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”Babeş-Bolyai” University

3400 Cluj-Napoca, Romania

E-mail: r.precup@math.ubbcluj.ro

Abstract. The aim of this lecture is to present a new compactness method for operator inclu-
sions in general, and for Hammerstein like inclusions, in particular. This method applies to acyclic
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1. The operator form of the initial and boundary value problems

STEP I: Consider the initial value problem (IVP) and the boundary value problem
(BVP):

(1)
{

u′ = f (t, u) , t ∈ I = [0, T ]
u (0) = 0;

{
u′′ = f (t, u) , t ∈ I
u ∈ B

for a system of n differential equations. Here B stands for the boundary conditions.
Under standard conditions, both problems (1) can be put under the operator form

u = N (u) , u ∈ C (I;Rn) ,

where N : C (I;Rn) → C (I;Rn) is the composite operator N = JSF, of the Ne-
mytskii operator F,

F : C (I;Rn) → C (I;Rn) , F (u) (t) = f (t, u (t)) ,

of a linear integral operator S, of the form

S : C (I;Rn) → C1 (I;Rn) , S (u) (t) =
∫ T

0

k (t, s) u (s) ds

and of the imbedding map J,

J : C1 (I;Rn) → C (I;Rn) , J (u) = u.

For the (IVP), the kernel k has the expression

k (t, s) =
{

1, s < t
0, t < s
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while for the (BVP), −k is the Green’s function corresponding to the boundary
conditions B, assuming its existence. Assume F and S are bounded continuous oper-
ators. Then, since by the Ascoli-Arzèla Theorem, the imbedding map J is completely
continuous, we have that N is completely continuous and so, we may think to apply
Schauder’s Fixed Point Theorem or the Leray-Schauder Principle (see [7]) in order to
guarantee the existence of solutions to each of problems (1) .

2. Equations in Banach spaces

STEP II: Consider the problems (1) in a Banach space E.
The imbedding map J of C1 (I;E) into C (I; E) is not completely continuous when

E is infinite dimensional. Consequently, to say something about the compactness of
N, for each bounded set C of C (I;E) we have to analyze the compactness of the
section sets N (C) (t) for t ∈ I, where

N (C) (t) =

{∫ T

0

k (t, s) f (s, u (s)) ds : u ∈ C

}
.

If C is countable, then the integral and the Kuratowski’s measure of noncompactness
interchange as follows (see [3], Theorem 1.2.2):

α (N (C) (t)) ≤
∫ T

0

|k (t, s)|α (f (s, C (s))) ds.

Next we require the following compactness property holds for f :

α (f (t,M)) ≤ L (t)α (M)

for each bounded set M ⊂ E. Then we obtain

α (N (C) (t)) ≤
∫ T

0

|k (t, s)|L (s)α (C (s)) ds.

From, we would like to derive that

α (N (C) (t)) = 0, for all t ∈ I.

This is not easy for general sets C, but it is possible if C satisfies

C ⊂ conv ({u0} ∪N (C))

for some u0 ∈ C (I;E) . Indeed, for such a set C, we have

α (C (t)) ≤ α (N (C) (t)) ≤
∫ T

0

|k (t, s)|L (s) α (C (s)) ds.

If we let φ (t) = α (C (t)) , then

φ (t) ≤
∫ T

0

|k (t, s)|L (s) φ (s) ds.

Now suitable integral inequalities (see [9]) yield φ ≡ 0 and so, by the infinite dimen-
sional version of the Ascoli-Arzèla Theorem, N (C) is relatively compact in C (I; E) .
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Notice by the above argument we have not proved the complete continuity of N
and in consequence, Schauder’s Fixed Point Theorem and Leray-Schauder Principle
do not apply. However, we may use Mönch’s extensions of these two theorems.

3. Mönch’s fixed point theorems

Theorem 3.1. ([5]) Let X be a Banach space, D ⊂ X be closed convex and N : D →
D be continuous with the further property that for some x0 ∈ D one has

(2)
C ⊂ D, C countable,
C = co ({x0} ∪N (C))

}
=⇒ C compact.

