks type – that is (Lµ− c)

holds for µ(t) = t (the case of Hicks) and consider the probabilistic semi-metric F̃
defined by F̃xy = Fxy ◦ µ, where

Fxy ◦ µ(t) =
{

0, t ≤ 0
Fxy(µ(t)), t > 0 ,

and tµ = ∞. If we set L̃ = µ−1 ◦ L ◦ µ, then it is easy to see that L̃ ∈ L and

F̃xy(t) > 1− µ(t) ⇔ Fxy(µ(t)) > 1− µ(t)
⇒ FAxAy(L ◦ µ(t)) > 1− L ◦ µ(t)

⇔ FAxAy{µ[µ−1 ◦ L ◦ µ(t)]} > 1− µ[µ−1 ◦ L ◦ µ(t)]

⇔ F̃AxAy(L̃(t)) > 1− µ ◦ L̃(t).

But this says that A verifies (L̃µ− c) for every µ.
Theorem 3.2.3 [PRD99]. Let (X,F) be a complete PM-space of type M, for

which the triangle inequality (IIIµ) holds. Then every L−µ probabilistic contraction
has a unique fixed point which can be obtained by successive approximations.

Corollary 3.2.4 Let (X,F , T ) be a complete Menger space, for which T ≥ Tµ.
Then every L− µ probabilistic contraction on X has a unique fixed point.

Remark 3.2.5 (i) For µ(t) = t or from Example 3.2.2 we obtain the Theorem 3
of [HIC96]. Actually we can extend to PM-spaces of type M all the results of [HIC96]
and that obtained by the present author.

(ii) It is clear that our Corollary 3.2.4 is applicable for Menger spaces in a class
essentially larger than that from [HIC83,96].

4. Generalized C–contractions on Menger spaces

Let (X,F) be a given PSM-space and A : X → X a fixed mapping.
Definition 4.1 We say that A is a generalized C– contraction if for each pair of

real numbers (a, b), with 0 < a < b, there exists L = Lab ∈ (0, 1) such that if

a ≤ 1− Fpq(a) and 1− Fpq(b+) ≤ b,

then the following implication holds:

(Cab) : Fpq(x) > 1− x ⇒ FAxAy(Labx) > 1− Labx

We can prove the following.
Theorem 4.2 Every generalized C– contraction on a complete Menger space

(X,F , T ), where T ≥ W, has a unique fixed point, which is globally attractive.
Proof. Let us first note the following simple useful
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Lemma 4.3 In every PSM-space (X,F),K(p, q) = sup{t , t ≤ 1 − Fpq(t)} is the
only nonnegative real number k with the property

1− Fpq(k+) ≤ k ≤ 1− Fpq(k).

Now let us suppose that
K(p, q) = k = (1− t)a + tb

where 0 < a < b and t ∈ [0, 1] are fixed.
10. Since a ≤ k, then a ≤ 1− Fpq(k) ≤ 1− Fpq(a), and we see that

a ≤ 1− Fpq(a).

20. Since k ≤ b, then

1− Fpq(b+) ≤ 1− Fpq(k+) ≤ k ≤ b,

which says that
1− Fpq(b+) ≤ b.

20. Since A is a generalized C– contraction, then (Cab) holds. But, for any d > 0,
we have 1− Fpq(k + d) ≤ 1− Fpq(k+) ≤ k < k + d, which implies

FAxAy(Lab(k + d) > 1− Lab(k + d),

so that
K(Ap,Aq) ≤ Lab(k + d), ∀d > 0

and we see that

K(Ap,Aq) ≤ LabK(p, q), if K(p, q) ∈ [a, b].
Therefore A is a Krasnoselski contraction [KREM69]in the complete metric space
(X,K), which proves the theorem.

We used this type of methods in a recent joint paper with Olga Hadžić and Endre
Pap[HPR2001].
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[II81] I.Istrăţescu: A fixed point theorem for mappings with a probabilistic contractive iterate. Rev.

Roum. Math. Pures et Appl. (1981), 431-435
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Analele Univ. Bucureşti, Matematică, Anul XLVIII (1998), nr.1, pp.57-64.

[RD8284] V. Radu: On a family of metrics for the distribution functions. In: Proc.7-th Conf. Prob.
Theory August 29-September 4, 1982, Brasov Romania. Ed. Acad. RSR, Bucuresti 1984, 487-
492.

[RD83b] V. Radu: A remark on contractions in Menger spaces. Seminarul de Teoria Probabilităţilor
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Monographs Series on Probability Statistics and Applied Mathematics, vol. 2, 1994.

[RD98] V. Radu: A fixed point principle in probabilistic metric spaces under Archimedean triangular
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