Then N has at least one fixed point.

Theorem 3.2. ([5]) Let X be a Banach space, K ⊂ X closed convex, U ⊂ K open
in K and N : U → K continuous, with the further property that for some x0 ∈ U one
has

(3) C ⊂ U, C countable,
C ⊂ co ({x0} ∪N (C))

}
=⇒ C compact.

In addition, assume that

x 6= (1− λ) x0 + λN (x) for all x ∈ U \ U, λ ∈ (0, 1) .

Then N has at least one fixed point in U.

STEP III: Consider the (IVP) and the (BVP) for a differential inclusion in the
Banach space E, i.e.

(4)
{

u′ ∈ f (t, u) , t ∈ I
u (0) = 0;

{
u′′ ∈ f (t, u) , t ∈ I
u ∈ B.

If we wish to discuss the inclusions (4) in a similar way like the equations (1), we need
to give multivalued analogs to Mönch’s Theorems. This was achieved in [6] replacing
(2)-(3) by some slightly more general conditions expressed in terms of a pair (M,C)
instead of a single set C :

4. Mönch type theorems for inclusions

Theorem 4.1. ([6]) Let D be a closed, convex subset of a Banach space X and
N : D → 2D \ {∅} a mapping with convex values. Assume graph (N) is closed, N
maps compact sets into relatively compact sets and that for some x0 ∈ D one has

(5)
M ⊂ D, M = conv ({x0} ∪N (M)) ,
M = C with C ⊂ M, C countable

}
=⇒ M compact.

Then there exists x ∈ D with x ∈ N (x) .

Theorem 4.2. ([6]) Let K be a closed, convex subset of a Banach space X, U a
relatively open subset of K and N : U → 2K \ {∅} a mapping with convex values.
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Assume graph (N) is closed, N maps compact sets into relatively compact sets and
that for some x0 ∈ U, the following two conditions are satisfied:

(6)
M ⊂ U, M ⊂ conv ({x0} ∪N (M)) ,
M = C with C ⊂ M, C countable

}
=⇒ M compact;

x 6∈ (1− λ)x0 + λN (x) for all x ∈ U \ U, λ ∈ (0, 1) .

Then there exists x ∈ U with x ∈ N (x) .

Notice any upper semicontinuous mapping N with compact convex nonempty val-
ues, has closed graph and maps compact sets into relatively compact sets.

5. Hammerstein integral inclusions

Let us present an application of Theorem 4 to the Hammerstein integral inclusion

(7) u (t) ∈
∫ T

0

k (t, s) f (s, u (s)) ds a.e. t ∈ I.

Theorem 5.1. ([8]) Let p ∈ [1,∞] , q ∈ [1,∞) and let r ∈ (1,∞] be the conjugate of
q, i.e. 1/q + 1/r = 1. Assume k : I2 → R is measurable and

{
(a) if p < ∞ : the map t 7−→ k (t, .) belongs to Lp (I;Lr (I)) ;
(b) if p = ∞ : the map t 7−→ k (t, .) belongs to C (I;Lr (I)) .

In addition suppose:
(1) f : I × E → 2E \ {∅} is a Carathéodory function with compact convex values;
(2) there exists a ∈ Lq (I;R+) , b ∈ R+ and R > 0 such that

{
(a) if p < ∞ : |f (t, x)| ≤ a (t) + b |x|p/q

, x ∈ E
(b) if p = ∞ : |f (t, x)| ≤ a (t) for |x| ≤ R

(i.e. f is a (q, p/q)-Carathéodory function);
(3) there exists a (q, p/q)-Carathéodory function ω : I ×R+ → R+ with

α (f (t,M)) ≤ ω (t, α (M))

a.e. t ∈ I, for every bounded M ⊂ E;
(4) ϕ ≡ 0 is the unique solution in Lp (I;R+) to the inequality

ϕ (t) ≤ 2
∫ T

0

|k (t, s)|ω (s, ϕ (s)) ds, a.e. t ∈ I;

(5) |u|p < R for any solution u ∈ Lp (I; E) with |u|p ≤ R of

u (t) ∈ λ

∫ T

0

k (t, s) f (s, u (s)) ds, a.e. t ∈ I,

for λ ∈ (0, 1) .
Then (7) has at least one solution u ∈ Lp (I; E) (respectively, in C (I; E) if p = ∞)

with |u|p ≤ R.
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6. Fixed point results for acyclic mappings

STEP IV: Let us now discuss the problems

(8)
{

u′ ∈ Au + f (t, u) , t ∈ I
u (0) = 0;

{
u′′ ∈ Au + f (t, u) , t ∈ I
u ∈ B.

Notice semilinear parabolic, respectively hyperbolic and elliptic inclusions can be put
under the abstract form u′ ∈ Au + f (t, u) , respectively u′′ ∈ Au + f (t, u) .

Here we suppose that A is a multivalued map from E into 2E such that for each v
in a given space of functions, there exists a unique solution S (v) := u to the initial
value problem, respectively boundary value problem:

(9)
{

u′ ∈ Au + v, t ∈ I
u (0) = 0;

{
u′′ ∈ Au + v, t ∈ I
u ∈ B.

We note that the solution operator S is not linear, so even f has convex values, the
mapping N = SF may have non convex values. Thus, a natural problem was to give
extensions of Mönch’s Theorems for multivalued operators with non convex values.
As a result we obtained a Mönch type generalization of the Eilenberg-Montgomery
Theorem [2] (see also [4]):

Theorem 6.1. ([9]) Let D be a closed convex subset of a Banach space X, Y a met-
ric space, N : D → 2Y \ {∅} a map with acyclic values, and r : Y → D continuous.
Assume graph (N) is closed, N maps compact sets into relatively compact sets and
that for some x0 ∈ D one has

(10)
M ⊂ D, M = conv ({x0} ∪ rN (M)) ,
M = C, C ⊂ M, C countable

}
=⇒ M compact.

Then there exists x ∈ D with x ∈ rN (x) .

The next result is the continuation type version of Theorem 6.

Theorem 6.2. ([9]) Let K be a closed convex subset of a Banach space X, U a
convex, relatively open subset of K, Y a metric space, N : U → 2Y \ {∅} with
acyclic values and r : Y → K continuous. Assume graph (N) is closed, N maps
compact sets into relatively compact sets and that for some x0 ∈ U, the following two
conditions are satisfied:

(11)
M ⊂ U, M ⊂ conv ({x0} ∪ rN (M))
M = C, C ⊂ M, C countable

}
=⇒ M compact;

(12) x 6∈ (1− λ)x0 + λrT (x) for all x ∈ U \ U, λ ∈ (0, 1) .

Then there exists x ∈ U with x ∈ rN (x) .
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7. Abstract Hammerstein inclusions

STEP V: Here we discuss the abstract inclusion

(13) u ∈ SF (u) , u ∈ Lp (I;E) ,

where
S : Lq (I;E) → Lp (I; E)

is a given single valued operator and F : Lp (I;E) → 2Lq(I;E) is the Nemytskii
multivalued operator associated to a function f : I × E → 2E , given by

F (u) = {w ∈ Lq (I;E) : w (t) ∈ f (t, u (t)) a.e. t ∈ I}.
As a direct consequence of Theorem 7, we have the following existence principle for
(10) .

Theorem 7.1. ([1]) Let K be a closed convex subset of Lp (I;E) (1 ≤ p ≤ ∞) , U
a relatively open subset of K and u0 ∈ U. Assume

(H1) SF : U → 2K \ {∅} has acyclic values, closed graph and maps compact sets
into relatively compact sets;

(H2) M ⊂ U, M ⊂ conv ({0} ∪ SF (M))
M = C, C ⊂ M, C countable

}
=⇒ M compact;

(H3) u /∈ (1− λ)u0 + λSF (u) for all u ∈ U \ U, λ ∈ (0, 1) .
Then (10) has at least one solution in U.

In what follows: u0 = 0, U = BR = {u ∈ K : |u|p < R}. We shall give sufficient
conditions for (H1)-(H2):

(S1) There exists a function k : I2 → R+ such that k (t, .) ∈ Lr (I)
(1/r + 1/q = 1) , the function t 7−→ |k (t, .)|r belongs to Lp (I) and

(14) |S (w1) (t)− S (w2) (t)| ≤
∫

I

k (t, s) |w1 (s)− w2 (s)| ds

a.e. t ∈ I, for all w1, w2 ∈ Lq (I; E) .
(S2) S : Lq (I; E) → K and for every compact convex subset C of E, S is

sequentially continuous from L1
w (I;C) to Lp (I;E) (Here L1

w (I; C) stands for the
set L1 (I; C) endowed with the weak topology of L1 (I; E)).

(f1) f : I × E → 2E \ {∅} has compact convex values.
(f2) f (., x) has a strongly measurable selection on I, for each x ∈ E.
(f3) f (t, .) is upper semicontinuous, for a.e. t ∈ I.
(f4) There exists a ∈ Lq (I;R+) , b ∈ R+ and R > 0 such that

{
if p < ∞ : |f (t, x)| ≤ a (t) + b |x|p/q

, for all x ∈ E;
if p = ∞ : |f (t, x)| ≤ a (t) , for |x| ≤ R.

(f5) For every separable closed subspace E0 of E, there exists a (q, p/q)-
Carathéodory function ω : I ×R+ → R+ such that

βE0 (f (t,M) ∩ E0) ≤ ω (t, βE0 (M))
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a.e. t ∈ I, for every set M ⊂ E0 satisfying

|M | ≤ |S (0) (t)|+
(
|a|q + bRp/q

)
|k (t, .)|r

if p < ∞, respectively

|M | ≤ |S (0) (t)|+ |a|q |k (t, .)|r
if p = ∞. In addition ϕ ≡ 0 is the unique solution in Lp (I;R+) to

(15) ϕ (t) ≤
∫

I

k (t, s)ω (s, ϕ (s)) ds, a.e. t ∈ I.

Here βE0 is the ball measure of noncompactness in E0.
(SF) For every u ∈ K the set SF (u) is acyclic in K.

Theorem 7.2. ([1]) Assume (S1)-(S2), (f1)-(f5) and (SF ) hold. In addition suppose
(H3). Then (10) has at least one solution u in K ⊂ Lp (I; E) with |u|p ≤ R.

If q ≤ p, then a sufficient condition for (f5) is
(f5*) For every separable closed subspace E0 of E, there exists a δ ∈ Lpq/(p−q) (I)

such that

βE0 (f (t,M) ∩ E0) ≤ δ (t)βE0 (M)

a.e. t ∈ I, for every subset M ⊂ E0 satisfying

|M | ≤ |S (0) (t)|+
(
|a|q + bRp/q

)
|k (t, .)|r ,

if p < ∞, respectively

|M | ≤ |S (0) (t)|+ |a|q |k (t, .)|r
if p = ∞, and

(16) |δ|pq/(p−q) ||k (t, .)|r|p < 1.

Here pq/ (p− q) = q if p = ∞ and pq/ (p− q) = ∞ if p = q.
Notice in the Volterra case, i.e. when k (t, s) = 0 for s > t, condition (16) can be

dropped.

Example 7.1. Let f (t, x) = a |x|p−2
x, where a > 0, p > 2. Then, if |M | ≤ η (t) ,

one has

β (f (t,M)) ≤ a (p− 1) η (t)p−2
β (M) .

Here δ (t) = a (p− 1) η (t)p−2 and (16) holds for a sufficiently small a.

We note that the technique we use to verify compactness conditions like (5), (6)
equally applies to check the Palais-Smale condition in critical point theory (see [10]).
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